Moscow, Russian Federation,
e-mail: [email protected], corresponding author,
ORCID iD: https://orcid.org/0000-0002-3607-8876
Modification of synthetic polyisoprene by §> combination with high-density polyethylene s-
CD
Sergey V. Chernyshova, Lyudmila R. Lyusovab, Manizha B. Zharylganovac, Dmitry Y. Nebratenkod
a MIREA-Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov, Department of Chemistry and Technology of Elastomer Processing, Moscow, Russian Federation, e-mail: [email protected], ORCID iD: https://orcid.org/0000-0002-4659-468X b MIREA-Russian Technological University, Institute of Fine Chemical ®
Technologies named after M.V. Lomonosov, Department of Chemistry and Technology of Elastomer Processing, Moscow, Russian Federation, e-mail: [email protected],
ORCID iD: https://orcid.org/0000-0001-9515-6347 c MIREA-Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov, Department of Chemistry and Technology of Elastomer Processing, Moscow, Russian Federation, e-mail: [email protected], ORCID iD: https://orcid.org/0009-0007-3293-9572
d -
h g
er
d Russian University of Transport, Institute of Roads, Construction and a.
Structures, Department of Highways, Airfields, Base and Foundations, v>
yl
ol p
c
doi https://doi.org/10.5937/vojtehg72-52064
FIELD: chemical technology, materials ARTICLE TYPE: original scientific paper g
Abstract:
Introduction/purpose: The development of elastomeric materials based on o synthetic polyisoprene (IR) with high green strength is a rather urgent task, because it allows to replace, completely or partially, the main ingredient -natural rubber in responsible rubber products. The aim of the work was an additional increase in the green strength values of IR and rubber mixtures based on it by its modification with high-density polyethylene of PND 27773.
Methods: The main methods of the research of the technological, physical-mechanical and operational properties were used. All tests conformed to ASTM or ISO standards. Rubber compounds were made in the Haake PolyLab rubber mixer. In parallel with the effects of modification, the
S v o h
s y
C
influence of the mixing temperature on the main properties of IR and NR
•t
| based elastomeric materials was investigated.
in
CM
Results: It is shown that the increase in the mixing temperature of NR and IR for 2CPC leads to significant changes in the technological properties of <5 rubber compounds (primarily green strength), as well as the physical-
>- mechanical and operational properties of cured rubber. It has been
g established that a significant increase in the green strength of the rubber
™ compound is achieved by combining IR with 7 mass. % HDPE.
w Conclusion: The developed polymer composition based on IR and HDPE
RU has a level of green strength of the rubber compound 2 times higher than
o that of natural rubber, while maintaining the physical-mechanical and
C operational characteristics of cured rubbers at the level of natural
5 rubber. The polymer composition IR/HDPE 93/7 can be recommended for
use in the manufacture of products whose manufacturing technology o requires increased green strength of rubber compounds, including large-
m sized and all-metal tires.
dc Key words: synthetic polyisoprene, natural rubber, green strength,
A polymer mixtures, high-density polyethylene.
<
0
Introduction
The range of industrially synthesized rubber is quite limited, and the industry of synthetic rubber is unable to satisfy the ever-increasing needs of the rubber industry. The use of polymer mixtures in fact expands the ■y range of elastomeric materials without requiring complex special equipment, which ultimately makes it possible to produce technical products with the required properties. Therefore, interest and attention to extraordinary mixtures of rubber with rubber or thermoplastics are constantly increasing. Previous experience and modern practice show that the use of polymer mixtures of different classes allows to improve the technological properties of rubber mixtures, the physical-mechanical properties of cured rubbers and the operational properties of finished products (Schwartz & Dinzburg, 1972; Kerber et al, 2024; Alekseenko et al, 2024).
Natural rubber is an indispensable elastomer for the manufacture of a wide range of rubber products, including tires, rubber and defense products. Now, one of the most popular materials in the tire industry is imported natural rubber (NR). This is especially true for all-metal, aviation and large-scale civil and defense tires, which are made of more than 85% NR. The only synthetic analogue for NR is synthetic isoprene rubber of the SKI-3 (IR) brand, which is inferior to natural rubber in several important indicators. Thus, one of the main disadvantages of IR compared to NR is
the low green strength of rubber compounds based on IR, which is important in the prefabrication and assembly operations. Green strength is the most important technological characteristic of rubber compounds and is responsible for the confection adhesion and stable frame of the product elements until their complete assembly and vulcanization (Zolotarev et al, 2021; Zuev et al, 2024; Nasyrov et al, 2020; Lyusova & Chernyshov, 2022).
There are two ways to improve the green strength of IR: chemical modification (Aksenov, 2021; Akhmetov et al, 2023) and physical modification of rubber (Cruz-Morales et al, 2023; Chernyshov et al, 2023a, 2023b). Over the past more than 50 years, a lot of research work has been done on the first path, i.e. chemical modification of synthetic isoprene rubber (Aksenov, 2021). Many ways of chemical modification of IR gave an opportunity to increase cohesive strength, but did not receive further development for various reasons: carcinogenicity, toxicity or unsatisfactory processability. Physical modification, i.e. combining IR with other polymers, is the most promising way to increase green strength in the production of rubber products, as it does not require additional technological operations and is environmentally friendly.
As early as in the 1960s and 1970s, the possibility of increasing the green strength of rubber mixtures made of synthetic polyisoprene by introducing crystallizing polyolefins, including polyethylene, was considered (Schwartz & Dinzburg, 1972; Priklonskaya et al, 1969). Then high-density polyethylene (HDPE) was the most effective due to its high crystallinity. Presumably, the reinforcing effect of HDPE could be due to the presence of crystalline particles contributing to the orientation effect of the macromolecules of highly elastic polymer, accelerating the crystallization of rubber during deformation (Priklonskaya et al, 1969; Yanez Flores et al, 1997). But the number of the published works in this direction with specific test results is quite small, and those that exist are incomplete and the data in them are ambiguous. For example, there is no information on the used brands of polyethylene and on the process for producing a rubber compound containing polyethylene. There are no vulcanization characteristics and viscosity values for Mooney rubber compounds, no data on fatigue characteristics of vulcanizations, and no direct comparison with rubber mixtures and rubbers based on NR (Guseva et al, 2002). It should also be noted that since then the brand assortment of polyethylene has changed significantly, and there have been notable changes in the synthesis of SKI-3.
CD CD i
CD S±
cp
<D c JÏ .c 0
0 cp
>s
m
c 0 T3
1
-C
.c
>
c
o ■+-<
ra c
E
.Q
0 C
£ Si
o <5
o cp
o +-<
0
-C
+J
c
o c o
X! O
ro 0
w >
o
-C
c
0 -C
O
0 tn
JA CM"
"o
>
■«r
CM
0
CM
01 yy
DC 3
o
o <
o
X
o
LU
I>-
cc <
Materials and methods
The objects of the research in this work were elastomeric materials based on synthetic isoprene rubber (IR) brand SKI-3 (Mooney viscosity -74 units) produced by LLC «Tolyattikauchuk». High-density polyethylene (HDPE) of LLC «Stavrolen» brand PND 277-73 was used to increase the green strength of the material. Based on the previous obtained data (Chernyshov et al, 2023a), the content of HPDE was 7 mass. %. The elastomeric material based on natural rubber brand RSS-1 was chosen as a standard.
The combination of the tested polymers and the production of the rubber compounds based on them were carried out in the Haake PolyLab rubber mixer (within 9 minutes) with the subsequent introduction of sulfur on rollers at a temperature of 50°C for 1.5 minutes. The mixing mode is given in Table 1. The initial mixing temperature in the rubber mixer was 120-140°C for IR and NR based rubber compounds. For a mixture containing HDPE (melting point - 134°C), the initial mixing temperature was140°C.
The formulations of the rubber compounds are presented in Table 2.
w <
Ö
SZ >o
X LU
O >
0
Table 1 - Mixing mode of the rubber compounds
Compound Duration, min General time, min.
1st stage
Rubber (IR and/or NR) 1 1
HDPE (PND 277-73) 2 3
Stearic acid 6.0 9.0
Zinc oxide 6.0 9.0
Accelerator CBS 6.0 9.0
Carbon black N330 5.0 9.0
2nd stage
Sulfur 1.5 10.5
The green strength of the rubber compounds and the physical-mechanical characteristics of cured rubber were determined on the Gotech AI-3000-U tensile testing machine according to ASTM D 6747-15 and ASTM D 412, respectively, and the vulcanization characteristics were determined on the MonTech MDR 3000 Professional rheometer according to ASTM D 5289. Using the MonTech MV 3000 Basic viscometer, the
Mooney viscosity was measured according to ASTM D 1646. The fatigue endurance at repeated elongation (e = 125% at 3 Hz) and fatigue endurance under repeated bending with puncture (3 Hz) was determined on the MonTech FT 3000 CH according to ISO 6943 and ASTM D 813, respectively. Hardness and rebound resilience were determined according to ASTM D 2240 and ISO 4662.
Thus, the above methods and materials were used in the study of the influence of the mixing temperature on the technological properties of the rubber compounds based on NR and IR, and the physical-mechanical and operational properties of cured rubber based on them Their properties were also compared with the indicators of the polymer composition containing HDPE.
Table 2 - Formulations of the rubber compounds
CD
CD ■
CD
S± CP
<D c JÏ
0
T3 ■
-C
m
Compound Contents, parts per hundred rubber
NR IR IR/HDPE 93/7
NR (RSS-1) 100.0 - -
IR (SKI-3) - 100.0 93.0
HDPE (PND 277-73) - - 7.0
Stearic acid 1.0 2.0 2.0
Zinc oxide 5.0 5.0 5.0
Accelerator CBS 1.5 1.5 1.5
Carbon black N330 35.0 35.0 35.0
Sulfur 2.5 2.0 2.0
Results and discussion
As it is known, tire rubber mixtures are manufactured at temperatures above 120°C, so in the first stage of the work, the influence of the mixing temperature in the range of 130±10°C on the main complex of the properties of elastomer materials was investigated.
As it can be seen in Figure 1, an increase in the mixing temperature leads to a decrease in the green strength of both NR and IR-based rubber compounds, and for natural rubber the decrease in green strength is much greater. It can be assumed that the mixing temperature increases, the rate of thermal-oxidative degradation increases, which leads to a decrease in the molecular weight of polymers. This assumption is supported by the Mooney viscosity data given in Table 3.
o ■+-<
ra c
E o o
£ Si
o <5
o cp o
T3
o
W >
o
-C
tn
O
0 tn
JA CM"
"o
>
■«f CM
o
CM
c¿
UJ
DC 3
o
o <
o
X
o
LU
I>-
cc <
w <
o
SZ >o
X LU
O >
0
IR/HDPE 93/7 (140oC) IR (140oC) IR (130oC) IR (120oC) NR (140oC) NR (130oC) NR (120oC)
1,11
=■
0,09 0,1C 0,1
0,55
lililí
0,64
-I-1-1-1-1-1-1-1-
0,88
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Green strenght, MPa
Figure 1 - Green strength of the rubber compounds
Table 3 - Technological properties of the rubber compounds and the physical and mechanical properties of the vulcanizates
Index Polymer base
NR 1200C NR 1300C NR 1400C IR 1200C IR 1300C IR 1400C IR/HDPE 93/7 140oC
Technological properties of the rubber compounds
Mooney Viscosity, units Mooney viscosity 40 39 37 46 39 39 49
Scm, % 725 612 550 887 1137 1350 762
Physical-mechanical properties of the vulcanizates
fioo, M Pa 3.2 2.7 2.4 2.5 1.7 1.5 2.9
f3oo, M Pa 18.6 14.3 14.6 14.7 10.2 9.4 14.2
fp, M Pa 30.7 27.7 26.9 31.4 27.4 25.3 27.5
Sp, % 422 473 443 465 520 503 461
0, % 32 23 21 31 20 22 36
Pr, kN/m 103.1 108.9 96 94 95.8 85.6 100.4
Note: £cm - elongation of a rubber compound in tension, fioo, f3oo - stresses at an elongation of 100 and 300 %, fp - tensile strength, £p -elongation at break, 0 - residual elongation, and Pr -tear resistance.
1982
As shown in Figure 1 and Table 3, the introduction of HDPE in the amount of 7 mass. % (IR/HDPE 93/7) can significantly increase the green strength of the rubber compound and increase the Mooney viscosity to some extent. When comparing rubber mixtures (Figure 1), it is shown that during mixing at 140°C, the green strength of the mixture is 2 times higher than that of NR and 12 times higher than that of IR.
The analysis of the curing curves (Figure 2) showed that an increase in the mixing temperature of the rubber compounds leads to a significant decrease in the torque increment (AM), as well as to a slight decrease in the induction period and an increase in the rate of the vulcanization process. The decrease in AM is probably due to thermo-oxidative destruction of rubber macromolecules during the mixing process. At the same time, the introduction of HDPE has practically no effect on the vulcanization process.
O) O)
I
O) s±
Cp
<D c JB
0
T3 ■
-C
m
o +-<
ra c
E o o
£ Si
o <5
o cp
o
T3
o
NR (120oC) NR (140oC) IR (130oC)
IR/HDPE 93/7 (140oC)
NR (130oC) IR (120oC) IR (140oC)
w >
o
.c
tn
C
Figure 2 - Curing curves for the rubber compounds
0 tn
JA CN
"o
>
■«r
C\l
0 C\l
01 yy
DC
o
o <
o
X
o
LU
I>-
cc <
The increase in the mixing temperature, which leads to an increase in the rate of thermo-oxidative destruction of rubber leads to a decrease in the physical-mechanical properties of rubber. Table 3 shows that there is a decrease in the tensile strength, the stresses at an elongation of 100 and 300%, and the tear resistance. The introduction of HDPE into the rubber composition leads, in comparison with IR based rubber, to a 93% increase in the stresses at an elongation of 100% and an increase in the tear resistance by 17%. As a result, the parameters of the vulcanizate are almost the same as for the NR-based rubber. The increase in these parameters is probably due to the same mechanism as the increase in green strength.
Table 4 shows that, as the temperature of mixing increases, there is a slight increase in rebound resilience and a decrease in hardness in rubbers regardless of the rubber base. The decrease in hardness is probably due to a decrease in the molecular weight of rubber macromolecule during destruction.
Table 4 - Hardness and rebound elasticity of the vulcanizates
Index Polymer base
NR 120°C NR 130°C NR 140°C IR 120°C IR 130°C IR 140°C IR/HDPE 93/7 140oC
Hardness (Shore A), units. 59 58 57 55 55 54 60
Rebound resilience, % 60 61 61 56 56 58 51
w <
Ö
SZ >o
X LU
O >
0
As shown in Table 4, the introduction of HDPE into rubber results in an increase in its hardness, since polyethylene is in a solid state at normal condition and its influence on this parameter is like that of fillers. When combining IR with polyethylene, there is a significant reduction in rebound resilience. This is probably due to the small number of physical and/or chemical bonds of the rubber matrix with polyethylene and the existence of the interface that prevents the distribution of fluctuations throughout the volume of the material.
One of the main operational properties of rubber and rubber products exposed to dynamic loads is fatigue, which characterizes the durability of the product. The fatigue characteristics for the tested compositions are shown in Figure 3.
Figure 3 - Fatigue characteristics
It has been found that the increase in the mixing temperature of the rubber compounds has different effects on the fatigue endurance of NR and IR-based rubbers. As the mixing temperature rises, fatigue endurance increases in NR-based rubber and in IR-based rubber passes through the optimum with a maximum at 130°C. At the same time, fatigue endurance under repeated bending changes similarly for both rubbers (passes through the optimum at a maximum temperature of 130°C). The increase in fatigue is due to the reduction of the rubber modules due to thermo-oxidative destruction.
The fatigue characteristics of the rubber presented in Figure 3 showed that the introduction of HDPE into IR-based rubber had little or no effect on fatigue endurance at repeated elongation and repeated bending when comparing equal modulus rubber. However, IR/HDPE's fatigue endurance at repeated elongation is like NR-based cured rubber, and fatigue endurance under repeated bending is 28% higher.
O) O)
I
7 7
O)
s±
cp e,
n
el ly
e d
I
.c
g
oi it a
ni bi
m o c
er
Si
0
si yil
01 cp
c
d o
w
v o
-C
s y
O
1985
Conclusions
Thus, it is shown that the increase in the mixing temperature of the rubber compounds based on NR and IR from 120°C to 140°C leads to ol significant changes in both the technological properties of the rubber V compounds and the physical-mechanical properties of cured rubber and the operational properties of their vulcanizates. At the same time, it is worth noting separately that the increase in the temperature of the mixture yy negatively affects the green strength of the rubber compounds, especially § based on natural rubber.
0 The work shows that combining IR with 7 mass. % HDPE leads to a ^ significant increase in the green strength of the rubber compound. ^ Moreover, at similar mixing temperatures, it exceeds the level of the green
1 strength of a rubber compound based on natural rubber by 2 times.
lu The rubber based on the proposed polymer composition IR/HDPE
>- 93/7 has the physical-mechanical and operational characteristics close to Se the NR-based rubber. The inventive polymer mixture is characterized in that it exceeds the NR-based rubber for fatigue endurance under repeated bending by 28%.
w <
References
0
s2 Akhmetov, I.G., Vasiliev, V.A., Nasyrov, I.Sh. & Agzamov, R.Z. 2023.
Chemical modification of isoprene rubber. Kauchuk I Rezina, 82(3), pp.130-139
1 [online]. Available at: https://www.elibrary.ru/item.asp?id=54098477 (in Russian) m [Accessed: 08 July 2024].
Aksenov, V.I. 2021. Some ways of making the properties of synthetic rubbers close to that of natural ones. Kauchuk I Rezina, 80(2), pp.86-97 (in Russian). Available at: https://doi.org/10.47664/0022-9466-2021-80-2-86-97. W Alekseenko, V., Verkhoturova, E., Zhitov, R. & Nebratenko, D. 2024.
Rheology properties of bitumen binders with various fillers. Vojnotehnicki glasnik/Military Technical Courier, 72(2), pp.695-707. Available at: https://doi.org/10.5937/vojtehg72-48380.
Chernyshov, S.V., Lyusova, L.R., Maxmudova, S.R., Zharylgapova, M.B. & Konyaeva, l.A. 2023a. The effect of high-density polyethylene on the properties of elastomeric materials made of synthetic polyisoprene. Kauchuk I Rezina, 82(5), pp.242-247 [online]. Available at: https://www.elibrary.ru/item.asp?id=54707582 (in Russian) [Accessed: 08 July 2024].
Chernyshov, S.V., Lyusova, L.R., Maxmudova, S.R. & Zolotarev, V.L. 2023b. The effect of 1,2-polybutadiene on the properties of elastomeric materials made of synthetic polyisoprene. Kauchuk I Rezina, 82(2), pp.66-70 [online]. Available at: https://www.elibrary.ru/item.asp?id=50767659 (in Russian) [Accessed: 08 July 2024].
Cruz-Morales, J.A., Gutiérrez-Flores, C., Zárate-Saldaña, D., Burelo, M., García-Ortega, H., & Gutiérrez, S. 2023. Synthetic Polyisoprene Rubber as a Mimic of Natural Rubber: Recent Advances on Synthesis, Nanocomposites, and Applications. Polymers, 15(20), art.number:4074. Available at: https://doi.org/10.3390/polym15204074.
Guseva, S.G., Strygin, V.D., Lyakin, Yu.I., Ushakova, O.B. & Potapov E.E. 2002. Investigation of modification of SKI-3 with a nitron-polyethylene concentrate. Kauchuk I Rezina, 1, pp.16-18 (in Russian).
Kerber, M.L., Bukanov, A.M., Wolfson, S.I., Gorbunova, I.Yu., Kandyrin, L.B., Sirota, A.G. & Sheryshev M.A. 2024. Tehnologija pererabotki polimerov. Fizicheskie ihimicheskie processy, 2-e izd., ispr. i dop. Moscow: Izdatel'stvo Jurajt [online]. Available at: https://urait.ru/bcode/539476 (in Russian) [Accessed: 08 July 2024]. ISBN: 978-5-534-04915-2. (In the original: Кербер, М.Л., Буканов, А.М., Вольфсон, С.И., Горбунова, И.Ю., Кандырин, Л.Б., Сирота, А.Г. и Шерышев М.А. 2024. Технология переработки полимеров. Физические и химические процессы, 2-е изд., испр. и доп. Москва: Издательство Юрайт [онлайн]. Доступно на: https://urait.ru/bcode/539476 [Дата обращения: 08 июля 2024 г.]. ISBN: 978-5-534-04915-2.)
Lyusova, L.R. & Chernyshov, S.V. 2022. Study of the possibility of modifying synthetic polyisopreneby combining it with a highly cohesive polymer. Prom. Proizvod. Ispol'z. Elastomerov, 1, pp.40-44 (in Russian). Available at: https://doi.org/10.24412/2071-8268-2022-1-40-44.
Nasyrov, I.Sh., Faizova, V.Yu., Zhavoronkov, D.A., Shurupov, O.K. & Vasiliev, V.A. 2020. Natural rubber and synthetic cis-polyisoprene. Part 1. Current state and prospects of production development. Prom. Proizvod. Ispol'z. Elastomerov, 2, pp.34-47 [online]. Available at:
https://cyberleninka.ru/article/n/naturalnyy-i-sinteticheskiy-tsis-poliizopreny-chast-1-sovremennoe-sostoyanie-i-perspektivy-razvitiya-proizvodstva (in
Russian) [Accessed: 08 July 2024].
Priklonskaya, N.M., Timofeeva, M.V. & Poyarkova, A.D. 1969. Svojstva karkasnyx rezin dlya shin R. Kauchuk I Rezina, 2, pp.7-10 (in Russian). (In the original: Приклонская, Н.М., Тимофеева, М.В. и Пояркова, А.Д. 1969. Свойства каркасных резин для шин Р. Каучук и резина, 2, с.7-10.)
Schwartz, A.G. & Dinzburg, B.N. 1972. Sovmeshhenie kauchukov s plastikami i sinteticheskimi smolami. Moscow: Himija (in Russian). (In the original: Шварц, А.Г. и Динзбург, Б.Н. 1972. Совмещение каучуков с пластиками и синтетическими смолами. Москва: Химия.)
Yanez Flores, I.G., Ramos-DeValle, L.F., Rodriguez-Fernandez, O.S. & Sanchez-Valdes, S. 1997. Blends of Polyethylene-Polyisoprene Rubbers: Study of the Flow Properties. Journal of Polymer Engineering, 17(4), pp.295-310. Available at: https://doi.org/10.1515/P0LYENG.1997.17A295.
Zolotarev, V.L., Levenberg, I.P., Zuev, A.A., Kovaleva, L.A., Lyusova, L.R. & Lipatova, A.A. 2021. Once again about cis-1.4-polyisoprene rubber. Prom. Proizvod. Ispol'z. Elastomerov, 2, pp.3-9 [online]. Available at:
O)
O) ■
O)
s± с
<D С
JB
.c ф
0
С
>s
(Л С Ф T3
1
-C
-C
>
с
о ■+-<
го с
JQ
Е
.Q ф
С £
о <5
о с
о ®
-С
+J
с
о с о
X! О
го
+J ф
W >
о л
с
ф
л
о
https://cyberleninka.rU/article/n/esche-raz-o-1-4-tsis-poliizoprenah/viewer (in
§ Russian) [Accessed: 08 July 2024]
CM
o
Zuev, A.A., Zolotarev, V.L., Levenberg, I.P., Kovaleva, L.A. & Nasyrov, I.Sh. 2024. Natural and synthetic isoprene rubbers obtained using Ziegler-Natta catalysts. Fine Chemical Technologies, 19(2), pp. 139-148 Available at:
> https://doi.org/10.32362/2410-6593-2024-19-2-139-148.
CN O CN
dc Modificación del poliisopreno sintético mediante combinación con
polietileno de alta densidad
O Sergey V. Chernyshova, Lyudmila R. Lyusovaa,
Manizha B. Zharylganovaa, Dmitry Y. Nebratenkob q a MIREA-Universidad Tecnológica Rusa, Instituto de Química Fina
Tecnologías que llevan el nombre de M.V. Lomonósov, ^ Departamento de Química y Tecnología de Procesamiento de Elastómeros,
lu Moscú, Federación de Rusia
T b
>Y b Universidad Rusa de Transporte, Instituto de Carreteras, Construcción y
Estructuras, Departamento de Carreteras, Aeródromos, Base y Cimentaciones, Moscú, Federación de Rusia, autor de correspondencia
0
CAMPO: tecnología química, materiales TIPO DE ARTÍCULO: artículo científico original
< Resumen:
L
^ Introducción/objetivo: El desarrollo de materiales elastoméricos basados
en poliisopreno (IR) sintético con alta resistencia en verde es una tarea bastante urgente, porque permite reemplazar, total o parcialmente, el w ingrediente principal, el caucho natural, en productos de caucho
responsable. El objetivo del trabajo era aumentaradicionalmente los valores de resistencia en verde del IR y de las mezclas de caucho basadas en él mediante su modificación con polietileno de alta densidad de PND 277-73.
Métodos: Se utilizaron los principales métodos de investigación de las propiedades tecnológicas, físico-mecánicas y operativas. Todas las pruebas se ajustaron a las normas ASTM o ISO. Los compuestos de caucho se fabricaron en el mezclador de caucho Haake PolyLab. Paralelamente a los efectos de la modificación, se investigó la influencia de la temperatura de mezcla sobre las principales propiedades de los materiales elastoméricos basados en IR y NR.
Resultados: Se demuestra que el aumento de la temperatura de mezcla de NR e IR por 2CPC conduce a cambios significativos en las propiedades tecnológicas de los compuestos de caucho (principalmente resistencia en verde), así como en las propiedades físico-mecánicas y operativas del caucho curado. Se ha establecido que se logra un aumento significativo en
с <¿
с
Ш T3
I
-С
m
la resistencia en crudo del compuesto de caucho combinando IR con 7
masa. %PEAD. °>
i
Conclusión: La composición polimérica desarrollada a base de IR y HDPE Ü tiene un nivel de resistencia en verde del compuesto de caucho 2 veces mayor que el del caucho natural, manteniendo las características físico-mecánicas y operativas de los cauchos curados al nivel del caucho natural. La composición polimérica IR/HDPE 93/7 se puede recomendar para su uso en la fabricación de productos cuya tecnología de fabricación requiere una mayor resistencia en verde de los compuestos de caucho, incluidos neumáticos de gran tamaño y totalmente metálicos.
Palabras claves: poliisopreno sintético, caucho natural, resistencia en verde, mezclas de polímeros, polietileno de alta densidad.
Модификация синтетического полиизопрена путем совмещения с полиэтиленом высокой плотности
Сергей В. Чернышова, Людмила Р. Люсоваа, Манижа Б. Жарылгановаа, Дмитрий Ю. Небратенкоб а МИРЭА - Российский технологический университет, Институт тонких химических технологий им. М.В. Ломоносова, кафедра химии и о
технологии переработки эластомеров, г. Москва, Российская Федерация ° б Российский университет транспорта, Институт пути, строительства и сооружений, кафедра «Автомобильные дороги, аэродромы, основания и ш фундаменты», г. Москва, Российская Федерация, корреспондент g-
.<5
РУБРИКА ГРНТИ: 61.63.09 Полимерные материалы, используемые в о
производстве резин и изделий из них, ^
61.63.81 Методы испытаний и свойства резиновых изделий
ВИД СТАТЬИ: оригинальная научная статья
Резюме: с
о
Введение/цель: Разработка эластомерных материалов на основе синтетического полиизопрена (IR), обладающего повышенной когезионной прочностью, является достаточно о актуальной задачей, так как это позволяет полностью или частично заменить в ответственных резиновых изделиях основной ингредиент - натуральный каучук. Целью работы являлось дополнительное повышение значений когезионной прочности IR и резиновых смесей на его основе путем его
тз
W
модификации полиэтиленом высокой плотности марки ПНД 27773.
Методы: Использованы основные методы исследования ° технологических, физико-механических и эксплуатационных свойств. Все испытания соответствовали стандартам ASTM или ISO. Резиновые смеси изготавливали в резиносмесителе
^ Haake PolyLab. Параллельно с эффектами от модификации, в
| работе было исследовано влияние температуры смешения на
w основные свойства эластомерных материалов на основе IR и NR.
Результаты: Показано, что увеличение температуры смешения <5 резиновых смесей на основе NR и IR на 20PC приводит к
>v существенным изменениям технологических свойств резиновых
g смесей (прежде всего когезионной прочности), а также физико-
™ механических и эксплуатационных свойств резин на их основе.
Установлено, что существенное увеличение когезионной Е прочности резиновой смеси достигается при совмещении IR c 7
о мас. % HDPE.
° Выводы: Разработанная полимерная композиция на основе IR и
5 HDPE имеет уровень когезионной прочности резиновой смеси в 2
раза выше, чем у натурального каучука, при сохранении физико-о механических и эксплуатационных характеристик вулканизатов
ш на уровне резин на основе натурального каучука.
сё. Ключевые слова: синтетический полиизопрен, натуральный
<
каучук, когезионная прочность, смеси полимеров, полиэтилен высокой плотности.
Модификаци]а синтетичког полиизопрена комбинова^ем са полиетиленом високе густине
щ Сергеj В. Чернишова, Лудмила Р. ^усова3,
2 Манижа Б. Жарилганова3, Дмитри J. Небратенко6
а МИРЕА - Руски технолошки универзитет, Институт финих не хеми]ских технолог^а „М.В. Ломоносов", Катедра хеми]е и
технолопф прераде еластомера, Москва, Руска Федераци]а
6 Руски саобра^ни универзитет, Институт за путеве, гра^евинарство и постро]ежа, Катедра „Саобра^нице, аеродроми, базе и темени», Москва, Руска Федераци]а, аутор за преписку
ш
ОБЛАСТ: хеми|ске технологи|е, матери]али КАТЕГОРИJА (ТИП) ЧЛАНКА: оригинални научни рад
Сажетак:
Увод/циъ: Разво] еластомерних материала на бази синтетичког полиизопрена (¡к) високе кохезионе чврстоПе прилично ¡е хитан задатак због потребе да се потпуно или делимично замени главни састо]ак критичних производа од гуме - природна гума. Циъ рада ]есте да се додатно повеЩ'у вредности кохезионе чврстоПе к и гумених мешавина заснованих на ъему путем иегове модификаци'е полиетиленом велике густине PND 277-73.
Методе: КоришПене су основне методе истраживаъа технолошких, физичко-механичких и експлоатационих сво]става.
Сва испитиваъа била су у складу са стандардима АСТМ и ИСО. Мешавине гуме биле су припрем^ене у мешалици за гуме Haake PolyLab. Истовремено са ефектима модификаци'е испитиван jе утица] температуре мешала на главна сво]ства еластомерних материала на бази полиизопрена и каучука.
Резултати: Показано jе да повеПаъе температуре мешала полиизопрена и каучука за 2CPC доводи до знача]них промена у технолошким сво]ствима гумених смеша (пре свега кохезионе чврстоПе), као и физичко-механичких и експлоатационих карактеристика вулканизата. Утвр^ено jе да се постиже знатно повеПаъе кохезионе чврстоПе смеше гуме комбиноваъем полиизопрена са 7 тежинских % HDPE. ш
"О
m
Закьучак: Изведено je полимерно jedu^e^e на бази IR и HDPE с -с нивоом кохезионе чврстоПе гумене смеше два пута веПе од природне гуме, а притом су задржане физичко-механичке и експлоатационе карактеристике вулканизата на нивоу природне гуме.
К^учне речи: синтетички полиизопрен, природна гума, кохезиона ^ чврстоПа, полимерне мешавине, полиетилен велике густине. |
о
®
Paper received on: 09.07.2024. Manuscript corrections submitted on: 16.11.2024. Paper accepted for publishing on: 18.11.2024. o
© 2024 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier -j^
(www.vtg.mod.gov.rs, BTr.M0.ynp.cp6). This article is an open access article distributed under the ^
terms and conditions of the Creative Commons Attribution license -(http://creativecommons.org/licenses/by/3.0/rs/).
T3
о
W >
о
-С
(Я
О