Научная статья на тему 'Molecular structure of manganese tris-acetylacetonate in different spin states'

Molecular structure of manganese tris-acetylacetonate in different spin states Текст научной статьи по специальности «Химические науки»

CC BY
99
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
JAHN-TELLER EFFECT / VIBRONIC EFFECT / MANGANESE TRIS-ACETYLACETONATE / SPIN STATE

Аннотация научной статьи по химическим наукам, автор научной работы — Berger Raphael Johann Friedrich, Girichev Georgiy V., Giricheva Nina I., Petrova Angelika A., Sliznev Valery V.

Quantum chemical calculations of the geometric structure, force fields and harmonic vibration frequencies of the molecule Mn(acac)3 for electronic states with multiplicities M = 1, 3 and 5 were performed using the GAUSSIAN 09 program in the framework of density functional theory (DFT/UB3LYP) with correlation-consistent valence three-exponential basis functions cc-pVTZ. The structure with high-spin state S=2 (symmetry of electronic state 5B) possesses the lowest energy and it is characterized by C2 symmetry. The coordination polyhedron MnO6 possesses the shape of “elongated octahedron”. The high-spin state 5A is characterized by structure of compressed octahedron. The distortion of octahedral structure of coordination polyhedron in the states 5A and 5B is significant, and this fact testifies to the strong Jahn-Teller effect, or vibronic effect, in 5E electronic state. The calculations for low-spin state S=0 are notable for some specifics. The optimization resulted in C2 symmetry of molecule having the symmetry of electronic state 1B. The bond distances Mn-O within 0.001 Å were equal to values obtained for structure with D3 symmetry with S=1. This result corresponds to the situation if two electrons occupy different 1e orbitals possessing opposite spins. The spin states 3A2 and 1B lie higher than the high-spin state by 5.2 and 17.3 kcal/mol, respectively. The structural features are explained well in a framework of simple crystal field theory indicating that d-orbitals of Mn3+ ion undergo the significant influence of ligand field.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Molecular structure of manganese tris-acetylacetonate in different spin states»

DOI: 10.6060/tcct.2017604.5555 УДК: 544.18,539.27

МОЛЕКУЛЯРНАЯ СТРУКТУРА ГРИС-АЦЕТИЛАЦЕТОНАТА МАРГАНЦА В РАЗНЫХ

СПИНОВЫХ СОСТОЯНИЯХ

Р.Й.Ф. Бергер, Г.В. Гиричев, Н.И. Гиричева, А.А. Петрова, В.В. Слизнев, Н.В. Твердова

Рафаэль Йохан Фридрих Бергер

Факультет материаловедения и физики, Зальцбургский университет им. Париса Лодрона, Австрия, ул. Якоба-Харингера, 2А, Зальцбург, 5020, Австрия. E-mail: raphael.berger@sbg.ac.at

Георгий Васильевич Гиричев *, Анжелика Алексеевна Петрова, Валерий Викторович Слизнев, Наталия Вячеславовна Твердова

Кафедра физики, Ивановский государственный химико-технологический университет, Шереметевский просп., 7, Иваново, Российская Федерация, 153000

E-mail: girichev@isuct.ru *, paa-1@mail.ru, sliznev@isuct.ru, tverdova@isuct.ru Нина Ивановна Гиричева

Кафедра органической и физической химии, Ивановский государственный университет, ул. Ермака, 39, Иваново, Российская Федерация, 153025 E-mail: n.i.giricheva@mail.ru

Электронное и геометрическое строение, силовое поле и колебательный спектр молекулы трис-ацетилацетоната марганца в электронных состояниях с мультиплет-ностью М = 1, 3 и 5 были изучены с помощью квантово-химическихрасчетов, выполненных методом DFT/UB3LYPпри использовании корреляционно-согласованного набора базисных функций cc-pVTZ. Структура молекулы в высокоспиновом состоянии S=2 (тип симметрии электронного состояния 5B) и с типом симметрии равновесной конфигурации С2 характеризуется наименьшей энергией. При этом, координационный полиэдр МпОб имеет форму вытянутого октаэдра. Высокоспиновое состояние 5A соответствует седловой точке на ППЭ, при этом координационный полиэдр приобретает форму сжатого октаэдра. Искажение октаэдрической структуры координационного полиэдра значительно, и этот факт свидетельствует о проявлении сильного эффекта Яна-Геллера (вибронного эффекта) в электронном состоянии 5E. Расчеты для низкоспинового состояния с S=0 завершились получением неожиданного результата. Оптимизация структуры симметрии С2 для электронного состояния 1B привела к структурным параметрам молекулы, близким к параметрам, полученным для электронного состояния 3A2. При этом межъядерные расстояния Мп-О в пределах 0,001 А оказались совпадающими с расстояниями, полученными для структуры D3-симметриии со спином S=1. Этот результат соответствует ситуации, когда два электрона заселяют разные орбитали 1е, обладая противоположными спинами. Электронные состояния 3A2 и 1B лежат выше, чем высокоспиновое состояние на 5,2 и 17,3 ккал/моль, соответственно. Заселенность молекулярных орбиталей находится в хорошем согласии с предсказаниями теории кристаллического поля, свидетельствуя о том, что d-орбитали иона Мп3+ подвергаются заметному воздействию поля лигандов.

Ключевые слова: эффект Яна-Теллера, вибронный эффект, трис--ацетилацетонат марганца, спиновое состояние

UDC: 544.18,539.27

MOLECULAR STRUCTURE OF MANGANESE TRIS-ACETYLACETONATE

IN DIFFERENT SPIN STATES

R.J.F. Berger, G.V. Girichev, N.I. Giricheva, A.A. Petrova, V.V. Sliznev, N.V. Tverdova

Raphael Johann Friedrich Berger

Department of Materials Research and Physics; Chemistry of Materials, Paris Lodron University of Salzburg, Jakob-Haringerstr. 2A, Salzburg, 5020, Austria E-mail: raphael.berger@sbg.ac.at

Georgiy V. Girichev *, Angelika A. Petrova, Valery V. Sliznev, Nataliya V. Tverdova

Department of Physics, Ivanovo State University of Chemistry and Technology, Sheremetievskiy ave., 7, Ivanovo, 153000, Russia

E-mail: girichev@isuct.ru *, paa-1@mail.ru, sliznev@isuct.ru, tverdova@isuct.ru Nina I. Giricheva

Department of Organic and Physical Chemistry, Ivanovo State University, Ermak st., 39, Ivanovo, 153025, Russia E-mail: n.i.giricheva@mail.ru

Quantum chemical calculations of the geometric structure, force fields and harmonic vibration frequencies of the molecule Mn(acac)3 for electronic states with multiplicities M = 1, 3 and 5 were performed using the GAUSSIAN 09 program in the framework of density functional theory (DFT/UB3LYP) with correlation-consistent valence three-exponential basis functions cc-pVTZ. The structure with high-spin state S=2 (symmetry of electronic state 5B) possesses the lowest energy and it is characterized by C2 symmetry. The coordination polyhedron MnOepossesses the shape of "elongated octahedron ". The high-spin state 5A is characterized by structure of compressed octahedron. The distortion of octahedral structure of coordination polyhedron in the states 5A and 5B is significant, and this fact testifies to the strong Jahn-Teller effect, or vibronic effect, in 5E electronic state. The calculations for low-spin state S=0 are notable for some specifics. The optimization resulted in C2 symmetry of molecule having the symmetry of electronic state 1B. The bond distances Mn-O within 0.001 Ä were equal to values obtained for structure with D3 symmetry with S=1. This result corresponds to the situation if two electrons occupy different 1e orbitals possessing opposite spins. The spin states 3A2 and 1B lie higher than the high-spin state by 5.2 and 17.3 kcal/mol, respectively. The structural features are explained well in a framework of simple crystal field theory indicating that d-orbitals of Mn3+ ion undergo the significant influence of ligandfield.

Key words: Jahn-Teller effect, vibronic effect, manganese tris-acetylacetonate, spin state Для цитирования:

Бергер Р.Й.Ф., Гиричев Г.В., Гиричева Н.И., Петрова А.А., Слизнев В.В., Твердова Н.В. Молекулярная структура трис-ацетилацетоната марганца в разных спиновых состояниях. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 4. С. 47-53. For citation:

Berger R.J.F., Girichev G.V., Giricheva N.I., Petrova A.A., Sliznev V.V., Tverdova N.V. Molecular structure of manganese /rn-acetylacetonate in different spin states. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 4. P. 47-53.

INTRODUCTION

The Jahn-Teller, or vibronic coupling effect (JTE), manifests as a distortion of molecular structure if some electronic state is associated with degeneracy. The structure of manganese tris-beta-diketonato complexes is a typical example of the manifestation of a

Jahn-Teller effect, although the authors of early work [1] suppose that the distortion of the octahedral configuration of oxygen ligands about the manganese atom appears to be the result of altered oxygen-metal-oxygen bond angles rather than of a Jahn-Teller mechanism. According to later works [2-4], octahedral manganese tris-beta-diketonato complexes are high-spin

complexes that can undergo Jahn-Teller distortion due to the partial filling of the two-fold degenerate e orbitals. The character of distortion can be different. For example, in references [5-8] it is reported, that coordination polyhedron MÜ6 in the crystalline phase of some compounds is elongation, whereas the works [3,9] testify the opposite type of deformation for other compounds. The authors of [4] draw attention to the results of the work [3], according to which the manganese írá-acetylacetonato demonstrates an irreversible solid-solid phase transition with temperature lowering. At the temperature about 100 K the solid phase shows the Jahn-Teller orthorhombic distortion while at the room temperature the large errors in the bond lengths do not allow to assign the type of JahnTeller distortion with any certainty.

It should be noted that the intermolecular interaction in crystal can affect the distortion of coordination polyhedron, which, in turn, predetermines the realized electronic state.

Authors of [2] give an overall description of the vibronic problem in case of Mn(acac)3. The coordination polyhedron MÜ6 in a molecule possessing D3 symmetry decreases this symmetry to C2 in accordance with the Jahn-Teller theorem getting the elongated or compressed shape which corresponds, in turn, to the minimum or a saddle point on the PES. The calculations at B3LYP/6-31G*(H, Ü, C),VTZ(Mn) resulted in the structure with elongated polyhedron MnÜ6.

Authors of [4] carrying out the calculations at ÜLYP/TZP approximation have got also the structures with elongated and compressed coordination polyhedron for 5A and 5B electronic states of Mn(acac)3 correspondingly. However, they did not study the character of the stationary point on PES for electronic state 5A and considering this structure as equilibrium one

and using the Boltzmann equation found that the population of Mn(acac)3 will occur with the elongation-distortion is 79%, relative to the 21% population found to have compression-distortion.

The theoretical works [2,4] studied only highspin state of fr/s-beta-diketonato complexes of Mn paying the attention to Jahn-Teller effect. In this connection it seems to be interesting to study the structures in all possible spin states arising from electronic states of free cation Mn3+ corresponding to different occupations of J-orbitals by four electrons. The manganese fr/s-acetylacetonato complex, in further referred as Mn(acac)3, was studied aiming this purpose.

COMPUTATIONAL METHODS

Quantum chemical calculations of the geometric structure, force fields and harmonic vibration frequencies of the Mn(acac)3 for states with multiplicities M = 1, 3 and 5 were performed using the GAUSSIAN 09 program [10] in the framework of density functional theory (DFT/UB3LYP) [11-13] with correlation-consistent valence three-exponential basis functions cc-pVTZ [14, 15]. The composition of canonic MOs were obtained on the base of calculations at the theory level ROHF/cc-pvtz and fixed geometries which were optimized by UB3LYP/cc-pVTZ. The program ChemCraft [16] was used for visualization of MOs.

RESULTS AND DISCUSSION

According to the crystal field theory, the ground and low-lying exited electronic states of Mn(acac)3 molecule arise from the states of isolated cation Mn3+ with open valence 3d4-shell. In the high symmetrical D3 structure of Mn(acac)3, fivefold degenerated 3J-orbitals of Mn3+ cation are split and form the ai molecular orbital and two couples of le and 2e orbitals.

t У __ - If, fr A i * »

A T к * Y -Í4- 4-4 y v

'E a,*1 e2 1e4 £ <n rv> 3E aJ 1e3

Fig. 1. Electronic configurations and d-orbital diagram for most energetically favorable electronic states of Mn(acac)3 with D3 structure Рис. 1. Электронные конфигурации и диаграмма d-орбиталей для молекулы Mn(acac)3 симметрии D3 в низших электронных

состояниях

Table

Bond length of Mn-O, folding angle of chelate rings along O'"O axes and relative electronic energy in structures, which are realized in different spin states of Mn(acac)3 molecule (according to DFT/UB3LYP/cc-pVTZ calculations) Таблица. Длина связи Mn-O, угол складывания хе-латных колец по оси O"O и относительная электронная энергия для структур молекулы Mn(acac)3, реализующихся в разных спиновых состояниях (по

Parameter  deg kcal/mol Spin Electronic state Symmetry

S=0, 'B, C2 S=1, 3Ä2, D3 S=2, 5B, C2

this work [2] a [4] b

Mn - O 1.938 1.937 2.168 2.147 2.245

Mn - O' 1.937 1.935 1.934 1.974

Mn - O" 1.938 1.949 1.951 1.993

Mn-O-O'-C(H) 179.3 180.0 177.2

Mn-O"-O"-C(H) 180.0 180.0

Erel 17.3 5.2 0

Notes: a OLYP/TZP, b B3LYP/6-31G* (H,C,O), Ahlrichs' VTZ (Mn) Примечания: a OLYP/TZP; b B3LYP/6-31G* (H,C,O), Ahlrichs' VTZ (Mn)

The ai molecular orbital contains dz2-AO while the combinations of d^y2, dxy, dxz and dyZ atomic orbitals are involved in degenerate 1e and 2e orbitals. Spatial orientations of d-orbitals into coordination polyhedron MnO6 of D3 symmetry allow us to range the MO energies as e(ai) < e(1e) < e(2e). Four electrons are dis-

tributed among five molecular orbitals (ai, 1e and 2e) resulting in the electronic states with multiplicities (M) 1, 3 and 5. Most energetically favorable electronic states 1E(ai21e2), 1Ai(1e4), 3A2(ai21e2), 3E(ai11e3) and 5E(ai11e22e1) can be constructed by consecutive occupation of the orbitals ai, 1e and 2e (Fig. 1).

Electronic states 1E, 3E and 5E are the orbital degenerated, and their geometry configuration symmetry D3 must go down to C2 in accordance with JahnTeller theorem. The optimization of initial molecular geometry C2 for the multiplicities M=1 and M=3 resulted in the structures with six equal (within 0.001 A) Mn-O bonds giving the structure D3 practically and corresponding the orbital occupations ai21e2 (1E and 3A2). The optimization at D3 symmetry was successful for M=3 giving the state a21e2 (3A2) but resulted in C2 structure with practically equal bond lengths Mn-O for M=1.

For the multiplicity M=5 the optimization under symmetry D3 was unsuccessful. In turn, the structure optimization at C2 symmetry resulted in the structure with compressed or elongated coordination polyhedron MO6 and corresponding to the electronic states 5A or 5B, respectively. The analysis of the Hessian matrix showed, that the compressed structure of Mn(acac)3 in the electronic state 5A is characterized by first order saddle point on PES being the transition state between two equivalent minima corresponded to 5B states.

Fig. 2. Mn(acac)3 structure in high-spin state (M=5, 5B): a) parameters of coordination polyhedron; occupied d-orbitals in local Cartesian coordinates: b) dx2-y2, c) dxz, d) dyz, e) dz2. Orbital dz2 is responsible for elongation of Mn-O bonds; axes y coincides with symmetry axes C2 Рис. 2. Структура молекулы Mn(acac)3 в высокоспиновом состоянии (M=5, 5B): а) параметры координационного полиэдра; заселенные d-орбитали в локальной системе координат: b) dx2-y2, c) dxz, d) dyz, e) dz2. Орбиталь dz2 ответ-ственна за удлинение

связи Mn-O; ось y совпадает с осью симметрии С2

У

a)

b)

Fig. 3. The structure of Mn(acac)3 in high-spin state 5A (corresponding to first order saddle point on PES). a) parameters of coordination

polyhedron; b) occupied dx2-y2-orbital in local Cartesian coordinates Рис. 3. Структура молекулы Mn(acac)3 в высокоспиновом состоянии 5A (соответствует седловой точке первого порядка на ППЭ). a) параметры координационного полиэдра; b) заселенная dx2-y2-орбиталь в локальной декартовой системе координат

/ —** z ' I y

3) —►

Fig. 4. The structure of Mn(acac)3 in electronic state 3A2 (middle-spin state M=3) and occupied d-orbitals: a) parameters of coordination polyhedron; occupied d-orbitals in local Cartesian coordinates: b) mixed, c) dyz, d) dx2-y2 Рис. 4. Структура молекулы Mn(acac)3 в электронном состоянии 3A2 (среднеспиновое состояние М=3) и заселенные d-орбитали: a) параметры координационного полиэдра; b) смешанная, c) dyz, d) dx2-y2

The bond distances r(Mn-O) and relative energy for discussed electronic states of Mn(acac)3 are listed in the Table. Calculated bond distances Mn-O confirm the conclusion [2, 4] about the character of Jahn-Teller distortion of the molecule Mn(acac)3. Atom designation is given in Fig. 2.

Fig. 2-4 show the shape of occupied canonic MOs of Mn(acac)3 with dominating contribution of d-orbitals of Mn3+ ion for the equilibrium structures at different spin states.

Fig. 2 shows, if the symmetry of molecule goes down from D3 to C2, an occupation by one electron 3d/

AO leads to the elongation of two axial Mn-O bonds for high-spin state 5B as it was obtained in Ref. 4. In opposite, in the state 5A the elongation of four equatorial bonds Mn-O takes place due to an occupation of 3dx2y2 AO instead of 3dz2 AO (Fig. 3).

For exited electronic states 1B (C2 symmetry) and 3A2 (D3 symmetry), the distances r(Mn-O) are equal and shorter than for high-spin state 5B. Table reports that in spite of the fact that the average bond Mn-O in the high-spin complex is longer, the energy of this complex is lower than the energy of the low-spin complexes due to the high energy electron coupling in the last two.

The calculations for low-spin state M=1 met some uncertainty. The optimization at the theory level UB3LYP/cc-pVTZ resulted formally in C2 symmetry of molecule having the symmetry of electronic state 1B. The bond distances Mn-O within 0.001 A were equal to values obtained for structure M=3 with D3 symmetry. This result does not contradict the situation if two electrons occupy different 1 e orbitals possessing opposite spins.

According to Table, the structural parameters of the MnO6 polyhedron in complexes with M=1 and M=3 are practically equal because in both spin states the lobes of occupied 3d-AOs are directed between bonds Mn-O and do not affect significantly the chemical bonding.

The energy difference for electronic states 3A2 and 5B is equal to 5.2 kcal/mol only, and complex Mn(acac)3 in some crystals possesses the structures with

six close bond lengths Mn-O because the state 3A2 is realized possibly due to packing forces. In this connection it is interesting to study by gas-phase electron diffraction the structure, which is realized in the gas phase.

CONCLUSIONS

The high-spin electronic state 5B was found to be preferable for Mn(acac)3 molecule as calculated at the theory level UB3LYP/cc-pVTZ. In this state the molecule has C2 symmetry with two long and four short Mn-O bonds. The state 5A lies higher than state 5B by 1 kcal/mol and corresponds to the first order saddle point. Obviously, these states appear due to JanTeller distortion of D3 structure possessed 5E electronic state. The distortion of octahedral structure of MnO6 polyhedron in the states 5A and 5B is significant, and this fact testifies to strong Jahn-Teller effect in 5E electronic state. The spin states 3A2 and 1B lie higher than the high-spin state by 5.2 and 17.3 kcal/mol, correspondingly. The coordination polyhedron is characterized by D3 symmetry for state 3A2 and very close to this symmetry for 1B state. The structural features are explained well in framework of simple crystal field theory indicating that d-orbitals of Mn3+ ion undergoes the influence of crystal field.

Acknowledgements. This work was supported by the Russian Foundation for Basic Research (Grant No. 16-03-00855a); computational resources were provided by grant of Ministry of Education and Science N 4.3232.2017PP.

ЛИТЕРАТУРА

1. Morosin B., Brathovde R. The crystal structure and molecular configuration of trisacetylacetonatomanganese(III). J. Acta Cryst. 1964. V. 17. P. 705-711. DOI: 10.1107/S0365110X64001761.

2. Diaz-Acosta I., Baker J., Hinton J.F., Pulay P. Calculated and experimental geometries and infrared spectra of metal tris-acetylacetonates: vibrational spectroscopy as a probe of molecular structure for ionic complexes. Part II. Spectro-chim. Acta Part A. 2003. V. 59. P. 363-377. DOI: 10.1016/S1386-1425(02)00166-X.

3. Geremia S., Demitri N. Crystallographic Study of Manga-nese(III) Acetylacetonate: An Advanced Undergraduate Project with Unexpected Challenges. J. Chem. Educ. 2005. V. 82. P. 460-465. DOI: 10.1021/ed082p460.

4. Freitag R., Conradie J. Understanding the Jahn-Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(ß-diketonato)3 Complex. J. Chem. Educ. 2013. V. 90. N 12. P. 1692-1696. DOI: 10.1021/ed400370p.

5. Freitag R., Muller T.J., Conradie J. X-Ray Diffraction and DFT Calculation Elucidation of the Jahn-Teller Effect Observed in Mn(dibenzoylmethanato)3. J. Chem. Crystallogr. 2014. V. 44. P. 352-359. DOI: 10.1007/s10870-014-0522-6.

6. Stults R.B., Marianelli R.S., Day V.W. Distortions of the coordination polyhedron in high-spin manganese(III) complexes. 3. Crystal and molecular structure of .gamma.-

REFERENCES

1. Morosin B., Brathovde R. The crystal structure and molecular configuration of trisacetylacetonatomanganese(III). J. Acta Cryst. 1964. V. 17. P. 705-711. DOI: 10.1107/S0365110X64001761.

2. Diaz-Acosta I., Baker J., Hinton J.F., Pulay P. Calculated and experimental geometries and infrared spectra of metal tris-acetylacetonates: vibrational spectroscopy as a probe of molecular structure for ionic complexes. Part II. Spectro-chim. Acta Part A. 2003. V. 59. P. 363-377. DOI: 10.1016/S1386-1425(02)00166-X.

3. Geremia S., Demitri N. Crystallographic Study of Manga-nese(III) Acetylacetonate: An Advanced Undergraduate Project with Unexpected Challenges. J. Chem. Educ. 2005. V. 82. P. 460-465. DOI: 10.1021/ed082p460.

4. Freitag R., Conradie J. Understanding the Jahn-Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(ß-diketonato)3 Complex. J. Chem. Educ. 2013. V. 90. N 12. P. 1692-1696. DOI: 10.1021/ed400370p.

5. Freitag R., Muller T.J., Conradie J. X-Ray Diffraction and DFT Calculation Elucidation of the Jahn-Teller Effect Observed in Mn(dibenzoylmethanato)3. J. Chem. Crystallogr. 2014. V. 44. P. 352-359. DOI: 10.1007/s10870-014-0522-6.

6. Stults R.B., Marianelli R.S., Day V.W. Distortions of the coordination polyhedron in high-spin manganese(III) complexes. 3. Crystal and molecular structure of gamma.-

tris(acetylacetonato)manganese(III): a tetragonally elongated octahedral form. Inorg. Chem. 1979. V. 18. P. 18531858. DOI: 10.1021/ic50197a028.

7. Зайцева Е.Г., Байдина И.А., Стабников П.А. Борисов

C.В. Игуменов И.К. Кристаллическая и молекулярная структура трис(дибензоилметаната) марганца(Ш). Ж. Структ. Химии. 1990. Т. 31. С. 184-189.

8. Barra A.L., Gatteschi D., Sessoli R., Abbati G.L., Cornia A., Fabretti A.C., Uytterhoeven M.G. Electronic Structure of Manganese(III) Compounds from High-Frequency EPR Spectra. Angew. Chem. Int. Ed. 1997. V. 36. P. 2329-2331. DOI: 10.1002/anie.199723291.

9. Fackler J.P., Avdeef A. Crystal and molecular structure of tris(tropolonato)manganese(III), Mn(O2C7H5)3, a high-spin complex having structural features consistent with JahnTeller behavior for two distinct MnO6 centers. Inorg. Chem. 1974. V. 13. P. 1864-1875. DOI: 10.1021/ic50138a016.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

10. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Och-terski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox

D.J. Gaussian 09. Wallingford CT: Gaussian, Inc. 2009.

11. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. V. 98. N 7. P. 5648-5652. DOI: 10.1063/1.464913.

12. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988. V. 38. N 6. P. 3098-3010. DOI: 10.1103/PhysRevA.38.3098.

13. Lee C., Yang W., Parr R.G. Development of the Colic-Sal-vetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. V. 37. N 2. P. 785-789. DOI: 10.1103/PhysRevB.37.785.

14. Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1971. V. 55. P. 716-723. DOI: 10.1063/1.1676139.

15. Balabanov N.B., Peterson K.A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. Chem. Phys. 2005. V. 123. P. 064107-1 - 064197-15.

16. Chemcraft program, Version 1.8 http://www.chemcraftprog.com.

tris(acetylacetonato)manganese(III): a tetragonally elongated octahedral form. Inorg. Chem. 1979. V. 18. P. 18531858. DOI: 10.1021/ic50197a028.

7. Zaitseva E.G., Baidina I.A., Stabnikov P.A., Borisov S.V., Igumenov I.K. Crystal and molecular structure of tris (diben-zoylmethanate) manganese (III). Russ. J. Struct. Chem. 1990. V. 31. P. 184-189.

8. Barra A.L., Gatteschi D., Sessoli R., Abbati G.L., Cornia A., Fabretti A.C., Uytterhoeven M.G. Electronic Structure of Manganese(III) Compounds from High-Frequency EPR Spectra. Angew. Chem. Int. Ed. 1997. V. 36. P. 2329-2331. DOI: 10.1002/anie.199723291.

9. Fackler J.P., Avdeef A. Crystal and molecular structure of tris(tropolonato)manganese(III), Mn(O2C7H5)3, a high-spin complex having structural features consistent with JahnTeller behavior for two distinct MnO6 centers. Inorg. Chem. 1974. V. 13. P. 1864-1875. DOI: 10.1021/ic50138a016.

10. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Och-terski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Wallingford CT: Gaussian, Inc. 2009.

11. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. V. 98. N 7. P. 5648-5652. DOI: 10.1063/1.464913.

12. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988. V. 38. N 6. P. 3098-3010. DOI: 10.1103/PhysRevA.38.3098.

13. Lee C., Yang W., Parr R.G. Development of the Colic-Sal-vetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. V. 37. N 2. P. 785-789. DOI: 10.1103/PhysRevB.37.785.

14. Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1971. V. 55. P. 716-723. DOI: 10.1063/1.1676139.

15. Balabanov N.B., Peterson K.A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. Chem. Phys. 2005. V. 123. P. 064107-1 - 064197-15.

16. Chemcraft program, Version 1.8 http://www.chemcraftprog.com.

Поступила в редакцию 26.12.2016 Принята к опубликованию 13.03.2017

Received 26.12.2016 Accepted 13.03.2017

i Надоели баннеры? Вы всегда можете отключить рекламу.