Научная статья на тему 'МОДУЛЬ ДЛЯ ПРОВЕРКИ ПЛАТ СЕМЕЙСТВА ARDUINO'

МОДУЛЬ ДЛЯ ПРОВЕРКИ ПЛАТ СЕМЕЙСТВА ARDUINO Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
128
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПРОГРАММНО-АППАРАТНАЯ ПЛАТФОРМА / МИКРОКОНТРОЛЛЕР / ЭЛЕКТРОННЫЙ МОДУЛЬ / СТРУКТУРНАЯ СХЕМА / ПРИНЦИПИАЛЬНАЯ СХЕМА

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Деткова Анна Васильевна

Представлены результаты разработки электронного модуля для проверки плат Arduino. Рассматриваемая аппаратно-программная платформа часто используется в образовательных целях для изучения микроконтроллерных систем и робототехнических устройств. Возможность проверки платы перед повторным ее использованием облегчает поиск неисправностей разрабатываемого электронного устройства. В ходе исследования были разработаны электрическая структурная и принципиальная схемы модуля, создана специальная тестовая программа. В модуле реализованы программные и аппаратные методы диагностики, применение которых позволяет провести тестирование высокой степени точности и обеспечить необходимую надежность разрабатываемых на ее основе робототехнических устройств. Для создания диагностического модуля были определены узлы аппаратно-программной платформы Arduino с высокой интенсивностью отказов: узел проверки линий ввода-вывода, узел проверки аналого-цифрового преобразователя и системы питания, узел проверки EEPROM и источника питания с предохранителем. Практическая ценность данной разработки состоит в том, что тестовая программа загружается непосредственно в микроконтроллер проверяемой платы, позволяя быстро и качественно проверить линии ввода-вывода, имеющие высокий показатель интенсивности отказов. На сегодняшний день подобных устройств для диагностики неисправностей программно-аппаратных платформ Arduino не существует. Использование программно-аппаратной платформы Arduino в образовательном процессе открывает новые возможности как для студентов, так и для школьников. Проекты, реализуемые в средних профессиональных учреждениях технического профиля, мотивируют обучающихся к получению новых знаний, развивают интерес к технике, программированию и конструированию, развивают логическое и алгоритмическое мышление.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Деткова Анна Васильевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MODULE FOR CHECKING ARDUINO FAMILY BOARDS

The article highlights the results of developing an electronic module for testing Arduino boards. The hardware and software platform mentioned is often used for educational purposes to study microcontroller systems and robotic devices. The ability of testing the board before reusing it helps troubleshoot the electronic device. In the course of the study electrical structural and circuit diagrams of the module were developed, and a special test program was created. The module implements software and hardware diagnostic methods, which allows testing with high precision and ensuring the necessary reliability of robotic devices developed on its basis. To create a diagnostic module there were identified the nodes of the Arduino hardware-software platform with a high failure rate, an input-output line check node, an ADC and power system check node, an EEPROM check node and a power supply with a fuse. A practical value of the development lies in the fact that the test program is loaded directly into the microcontroller of the tested board allowing to quickly and accurately test I / O lines with a high failure rate. Nowadays, there are no such devices for diagnosing malfunctions of the Arduino hardware and software platforms. Using the Arduino software and hardware platform in educational processes opens the new opportunities for both students and schoolchildren. Projects implemented in secondary professional technical institutions motivate students to acquire new knowledge, develop interest in technology, programming and design, develop logical and algorithmic thinking.

Текст научной работы на тему «МОДУЛЬ ДЛЯ ПРОВЕРКИ ПЛАТ СЕМЕЙСТВА ARDUINO»

Научная статья УДК 377.133.5

https://doi.org/10.24143/2072-9502-2023-1-43-49 EDN FCOCVQ

Модуль для проверки плат семейства Arduino

Анна Васильевна Деткова

Приднестровский государственный университет им. Т. Г. Шевченко, Тирасполь, Приднестровская Молдавская Республика, det-anna@yandex.ru

Аннотация. Представлены результаты разработки электронного модуля для проверки плат Arduino. Рассматриваемая аппаратно-программная платформа часто используется в образовательных целях для изучения микроконтроллерных систем и робототехнических устройств. Возможность проверки платы перед повторным ее использованием облегчает поиск неисправностей разрабатываемого электронного устройства. В ходе исследования были разработаны электрическая структурная и принципиальная схемы модуля, создана специальная тестовая программа. В модуле реализованы программные и аппаратные методы диагностики, применение которых позволяет провести тестирование высокой степени точности и обеспечить необходимую надежность разрабатываемых на ее основе робототехнических устройств. Для создания диагностического модуля были определены узлы аппаратно-программной платформы Arduino с высокой интенсивностью отказов: узел проверки линий ввода-вывода, узел проверки аналого-цифрового преобразователя и системы питания, узел проверки EEPROM и источника питания с предохранителем. Практическая ценность данной разработки состоит в том, что тестовая программа загружается непосредственно в микроконтроллер проверяемой платы, позволяя быстро и качественно проверить линии ввода-вывода, имеющие высокий показатель интенсивности отказов. На сегодняшний день подобных устройств для диагностики неисправностей программно-аппаратных платформ Arduino не существует. Использование программно-аппаратной платформы Arduino в образовательном процессе открывает новые возможности как для студентов, так и для школьников. Проекты, реализуемые в средних профессиональных учреждениях технического профиля, мотивируют обучающихся к получению новых знаний, развивают интерес к технике, программированию и конструированию, развивают логическое и алгоритмическое мышление.

Ключевые слова: программно-аппаратная платформа, микроконтроллер, электронный модуль, структурная схема, принципиальная схема

Для цитирования: Деткова А. В. Модуль для проверки плат семейства Arduino // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2023. № 1. С. 43-49. https://doi.org/10.24143/2072-9502-2023-1-43-49. EDN FCOCVQ.

Original article

Module for checking Arduino family boards

Anna V. Detcova

Pridnestrovian State University, Tiraspol, Pridnestrovian Moldavian Republic, det-anna@yandex.ru

Abstract. The article highlights the results of developing an electronic module for testing Arduino boards. The hardware and software platform mentioned is often used for educational purposes to study microcontroller systems and robotic devices. The ability of testing the board before reusing it helps troubleshoot the electronic device. In the course of the study electrical structural and circuit diagrams of the module were developed, and a special test program was created. The module implements software and hardware diagnostic methods, which allows testing with high precision and ensuring the necessary reliability of robotic devices developed on its basis. To create a diagnostic module there were identified the nodes of the Arduino hardware-software platform with a high failure rate, an input-output line check node, an ADC and power system check node, an EEPROM check node and a power supply with a fuse. A practical value of the development lies in the fact that the test program is loaded directly into the microcontroller of the tested board allowing to quickly and accurately test I / O lines with a high failure rate. Nowadays, there are no such devices for diagnosing malfunctions of the Arduino hardware and software platforms. Using the Arduino software and hardware platform in educational processes opens the new opportunities for both students and schoolchildren. Projects

© Деткова А. В., 2023

implemented in secondary professional technical institutions motivate students to acquire new knowledge, develop interest in technology, programming and design, develop logical and algorithmic thinking.

Keywords: software and hardware platform, microcontroller, electronic module, block diagram, circuit diagram

For citation: Detcova A. V. Module for checking Arduino family boards. Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics. 2023;1:43-49. (In Russ.). https://doi.org/10.24143/2073-5529-2023-1-43-49. EDN FCOCVQ.

!

Введение

Социально-экономические и политические трансформации современного мира показали, что основа потенциальных возможностей развития электроники - подготовленные кадры. По мнению директора по инновационному развитию центра коллективного пользования МИЭТа П. Р. Машевича, в конце 1990-х и начале 2000-х гг. государство не имело достаточных ресурсов для обеспечения комплексной поддержки отрасли, из-за чего было принято решение поддерживать дизайн-центры, которые занялись проектированием микропроцессоров [1]. Одна из целей такого подхода заключалась в сохранении научной школы и подготовке кадров.

Проработка комплексной стратегии развития электронной отрасли России началась только в 2008 г. Именно тогда началось финансирование опытно-конструкторских работ и появились идеи о строительстве заводов. Однако производства, способные выпускать гражданскую электронику, так и не были созданы [1]. К идее все же запустить в России фабрики полупроводников власти вернулись только в январе 2020 г. - эти планы были обозначены в «Стратегии развития электронной промышленности РФ до 2030 года».

Возникает необходимость создания специальных условий для подготовки специалистов, свободно ориентирующихся в информационном пространстве, имеющих хороший уровень компьютерной грамотности, знающих современную элементную базу цифровой и аналоговой техники и способных эффективно использовать разнообразные средства систем автоматизированного проектирования.

Лауреат Нобелевской премии, академик Ж. И. Алферов в 2007 г. говорил: «Важно заниматься научными и технологическими исследованиями в области электроники, потому что именно она определяет технологический и даже социальный прогресс. Без собственных современных электронных технологий любые наши другие (те же космические) быстро перейдут во второсортные. Сейчас у нас два пути -либо становиться страной третьего мира, живущей за счет ресурсов, либо развивать наукоемкие отрасли» [2]. Это высказывание остается актуальным и на сегодняшний день в условиях санкционной политики Запада по отношению к России. Крупнейший специалист в области информатики академик Е. П. Велихов в одной из своих статей сделал следующий прогноз: «Тот, кто умеет делать компьютеры, владеет миром» [3].

Подготовка специалистов технического профиля в области информационных технологий в соответствии с государственным образовательным стандартом России 2.09.02.01 «Компьютерные системы и комплексы» предполагает освоение таких междисциплинарных курсов, как «Цифровая схемотехника», «Микропроцессорные системы», «Проектирование цифровых устройств». В учебном процессе широко применяются разнообразные стенды для изучения, отладки и тестирования разрабатываемых цифровых устройств. Однако наибольшую популярность в образовательной сфере получила программно-аппаратная платформа Arduino для сверхбыстрого создания электронных устройств, поддерживаемая разработчиками по всему миру и пользующаяся огромной популярностью в России и за рубежом [4, 5].

Платформа Arduino позволяет общаться и взаимодействовать с окружающим миром с помощью всевозможных датчиков, сенсоров, моторов и других узлов. Благодаря возможности многократного перепрограммирования микроконтроллера одну и ту же плату можно использовать в разнообразных проектах, что приводит к ускоренному старению и износу компонентов платы.

Актуальность данного исследования состоит в том, что возможность проверки платы перед повторным ее использованием облегчает поиск возможных неисправностей разрабатываемого цифрового устройства.

В качестве программной части выступает крос-сплатформенная среда разработки Arduino IDE, которая может запускаться на операционных системах Windows, Linux, Mac OS. С помощью данной среды можно писать код и программировать платы. В комплекте с программой поставляются многочисленные примеры, библиотеки и удобные утилиты.

В качестве аппаратной части выступают различные платы. На сайте производителя их насчитывается уже более 2-х десятков разновидностей. Так как платформа распространяется весьма свободно, в продаже можно найти множество клонов и различных плат расширения.

Платформа постоянно развивается, происходит обновление среды разработки, совершенствование старых плат и появление новых. Вместе с каждой библиотекой поставляется пример ее использования. Например, для написания протокола обмена данными с GSM модулем или со сканером отпечатков пальцев необходимо проверить работоспособ-

ность готовой библиотеки или устройства и продолжить работу.

Основной задачей данного исследования является определение узлов аппаратно-программной платформы Лгёито, продемонстрировавших достаточно высокую интенсивность отказов за определенное время. Так, отказы из-за ошибок проектирования составляют 40-50 %, отказы из-за ошибок производства - 30-40 %, отказы из-за неправильных действий оператора - 20-30 %. Замечено, что в 75-80 % случаев различные причины отказов дают о себе знать в виде отказа элементов [6].

Целью данного исследования является разработка и проектирование структурной и принципиальной электрических схем, а также создание универсального модуля для проверки разнообразных плат Агёшпо с программным управлением.

Разработка электронного модуля для тестирования различных модулей Агёшпо проходит с использованием программных методов диагностики, применение которых позволит произвести тести-

рование платы высокой степени точности и обеспечить необходимую надежность разрабатываемых на ее основе робототехнических устройств.

Результаты исследования

В данной статье представим результат проектирования электронного модуля для проверки платы Arduino по следующим узлам: узел проверки линий ввода-вывода, узел проверки аналого-цифрового преобразователя (АЦП) и системы питания, узел проверки EEPROM и источника питания с предохранителем. Также в процессе работы будет протестирован мост интерфейса USB - последовательного порта для связи с микроконтроллером.

В ходе решения поставленной задачи была спроектирована структурная схема электронного модуля для проверки узлов Arduino (рис. 1), которая состоит из следующих блоков: проверяемая плата Arduino, узел проверки линий ввода-вывода, узел проверки АЦП и системы питания, узел проверки EEPROM и источника питания с предохранителем.

Рис. 1. Структурная схема тестового модуля Fig. 1. Structural diagram of the test module

Центральным компонентом электронного модуля является проверяемая плата Лгёито. Одной из распространенных неисправностей платы Агёито является выход из строя одной из цифровых линий ввода-вывода. Узел проверки линий ввода-вывода необходим для проверки всех линий ввода-вывода на исправность: на замыкание цепи питания УСС 5В, на замыкание с землей. Таким образом определяется способность выдавать «0» или «1» на выходе.

Часто выходит из строя АЦП, который не может адекватно преобразовать аналоговое напряжение в цифровой код по какому-то из каналов. Узел проверки АЦП проверяет все каналы аналого-цифрового преобразователя.

Узел проверки системы питания тестирует исправность стабилизатора напряжения платы Агёито

и определяет, находится ли напряжение в заданном диапазоне (5 В ± 10 %).

Энергонезависимое постоянное запоминающее устройство EEPROM гарантирует около 100 тыс. перезаписей этой памяти. При превышении числа перезаписей память EEPROM может неправильно сохранять данные. Узел проверки энергонезависимой памяти проверяет уже записанные данные и сверяет их с оригиналом.

Узел проверки источника питания с предохранителем используется для предотвращения повреждения платы Агёшпо при возможном коротком замыкании и возникающих при этом сверхтоках.

Принципиальная схема тестового модуля раскрывает основные особенности схемотехнического построения разрабатываемого устройства (рис. 2).

н

о «

m

<

CÖ M О

¡Í <D

Рис. 2. Принципиальная схема тестового модуля: XP1.1, XP1.2 - разъемы для подключения; A0-A5 - аналоговые выводы; GND - заземление; VD2-VD7 - диоды; SB1 - кнопка; R1-R5 - резисторы; DA1.1, DA1.2 - микросхема; VD1 - светодиод

Fig. 2. Schematic diagram of the test module: XP1.1, XP1.2 - connectors for connection; A0-A5 - analog outputs; GND - ground; VD2-VD7 - diodes; SB1 - button; R1-R5 - resistors; DA1.1, DA1.2 - microcircuit; VD1 - LED

Данная схема служит основанием для разработки других чертежей, а также используется при наладке и эксплуатации систем автоматизации.

Центральным компонентом принципиальной схемы является проверяемая плата Arduino Uno, обозначенная на схеме А1, с разъемами для подключения ХР1.1, ХР1.2. К разъему ХР1.2 подключаются справа два резистора R4, R5. Они являются делителем напряжения и формируют ровно половину напряжения от источника питания, т. е. 2,5 В.

Резистивный делитель напряжения представляет собой два резистора (R4, R5), включенных последовательно друг другу и параллельно источнику питания [7].

Данный делитель напряжения рассчитывается по формуле

^вых = Ц* • R5 / (R5 + R4).

Пример расчета:

Примем Цвх = 5 В, R4 = 1 кОм, R5 = 1 кОм: 5 • 1 / (1 + 1) = 2,5 В.

На выходе делителя 2,5 В, хотя на входе - 5 В.

Резисторы делителя называют плечами. Верхнее плечо подключено к Цвх, нижнее - к GND, т. е. R4 - верхнее плечо, R5 - нижнее плечо.

Если номиналы обоих резисторов равны, напряжение будет поделено пополам. Важно знать, что общее сопротивление делителя должно быть значительно меньше сопротивления нагрузки, подключенной к нему (примерно в 100 раз). Как раз с нагрузкой порта Arduino, настроенного на вход, проблем никаких нет - это десятки МОм. Но общее

сопротивление делителя не должно быть и слишком низким: в этом случае получим нагрев делителя и расход тока впустую. Общее сопротивление не должно быть ниже 4,7 кОм. Таким образом, идеальный диапазон сопротивлений - от 4,7 до 50 кОм.

С помощью нажатия кнопки SB1 это напряжение подается на 6 диодов VD2-VD7, которые развязывают все аналоговые входы Arduino Uno друг от друга, для того чтобы сигналы поступали по каждой линии независимо. Поэтому 2,5 В, за вычетом падения напряжения на диоде 0,6 В, поступает на каждый из входов, и программно АЦП оценивает все напряжения. При опорном напряжении АЦП 5 В показания АЦП на всех каналах должны быть одинаковы и принимать значения в районе 400 единиц.

В нижней части схемы обозначен двухпорого-вый компаратор, который сравнивает напряжение питания Arduino Uno с двумя заданными порогами построечных резисторов R1, R2 - один выше порога, другой ниже. Если напряжение находится в норме (5 В ± 10 %), то светодиод «Готовность» VD1 горит. Плата Arduino Uno подключается к внешнему источнику питания с цепью предохранителя на 0,5 А.

В процессе загрузки тестовой программы также проверяется исправность моста USB - последовательного порта. Если напряжение питания находится в норме, а загрузки не происходит, то неисправен мост либо целевой микроконтроллер. Но в случае неисправности моста виртуальный последовательный порт не появляется в диспетчере устройств персонального компьютера.

После загрузки тестовой программы происходит проверка линий ввода-вывода, содержимого EEPROM и АЦП. Неисправности других узлов по результатам статистических исследований, как правило, не встречаются.

Электронный модуль для проверки плат Агёшпо на микроконтроллере успешно применяется в процессе обучения студентов, поскольку является готовым портативным и доступным для понимания устройством на микроконтроллере для начинающих их осваивать (рис. 3).

Рис. 3. Электронный модуль для проверки платы Arduino Fig. 3. Electronic module for testing the Arduino board

Взаимодействие тестового модуля с персональным компьютером осуществляется в программной среде Arduino IDE. Программирование осуществляется через порт USB и не требует дополнительного источника питания. Отметим также простоту реализации и программирования.

В текстовом поле отображается результат выполнения тестовой программы по проверке линий ввода-вывода, АЦП, EEPROM и источника питания с предохранителем (рис. 4).

Test of short circuit on GND or VCC and between pins:

PIN: 0

PIN: 1

PIN: 2

PIN: 3

PIN: 4

PIN: 5

PIN: б

PIN: 7

PIN: 8

PIN: 9

PIN: 10

PIN: 11

PIN: 12

PIN: 13

PIN: 14

PIN: 15

PIN: 16

PIN: 17

PIN: 18

PIN: 19

LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW

FAIL

OK

OK

OK

OK

OK

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH

OK

FAIL

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

Arduino EEPROM Test

The test EEPROM is completed.

Test ADC.

PRESS KEY

537

AO ok

501

Al ok

501

A2 ok

501 A3 ok 504 A4 ok

502 A5 ok

PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP PULL UP

OK

FAIL

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

SHORT

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

Рис. 4. Результат тестирования платы Arduino Fig. 4. Testing results of the Arduino board

•а

!

Разработка структурной и принципиальной электрических схем является первым этапом в ходе проектирования электронного модуля, на втором этапе происходят монтаж, отладка и программирование устройства. Результаты тестирования представлены в среде разработки Arduino IDE в удобном виде, легко интерпретируются и позволяют быстро оценить работоспособность основных узлов платы.

Заключение

Благодаря возможности многократного перепрограммирования микроконтроллера одну и ту же плату можно использовать в разнообразных проектах, что приводит к ускоренному старению и износу компонентов платы. Возможность проверки платы перед повторным ее использованием облегчает поиск возможных неисправностей разрабатываемого устройства. Необходимость данной разработки вы-

звана тем, что подобных устройств для диагностики неисправностей программно-аппаратных платформ АМшпо не существует.

Практическая ценность данной разработки состоит в том, что тестовая программа загружается непосредственно в микроконтроллер проверяемой платы, позволяя быстро и качественно проверить линии ввода-вывода, имеющие высокий показатель интенсивности отказов.

Модуль для проверки плат семейства АМшпо необходим для проведения практических занятий, лабораторных работ, учебной практики по таким дисциплинам, как «Микропроцессорные системы», «Цифровая схемотехника», «Прикладная электроника», «Проектирование цифровых устройств», и поможет обучающимся при отладке автоматизированных и робототехнических устройств.

Список источников

1. Королев Н., Хвостик Е. Процессоры в изоляции // Коммерсантъ. № 59 от 06.04.2022. URL: https://www.kom mersant.ru/doc/5294238 (дата обращения: 29.09.2022).

2. Алферов Ж. Россия останется страной без будущего, если не изменит отношение к науке и образованию // Alma Mater: Вестн. высш. шк. 2007. № 2. С. 49-53.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Президент российского научного центра «Курчатовский институт», академик Евгений Велихов: Самая крупная девальвация - утро после свадьбы // Известия. № 222 от 25.11.1999.

4. Ким Т. Ю., Артикбаев М. А., Маринина Е. В. Роль студентов в использовании платформы Arduino в высших учебных заведениях // Образование и воспитание. 2018. № 3.1 (18.1). С. 18-20. URL: https://moluch.ru/th/ 4/archive/94/3369/ (дата обращения: 23.09.2022).

5. Глазов С. Ю., Сергеев А. Н., Усольцев В. Л. Возможности применения платформы Arduino в учебном процессе педагогического вуза и общеобразовательных школ // Изв. Волгогр. гос. педагог. ун-та. 2021. № 10 (163). URL: https://cyberleninka.ru/article/n/vozmozhnosti-primeneniya-platformy-arduino-v-uchebnom-protsesse-pedagogicheskogo-vuza-i-obscheobrazovatelnyh-shkol (дата обращения: 23.09.2022).

6. Боровиков С. М., Цырельчук И. Н., Троян Ф. Д. Расчет показателей надежности радиоэлектронных средств: учеб.-метод. пособие. Минск: Изд-во БГУИР, 2010. 68 с.

7. Гусев В. Г., Гусев Ю. М. Электроника и микропроцессорная техника: учеб. М.: КноРус, 2013. 800 с.

References

1. Korolev N., Khvostik E. Protsessory v izoliatsii [Processors in isolation]. Kommersant", no. 59, 06.04.2022. Available at: https://www.kommersant.ru/doc/5294238 (accessed: 23.09.2022).

2. Alferov J. Rossiia ostanetsia stranoi bez budushchego, esli ne izmenit otnoshenie k nauke i obrazovaniiu [Russia will remain a country without a future if it does not change its attitude towards science and education]. Alma Mater: Vestnik vysshei shkoly, 2007, no. 2, pp. 49-53.

3. Prezident rossiiskogo nauchnogo tsentra "Kurcha-tovskii institute", akademik Evgenii Velikhov: Samaia krupnaia deval'vatsiia - utro posle svad'by [The president of the Russian scientific center "Kurchatov Institute", academician Evgeny Velikhov: The biggest devaluation is the morning after the wedding]. Izvestia, no. 222, 25.11.1999.

4. Kim T. Iu., Artikbaev M. A., Marinina E. V. Rol' studen-tov v ispol'zovanii platformy Arduino v vysshikh uchebnykh zavedeniiakh [Role of students in using Arduino platform in higher educational institutions]. Obrazovanie i vospitanie, 2018, no. 3.1 (18.1), pp. 18-20. Available at: https://moluch.ru/th/4/ archive/94/3369/ (accessed: 23.09.2022).

5. Glazov S. Iu., Sergeev A. N., Usol'tsev V. L. Vozmozhnosti primeneniia platformy Arduino v uchebnom protsesse pedagogicheskogo vuza i obshcheobrazovatel'nykh shkol [Possibilities of using Arduino platform in educational process of pedagogical university and secondary schools]. Izvestiia Volgogradskogo gosudarstvennogo pedagogicheskogo universiteta, 2021, no. 10 (163). Available at: https://cyberleninka.ru/article/n/vozmozhnosti-primeneniya-platformy-arduino-v-uchebnom-protsesse-pedagogicheskogo-vuza-i-obscheobrazovatelnyh-shkol (accessed: 23.09.2022).

6. Borovikov S. M., Tsyrel'chuk I. N., Troian F. D. Raschet pokazatelei nadezhnosti radioelektronnykh sredstv: uchebno-metodicheskoe posobie [Calculation of indicators of reliability of radio-electronic means: teaching guide]. Minsk, Izd-vo BGUIR, 2010. 68 p.

7. Gusev V. G., Gusev Iu. M. Elektronika i mikro-protsessornaia tekhnika: uchebnik [Electronics and microprocessor technology: textbook]. Moscow, KnoRus Publ., 2013. 800 p.

Статья поступила в редакцию 20.10.2022; одобрена после рецензирования 14.12.2022; принята к публикации 16.01.2023 The article is submitted 20.10.2022; approved after reviewing 14.12.2022; accepted for publication 16.01.2023

Информация об авторе / Information about the author

Анна Васильевна Деткова - кандидат педагогических наук; доцент кафедры интегрированных компьютерных технологий и систем; Приднестровский государственный университет им. Т. Г. Шевченко; det-anna@yandex.ru

Anna V. Detcova - Candidate of Sciences in Pedagogy; Assistant Professor of the Department of Integrated Computer Technologies and Systems; Pridnestrovian State University; det-anna@yandex.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.