MODULAR TECHNOLOGY IN DESIGN OF FLEXIBLE COMPLEX SYSTEMS
Habeeb Khoder, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications (SPbSUT), Saint Petersburg, Russia, h.khoder@list.ru
Galina V. Verkhova, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications (SPbSUT), Saint Petersburg, Russia, galina500@inbox.ru
Sergej V. Akimov, The Bonch-Bruevich Saint-Petersburg Keywords: system design, modular technology,
State University of Telecommunications (SPbSUT), modular systems, integral structure, hierarchical
Saint Petersburg, Russia, akimov-sv@yandex.ru construction, complex systems.
Design can be considered as a basic stage in system lifecycle of artifact. So, firms pay a big attention to use the most effective design principles in order to achieve the perfect system. However, any system has to fulfill several purposes to be considered perfect: be flexible, extensible, stable, portable, effective, with sufficient functionality, easy to understand for the user and compatible with existing standards. Obviously, to create system with the above criteria is difficult. Nevertheless, modular technology helps to design such a system.
Modular construction gains an increasing importance with increasing complexity and reduced time for design cycle. Consequently, industries and manufacturers tend to use modular construction in order to improve their design and production strategies. Modularity can lead to a greater product variety, lower production costs and simplify the work on the project in team, distribute complex task into a few simple sub-tasks. As a result, many systems migrate toward increasing modularity. The objective of this article is to demonstrate the importance of modularity in design of flexible complex systems. So, in this paper, a number of researches done on modular design and development of modular systems are presented. We also review the concept and principles of modular technology used in systems design. In addition, we discuss the concept of modular and hierarchical modular system. Moreover, the combination between modular structure and integral structure is demonstrated.
Information about authors:
Habeeb Khoder, PhD student, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications (SPbSUT), Saint Petersburg, Russia Galina V. Verkhova, professor, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications (SPbSUT), Saint Petersburg, Russia Sergej V. Akimov, associate professor, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications (SPbSUT), Saint Petersburg, Russia
Для цитирования:
Кходер Х., Верхова Г.В., Акимов С.В. Модульная технология проектирования гибких сложных систем // T-Comm: Телекоммуникации и транспорт. 2017. Том 11. №9. С. 86-90.
For citation:
Khoder H., Verkhova G.V., Akimov S.V. (2017). Modular technology in design of flexible complex systems. T-Comm, vol. 11, no.9, рр. 86-90.
I. Introduction
Recently, (here has been a significant attention of designer and producer to the modular technology in order to make Complexity manageable and to enable parallel work. However, Modular technology as a design principle is used to build modular systems thai Offer several benefits in design domain such as flexibility, evolvability, upgrade, extension, easier assembly, reuse of parts, reduced order lead time, maintenance and repair.
In recent years, a number of researches have been done on modular design and development of modular systems. Vasawade, Deshmukh and Kulkari [!] presented a review on modularity in design, llou and Qian [2] provided a selective maintenance model for modular systems in order to allow maintenance manager to make a decision in choosing part of the components to be maintained in the limited downtime. Heilcmann and Culley [3| developed a capability audit assessing the capability of a company to create common modular system constructions in order to derive variety of different systems. Jvliraglia [4j presented modularity-integrality framework to reflect the possibility of combination between modular structure and integral structure. Martin, N evade and Martinez [5] designed a low cost in-Circuit Test (1CT) based on programmable modular systems. Zakarian and Rushton [6] presented a methodology for development of modular electrical systems. Ostmann, Bruehl, Seckel and Lang |7] provided a concept for modular microsystems. However, there arc other researches published in this domain and many works under research.
Rest of this article is organized as follows: Section 2 is about the conccpt of modularity in design. In Section 3, we present the principles of modular construction. Modular systems and hierarchical modular systems are discussed in Sections 4 and 5, respectively. The combination between modularity and integrality is demonstrated in Section 6. Finally, in Section 7, conclusion about this work is presented.
II. Modular technology
In general meaning, the concept of module refers to an integral, separable and isolated part. In technology, the module is an independent unit of complex engineering system that performs its own individual task. In other words, the module is an encapsulated set of elements that can be manipulated as a unit. However, anything consisting of clearly expressed parts which often can be removed and added without disrupting the whole thing is described as a modular thing. So, modular technology is used in various lields of activity: electronics, computer science, architecture: construction, and so on.
The main stages in life cycle of any artifact are: design, production and use. Consequently, there are three basic types of modular technology: modularity in design, modularity in production and modularity in use. In the design domain, modularity is a design strategy in which the process is distributed across separate modules created independently and then combined together to form the solution of the process. In the production domain, modularity is used to describe the use of common standardized components to produce product variants. However, when consumers use different components and match them together in order to implement goods addressing their requirements and needs, this is called modularity in use.
Since modular technology provides flexibility in response to requirements of design changes and ability to produce a variety of
COMPUTER SCIENCE
systems through combination of modular units, it is a power tool lor constructing and design of modem and complex systems. As a result. Standardization based on modular technology will become a real basis in ail domains of engineering systems.
III. Principles of Modular design
Modular design has to satisfy two basic criteria: composition and decomposition. The composition does not depend on the decomposition, hi fact, these criteria often conflict with each other.
In order to execute a complicated big task, it is necessary to decompose it into several simpler subtasks isolated from each other. Thus, it is possible to control the quality execution of each subtask separately, which greatly simplifies the process of high-quality solution of the task. However, the process dividing the task into subiasks and the subtasks into more simple subtasks until it ts possible to find their solutions is called decomposition.
There arc a set of subtasks appeared in the process of decomposition. The solutions of these subtasks form modules subjected to certain rules:
• The function of the module has to be understood without examining its internal structure.
• The module should be designed for reuse in different tasks.
• The module should be self-sufficient, but not overabundant. Overabundance is a sign of incomplete decomposition.
• The interface of the module has to be standardized.
The next step in modular design is to combine the solutions (modules) of all subtasks in a single solution. The process combining between modules with conserving their independence is called composition. In the process of composition, a few rules have to be followed:
• Modules should form a simple unified composition.
• Changes in the module should not affect other modules,
• Error in one module should not be extended to other modules.
• The connections between modules should he minimized.
• Functional change is achieved by creating new modules on the basis of existing ones.
It is necessary to know that the process of modular design is recursive. In other words, it is impossible to make a complete decomposition or composition task from the first time. We need to repcrform the decomposition, rediscover the relationships, correct the composition, and so on.
IV. Modular systems
Modular construction provides the ability to achieve higher product variety at low cost through the standardization and combination of assemblies. Moreover, Modular architecture is used to tackle the problem of increasing complexity that is the biggest problem in design of complex systems. Consequently, complex system can be represented as a modular system providing flexibility in design.
Modular system is the output of process of modular design. Thus, modular systems are composed of subsystems or modules that can be reconfigured to build a variety oTsystems to suit user requirements and needs. While Fig. I shows a linear structure between n elements, Fig. 2 illustrates a modular structure between n elements [8],
System A—A O
ww
Fig. I. A linear structure between n elements
System
Mod ule i
Mixl'.e.
Mown
Fig. 2. A modular structure between n elements
In order to design of modular systems, standard modules treated like individual components are developed to represent individual specific functions. However, tlie interaction and communication between these modules should be based on standard serial busses like USB (Universal Serial Bus), VMRbus (Versa Modular Euroeard bus) [9] or others busses.
V. Hierarchical modular systems
Hierarchical construction is one of the main structural systems used to overcome tlie problem of complexity in systems design, in hierarchical structure, system is composed of interrelated subsystems that, in I urn, have their own subsystems, and so 011 until we reach to the elementary subsystems. Fig. 3 shows construction between n elements represented as a hierarchical structure 18].
0 —Q —@ ~© —@ O
components consistently pull together to determine the system's behavior along a given dimension, then ibis system is integral along that dimension.
System
o—o
0—0
i !
Fig, 3, A hierarchical structure between n elements
It is well known that construction of large complex systems such as space systems takes too much time and cost a lot of money. Sometimes it is necessary to reconfigure and modify such systems to respond to technical, environmental and social changes. So, structure systems need to take into account such various changes in order to save time and money.
However, in order to realize such adaptability and flexibility into structure systems, hierarchical modular structure [10] is suggested. The hierarchical modular structure is a combination of hierarchical structure and modular structure. So, this structure consists of a number of identically shaped modules embedded in several layers of hierarchy. The hierarchical modular structure can construct various sizes and shapes of systems with limited resources by using assembly rules. This structure is used in design of future large space systems [11]. Fig. 4 illustrates construction between n elements represented in a hierarchical modular structure.
VI. The combination of modularity and integrality
Integrality is a design strategy in which (he system's components behave consistently as a whole. Consequently, if system's
Fig. A hierarchical modular structure between ñ elements
Modularity and integrality are the fundamental characteristics of technological systems. Modularity provides higher flexibility and adaptability for system architecture, while integrality provides more efficiency and control for it.
Moreover, modularity reflects the different features of independence among components, while integrality covers aspects that affect the relationship between the element level and the system level. Thus, these two fundamental properties of systems are very important in design of complex systems.
However, it was quite common that modularity and integrality are opposite architectural properties of systems. In others words, increasing modularity requires loss of integrality, while increasing integrality needs decreasing modularity. This idea was rebutted by Miraglia [4j in 2014.
He presented evidences showing that treating modularity and integrality as mutually exclusive properties is fundamentally wrong. Miraglia highlighted the problems with the modularity-integrality trade-off and provided a new concept "The Modularity-Integrality Framework" that reflects the interplay between modularity and integrality. Fig 5 represents the four main domains formed of the interplay between modularity and integrality within a framework.
The combination between modularity and integrality is essential factor to dynamics and development of complex systems. When these two fundamental properties of systems act simultaneously, then effective system reconfiguration can be implemented, On the one hand, modularity provides system decom-posability and llexsbility that directly impacts the ease of architectural innovation and recombination. On the other hand, integrality provides system efficiency and management that has a direct impact on the effectiveness of architectural innovation and recombination.
та
cuo <u
Specialized Systems Recombinant Systems
ICß. specialized vi.fi«ari application* ( tc I ecomm u nica ti ons sw itcbcs)
Eg. technological platforms (mobile hantlset systems)
Chaotic Systems
Гц, stock markets, the Internet
LOW
Bundled Systems
EJi- пГПсО nUtORIfltioD |M(lvlßCS and bunJIrü upplicalions
High
Modularity
Fig. 5, System topology based on modularitv-integraliiy [4]
VII. Conclusion
This paper showed the significant benefits of using modular system architecture as a strategy in design of flexible complex systems. Different types of system structures in design such as modular structure, integral structure, hierarchical structure and hierarchical modular structure were presented. However, the concept of modularity and principles of modular design were discussed in details. Moreover, the combination of modular structure and another structure in order to form an innovative system structure with more adaptability and flexibility in design was demonstrated.
Acknowledgment
The author would like to thank Dr. Maria Yatsenko for contributing to this work by providing valuable support and insights.
References
1. Vasawadc. R., & Deshmukh, R„ & Kulkami, V. (2015). Modularity in design: A review IEEE International Conference on Technologies for Sustainable Development flCTSD). pp. 1-4.
2. HOW, J-, &■ Qian, Y. (2(116). Selective maintenance model for modular system. IEEE International Conference on Mechatronics and Automation, pp. 1845-1849.
3. Heilemann. M., & Culley, S. (2015). Capability audit for modular system development. IEEE International Symposium on Systems Engineering fISSEh pp. 398-405,
4. Miraglia, S. (2014). System Architectures and Innovation: the Modularity-Integra! ity Framework. United Kingdom: Cambridge Service Alliance.
5. Martin, J., & NevadOj A., it Martinez. A. (2016). Low cost programmable modular system to perform In-Ctreuit Test (1CT). Technologies Applied to Electronics Teaching fTAEE). pp. 1 -7.
6. Zakarian, A., & Rushton, G. (2001), Development of modular electrical systems. IEEE/ASME Transactions on Mechatronics, vol. (\ no. 4. pp. 507-520.
7. Ostmann, A.. & Bruehl, B., & Manessis, D., & Seckel, M„ & Lane, K. (2011). System-in-Packages with embedded components for modular systems. 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 294-297.
¡!. Efatmancshnik, M., & Ryan, M, (2015). System construction cost of hierarchical-modular structures. Annual IEEE Systems Conference (SysCon) Proceedings, pp. 153-157.
I. Ricks, K., & Jackson, D. (2006). A case for the VMEbus architecture in embedded systems education. IEEE Transactions on Education, vol. 49, no. 3, pp. 332-345.
10, Levin, M. (2015). Modular System Design and Evaluation. Springer International Publishing, Switzerland.
II. Kishimoto. N.. & Nalon, M. (2006). Hierarchical modular structures and their geometrical configurations future large space Systems. International Association for Shell and Spatial Structures (IASS), vol. 47, no. 3, pp. 303-310.
5) www.ccsummit.ru Q КВЦ "Сокольники" Россия Москва
МОДУЛЬНАЯ ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ ГИБКИХ
СЛОЖНЫХ СИСТЕМ
Кходер Хабиб, СПБГУТ, Санкт-Петербург, Россия, h.khoder@list.ru Верхова Галина Викторовна, СПБГУТ, Санкт-Петербург, Россия, galina500@inbox.ru Акимов Сергей Викторович, СПБГУТ, Санкт-Петербург, Россия, akimov-sv@yandex.ru
Аннотация
Проектирование можно рассматривать как базовую стадию в жизненном цикле артефакта. Таким образом, фирмы уделяют большое внимание использованию самых эффективных принципов проектирования для достижения совершенной системы. Тем не менее, совершенная система должна выполнять своё предназначение, быть гибкой, расширяемой, с достаточной функциональностью, устойчивой и понятной для пользователя, совместимой с существующими стандартами, переносимой на другие платформы и эффективной. Очевидно, что создать систему с перечисленными критериями достаточно сложно. В решении данной задачи помогает модульная технология. Модульная конструкция приобретает все большее значение с увеличением сложности и сокращением времени цикла проектирования. Следовательно, промышленность и мануфактуры стремятся использовать модульную конструкцию, чтобы улучшить свои стратегии проектирования и производства. Модульность может привести к большему разнообразию продуктов, более низким издержкам производства и упростить работу над проектом в команде, распределить сложную задачу на несколько простых подзадач. В результате, многие системы берут курс в сторону увеличения модульности. Цель данной статьи - продемонстрировать значение модульности при проектировании гибких сложных систем. Представлен ряд исследований по модульному проектированию и разработке модульных систем. Также рассмотрена концепция и принципы модульной технологии, используемой при построении систем. Кроме того, обсуждена концепция модульной и иерархической модульной систем. В последней части статьи показана комбинация между модульной и интегральной структурой.
Ключевые слова: проектирование, модульная технология, модульные системы, интегральная структура, иерархическая конструкция, сложные системы.
Литература
1. Васаваде Р., Дешмук Б., Кулкарни В. Модульность в проектировании: обзор // IEEE International Conference on Technologies for Sustainable Development (ICTSD). 2015. С. 1-4.
2. Хои Ж., Цянь Я. Модель выборочного обслуживания модульной системы // IEEE International Conference on Mechatronics and Automation. 2016. С. 1845-1849.
3. Хилеман М., Калли С. Аудит возможностей для модульной разработки системы // IEEE International Symposium on Systems Engineering (ISSE). 2015. С. 398-405.
4. Мираглиа С., Калли С. Системные архитектуры и инновации: Модульность-интегральность Фреймворк // United Kingdom: Cambridge Service Alliance. 2014.
5. Мартин Ж., Невадо А., Мартинес А. Низкозатратная программируемая модульная система для проведения внутрисхемного тестирования (ИКТ) // Technologies Applied to Electronics Teaching (TAEE). 2016. С. 1-7.
6. Закарян А., Руштон Ж. Разработка модульных электрических систем // IEEE/ASME Transactions on Mechatronics. 2001. Том 6. № 4. С. 1-7.
7. Остман А., Брюль Б., Манесис Д., Сикль М., Ланг К. Система-в-пакеты с встроенными компонентами для модульных систем // 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2011. С. 294-297.
8. Ифатманишник М., Райан М. Стоимость построения системы иерархически-модульных структур // Annual IEEE Systems Conference (SysCon) Proceedings. 2015. С. 153-157.
9. Рикс К., Джексон Д. Случай архитектуры VMEbus в образовании встроенных систем // IEEE Transactions on Education. 2006. Том 49. № 3. С. 332-345.
10. Левин М. Модульная система проектирования и оценки // Springer International Publishing, Швейцария. 2015.
11. Кишимото Н., Натори М. Иерархические модульные структуры и их геометрические конфигурации будущих больших космических систем // International Association for Shell and Spatial Structures (IASS). 2006. Том 47. № 3. С. 303-310.
Информация об авторах:
Кходер Хабиб, аспирант кафедры автоматизации предприятий связи Санкт-Петербургского государственного университета телекоммуникаций им. проф. М. А. Бонч-Бруевича СПБГУТ, Санкт-Петербург, Россия
Верхова Галина Викторовна, д.т.н., профессор, зав. кафедрой автоматизации предприятий связи Санкт-Петербургского государственного университета телекоммуникаций им. проф. М. А. Бонч-Бруевича, Санкт-Петербург, Россия Акимов Сергей Викторович, к.т.н., доцент кафедры автоматизации предприятий связи Санкт-Петербургского государственного университета телекоммуникаций им. проф. М. А. Бонч-Бруевича, Санкт-Петербург, Россия