УДК 656.27.001.18
Було розглянуто питання, пов'язане з удосконаленням систе-ми прогнозування залiзничних при-м^ьких пасажиропототв на осно-вi використання гiбридних систем прогнозування, та розроблено нову нечтко-нейро-генетичну модель прогнозування. Розроблет та описан в статтi методи дозволяють з використанням тформацшних технологш реалiзувати на гх осно-вi реальну систему прогнозування пасажиропототв в прим^ькому сполученш
МОДЕЛЮВАННЯ СИСТЕМИ ОПЕРАТИВНОГО ПРОГНОЗУВАННЯ ПАСАЖИРОПОТОК1В В ПРИМ1СЬКОМУ СПОЛУЧЕНН1 НА ОСНОВ1 ВИКОРИСТАННЯ 1НТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГ1Й
Т.В. Бутько
Доктор техшчних наук, професор, завщуюча кафедрою Кафедра "Управлшня експлуатацшною роботою"* Контактний тел.: (057) 730-10-89
Д.В. Константинов
Астрант, асистент* Кафедра "Управлшня експлуатацшною роботою"* Контактний тел.: (057) 730-10-88
Т.О. Деревянко
Студентка*
*УкраТнська державна академия залiзничного транспорту вул. Феербаха, 7, м. Хармв, УкраТна
1. Вступ
Характерною особливктю примiських пасажирсь-ких перевезень е високий рiвень невизначеностi i ко-ливань пасажиропотокiв, що ускладнюе ефективнiсть роботи примiського сектору пасажирського госпо-дарства Укрзалiзницi. Примiськi пасажиропотоки характеризуются значною сезонною та добовою нерiв-номiрнiстю, а також, притаманною лише 1м, значною погодинною нерiвномiрнiстю в межах доби. Оргашза-цiя примiських перевезень на сучасному етат здшс-
нюеться на основi застарiлих методiв управлiння i не враховуе кнуючого коливання попиту на перевезення. Це потребуе впровадження нових гнучких технологш в оргашзащю перевiзного процесу, що засноваш на принципах адаптацп та рацiоналiзацii використання рухомого складу в умовах дефщиту.
В умовах розвитку штелектуальних технологiй виршення оперативних завдань управлiння потребуе формування та впровадження системи тдтримки прийняття ршень (СППР) оперативного персоналу стосовно задачi оптимiзацii роботи на основi рацiо-
нального використання нових та шнуючих транспортних ресурав.
Реалiзацiя СППР безпосередньо заснована на розробщ та впроваджеш ново! технологii реалiзацii прогнозування пасажиропотоюв, що здiйснюeться на основi стратеги управлшня за вiддаленим горизонтом [9]. Використання стратеги дае змогу реалiзацii прогнозування на встановлений перюд, з можливь стю подальшо' розробки та здшснення оптимальних регулювальних заходiв на основi графiку курсування примюьких поiздiв. Тому, враховуючи особливостi не-рiвномiрностей примiських пасажиропотокiв, перiод прогнозування, з метою збереження точносп резуль-татiв, мае бути незначний, строком до 24 годин.
З урахуванням вах зазначених умов реалiзацiя си-стеми прогнозування мае бути заснована на методищ, що враховуе нечикють вхiдноi iнформацii i мае мож-ливiсть швидко' адаптацii в короткотермiновi строки до змiн умов в визначений перюд планування.
Враховуючи складшсть розв'язання поставленоi задачi, необхiдним е аналiз можливостей нових шфор-мацшних технологiй в областi "Soft Computing" [1] i реалiзацiя на 'х основi гiбридних систем прогнозування [9]. Реалiзацiя цих систем передбачае застосування методики здобуття знань з експериментальних даних на основi нечiтко-нейро-генетичного моделювання. Використання генетичних обчислень дозволяе спро-ектувати базу правил на основi нечiткого висновку, яка представляе собою ядро прогнозуючо' системи, з подальшим представленням ii у виглядi графа нейро-нечiткоi мережi, що мае можливють тонко' настройки змiнних параметрiв, тобто механiзм навчання.
2. Зв'язок з науковими програмами
Зпдно з Концепщею Державно' програми реформу-вання залiзничного транспорту вiд 27 грудня 2006 р. N 651-р та Програмою реструктуризаци галузi одним iз основних напрямкiв розвитку органiзацii примюьких пасажирських перевезень е формування та подальше
удосконалення гнучких технологiй по'здоутворення, що е одним з напрямюв виршення проблеми ресур-созбереження [10].
3. Анаиз останшх дослiджень
Запропонований в робой тдхщ було ранiш представлено в робой [9] для реалiзацii прогнозування пасажиропотоюв в дальньому та мюцевому сполучен-нях, що не враховуе особливостей коливань пасажи-ропотокiв в примюькому сполученнi, зокрема пого-динно' нерiвномiрностi. Використання дано' методики для виконання прогнозiв в примiському сполученш потребуе перенавчання, змiни та адаптаци системи до особливостей примiських пасажиропотоюв.
4. Постанова завдання
Метою роботи е створення на принципах [9] ново' моделi прогнозування примюьких пасажиропотоюв у реальному часi, адаптовано'' до особливостей ''х ди-намiчних погодинних коливань протягом доби. Це обумовлюе необхщшсть перенавчання та адаптаци ра-нiш запропоновано' методики до особливостей б^ьш значно' невизначеностi притаманно' примюьким пере-везенням з подальшим створенням ново' модел^ що буде здатна адекватно працювати у вщповщному се-редовищi.
5. Основний матерiал
Задача прогнозування в загальному виглядi зво-диться до оцiнки майбутнiх значень впорядкованих в чаи даних на основi аналiзу та виявлення складних за-лежностей у вже юнуючих даних. Враховуючи значнi коливання пасажиропотоюв протягом доби та нерiв-номiрнiсть графiку вiдправлення примiських поiздiв на напрямку, що розглядаеться (як i по в«х iнших на-
N, пасажири 4000
3500 3000 2500 2000 1500 1000 500 0
N
Г-- о
1985 N
-S *
понед1лок в1второк
середа
четверг
п'ятниця
субота
нед1ля
□ 0:00-3:00 И3:00-6:00 П6:00-9:00 139:00-12:00 И12:00-15:00 D15:00-18:00 И18:00-21:00 D21:00-0:00
Рисунок 1. Динамки вщправлення пасажирiв в примкькому сполученнi по годинам доби в Казачанському
напрямку ст. Харюв-Пас
прямках), з метою оптимiзацii процесу прогнозування та адаптацп до коливань i нечикост вхiдноi шформа-цii виршено роздiлити вихiдну вибiрку (данi вщправ-лення за добу) на перюди (8 перiодiв по 3 години) (см. рис.1). Це дасть змогу наблизитись до б^ьш чиких значень ^ на основi спрогнозованих даних, отримати достатнш перiод часу на проведення оперативних ре-гулювальних заходiв.
Вихiдною iнформацiею для проведення прогнозування е тимчасовий ряд, що складаеться з d значень ряду в послщовш моменти часу:
Wd ^ Wq
у1+1 = f(X , Х^)
наступноi терм-множини Т, Тр е Т, де кожен терм Т|Р описуеться нечiткою множиною С? = {(це?(х!)/х!)}, х! еХ1, де Цср : Х! ^ [0,1] - функщя приналежностi, що приймае значення в iнтервалi [0,1] та х! еХ!, с,Р с X . Представлення функцii приналежностi ц базуеться на дотриманнi умови нормальностi:
suP ЦСр(х^ =1
(4)
(1)
де d - глибина занурення.
Для проведення прогнозування необхщно транс-формувати вихiднi данi до ковзаючого вжна [9]. Дана методика припускае використовування двох вжон Wd i Wq з фiксованими розмiрами d та q , що перемщу-ються з одинарним кроком по тимчасовш послщовно-стi iсторичних даних, починаючи з першого елементу. Виникаюча на кожному крощ пара
(2)
використовуеться як елемент навчальноi вибiрки виду "вхщ-вихщ" (Хг,Ут) , г = 1,М , де Хг = {х[}, i = 1,п - вхщ-ний вектор в парi г та вiдповiдний вихiд у.
Розглянемо прогнозування тимчасового ряду як задачу апроксимацii невiдомоi функцп багатьох змiн-них:
Розглянемо ряд додаткових умов, яким повинна вiдповiдати терм множина Т обраноi лiнгвiстичноi змшноЦ_ N . Припустимо, що С носш нечiткоi мно-жини Сi та X с , де - дiйсна вiсь. Упорядкуемо множину Т в вiдповiдностi [2] за виразом:
(УТ, е Т)(УТ е Т)(1 > ] ^ (Эх е С, )(Уу е С)(х > у)). (5)
Вiдповiдно до розглянутих вимог та обмежень, представимо входи моделi як лшгвктичш змшш, значення яких визначаються на единш шкалi з п'яти термiв для всiх х!, i = 1,5 : Н - низький, НС - нижчий за середне, С - середнш, ВС - вищий за середне, В - високий [9].
На основi неперервносп множини базових значень вхщних змшних використано функцiональний метод визначення форми представлення нечиких термiв [3,9]. Для вiдображення функцiй приналежносп (ФП) термiв вхiдних змiнних у функщональнш формi була обрана крива Гауса, що мае наступний аналггичний запис:
р = ехр[(х, -ЬР/оР)],
(6)
(3)
що засновано на деяких експериментальних даних (X ,У ) , як заданi iсторiею даного тимчасового ряду та приведенi до ковзаючого вжна.
Для визначення глибини занурення в робой проведено аналiз тимчасовоi послiдовностi даних про юль-кiсть вiдправлених пасажирiв по кожному напрямку курсування примшьких поiздiв ст. Харюв-Пас та вста-новлено наявшсть добовоi перiодичностi. Вiдповiдно проведених дослщжень з метою зменшення розмiр-носп моделi прогнозування була прийнята структура математичноi моделi, що мае п'ять входiв х!, i = 1,5 , на яю подаються попередш значення тимчасового ряду в момент часу ^ t-1, ^2, t-6, t-7 вiдповiдно, та один ви-хiд у який представляе задачу визначення значення ряду в момент t + 1.
З метою пристосування моделi до нечикосп вхiдноi iнформацii застосовуеться теорiя нечiтких множин, яка передбачае представлення юльюсних значень па-раметрiв моделi у виглядi лiнгвiстичних змiнних [2,3,9], якi оцiнюються нечiткими термами. Внаслщок цього втрачаеться точнiсть вхвдних даних, проте вини-кае можлившть пристосування до невизначених умов, що присутш в задачi прогнозування пасажиропотоюв. Виходячи з цього, формування моделi прогнозування припускае завдання вхщних змiнних х!(1 = 1,d) у виглядi лiнгвiстичних змiнних Ni, що задаш на уш-версальнш множинi Х! . Для ощнки лiнгвiстичних змiнних використовуються якiснi терми Т|р , р = 1,1 iз
де вектор х! - елемент ушверсально1 множини;пара-метри Ьр та о? - параметри настройки, що дозволяють змiнювати положення i структуру нечiтких множин: ЬР - координата максимуму функщцоР - коефщент кон-центрацii функцп [9].
Реалiзацiя моделювання на основi нечiтких баз знань здшснюеться через нечiткий лопчний висновок по алгоритму Такагi-Сугено [3,9]. Структура взае-мозв'язку мiж вхщними i вихiдною змiнними в такому алгоритмi описуеться правилами гк , к = 1, N , яю нечи-кi тiльки в частиш умови (анцедент), тодi як висновок являе чику лiнiйну функцiю вщ входiв. Множина правил представляе собою нечику базу правил Я , в якш нечiтке правило гк для змiнних х4 можна представити як лопчну комбiнацiю в наступному виглядк
г : ЯКЩО х4 е F1k(x1) та...та хп е Fnk(xn) ,
ТО ук = р0к + р!Х +... + рПх„, [wk] (7)
де Цк - нечiткий терм з ФП цкр(х^ ,( к = , i = 1,п ); С'
ук - вихiд кожного правила, що представлений як по-лiном першого порядку з коефщентами р4к,...,рк та вшь-ною складовою р^ ; е [о, 1] - вага правила, що характе-ризуе стутнь впевненостi у кожному к - му правилi бази знань; "та" - операщя логiчного зв'язування.
Для в«х вхiдних змiнних х! виконуеться операцiя введення нечiткостi на основi визначення фактичних
значень функцш приналежноси Ц,р(х^ по кожному
т-к С
з лiнгвiстичних термiв ^ для представлення ступеня ютинносп передумови хп е Fnk(xn) кожного правила.
Таким чином, для вхщного вектору х = [х1к,...,хпк] виходом у(х) нечiткоi системи е зважене середне вщ розрахованих значень вихвдних змiнних кожного правила ук:
£ткуk
y(x) = -
(8)
де yk розраховуеться за виразом yk = pjj + p4kx4 +... + p^xn, в якому значення вхiдних змiнних x. пщставляються до
k
етапу введення нечикосп, а вага т представляе узагаль-нену величину iстинностi при застосувант до входу правила rk , k = 1, N i обчислюеться на основi використання оператора розрахунку алгебра'чного добутку за виразом:
Tk = wk ПМХ^
(9)
Позначимо через Çk = Tk / X ттдносний ступiнь ви-, k=i . _ конання висновку k -го правила для вхвдного вектора x .
Тодi (9) можна переписати у виглядк
y(X)=t Zkyk = É Zk(pk + pïx+...+p„kx„) (10)
[9,5], в якому ршення поставлено' задачi передбачае представлення набору параметрiв моделi у виглядi хромосоми фжсовано' довжини Ch , що складаеться з трьох частин:
Ch = (C'C2C3)
(11)
де h = 1, K - номер хромосоми C .
Перша частина хромосоми представлена генами, яю визначаються параметрами ФП:
C1 = (b1p1,c1p1,...,bnp, ,cnp, )
(12)
де lj - кшьюсть термiв-оцiнок вхiдноï змiнноï xi, lj +12 +,..., +ln = q , i = 1П ;
q - загальна кiлькiсть термiв. На можливi значення па-раметрiв ФП накладено обмеження вщповщно до допустимого вщхилення ±ДЬ , ±Ао , що дозволяе знайти оптимальну форму i положення функцш приналежносп на граничному iнтервалi враховуючи недопустимiсть змь ни позицп в умовах кожного правила.
Друга частина хромосоми реалiзовуе гени, що виз-начають коефвденти висновкiв вiдповiдних правил:
с2=(puv.pk), k=i,N .
(13)
Остання частина хромосоми реалiзовуе гени, що визначають структуру анцеденту кожного правила:
Спiввiдношення (9)-(11) [9] визначають нечiтку модель прогнозування пасажиропотоюв. Побудови ii дае можлившть представлення нечiткого логiчного висновку моделi у виглядi нейроподiбноi структури, що називаеться адаптивною нейро-нечикою системою висновюв (adaptive network based Fuzzy Inference System, ANFIS) [4](Рис.2).
4f (x )
C3 = (1,2,...,q) , q = 1,L .
(14)
Xj
Xn (
y ( x )
Рисунок 2. Нейроструктурна схема пбридно!' системи ANFIS
Для генерування та уточнення нечетких правил нейро-нечiткоï мережi на основi спецiальних навчаль-них методик дощльним е використання сучасних моделей генетичних алгоритмiв.
З метою тдвищення швидкостi та точностi знаход-ження вщповщних рiшень поставленоï задачi дощльним е використання генетичного алгоритму з дшсним кодуванням (англ.: Real-coded Genetic Algorithm, RGA)
Умова змши положення елеменпв терм-множини в анцедени правил виконуеться прямим способом (номер позицп в умовi правила завжди вщповвдае номеру ФП), що дозволяе використовувати кожний терм в рiзних можливих позищях анцедента правил.
Для оптимiзацii структури заданою мiрою якостi е функцiя пристосованостi, що забезпечуе мтмальне вiдхилення мiж теоретичними i експериментальни-ми результатами моделювання на навчальнiй вибiрцi (MSE):
1
FF(Chj) = M - ^ (yr - УГ)2
' Mr=1,M
(15)
де уг - вихiдний вектор навчальноi вибiрки, уг - результат виводу нечи^ моделi прогнозування при значены
входiв iз г -й строки вибiрки (ХГ>УГ) .
Для виконання операцп схрещування та мутацп запропоновано використовувати кросовер BLX -а з параметром а = 0,5 [7,9] та нерiвномiрну мутацiю Ми-халевича [8,9].
Алгоритм формування моделi прогнозування роз-дiлений на двi фази: фаза навчання на основi самоор-ганiзацii, що дозволяе за допомогою RGA визначити структуру нейроподiбноi моделi - знайшовши рiшення достатньо близьке до оптимального та фаза навчання з вчителем, що поим розглядае знайдене ршення як ввдправний крок для проведення "тонкоГ' настройки змiнних параметрiв модел^ за класичними методами навчання нейро-нечiткоi мережi [3,4].
Для отримання комплексноi моделi прогнозування, що дозволяе враховувати послвдовшсть iнтервалiв доби
k
т
k=l
^ mm
у nep^i прогнозування ввдповвдно вибраному типу доби та сезону використано оpieнтований граф G = (X,F). Вер-шини графа це запропоноваш нейро-нечию модeлi прогнозування, що навчеш на вибipцi даних окремого штервалу доби вiдповiдного типу дня тижня та сезону року, тобто: F1.1 F1.2 - модeлi, що вщповщають нiчному iнтepвалу, F1.1 - вщповщно вiд 0-00 до 3-00, F1.2 - вiд 3-00 до 6-00; F2.1 F22 - модeлi, що вщповщають ранко-вому iнтepвалу за вщповщш пepiоди з 6-00 до 9-00, та з 9-00 до 12-00; F3 - модель дня в перюд вщ 12-00 до 15-00; F4.1 F4.2 - модeлi вeчipнього iнтepвалу доби вщ-повщно за пepiоди з 15-00 до 18-00 та з 18-00 до 21-00; F5 - модель передшчного перюду з 21-00 до 00-00.
Рисунок 3. Орieнтований граф G = (X,F) формування послiдовностi моделей вщповщних перiодiв прогнозування
В peжимi запиту до користувача алгоритм визначае початковий пepiод доби прогнозування та пропонуе кроки формування структури загально! модeлi прогнозування вiдповiдно до графу G = (X,F) (ставить мету до 5 кроюв).
t - 2 t - 1
t
t - 6 t - 7
Рисунок 4. Загальна структура моделi прогнозування
6. Отримаш результати
Запропонований i адаптований до умов жрГвно-мipностi пpимiських пасажиропотоюв алгоритм прогнозування стiйкий до нечггкосп вхiдноi iнфоpмацii та забезпечуе похибку не б^ьше 4-5%. В подальшому е можливiсть пiдвищeння точносп прогнозу завдяки донавчання в процес роботи.
7. Висновок
У результат комплексного застосування запропо-новано! методики прогнозування в систeмi пiдтpимки
прийняття piшeнь оперативного персоналу стосовно pацiоналiзацii та eфeктивностi використання рухо-мого складу стае можливим отримання своечасних i б^ьш точних piшeнь. Це дозволить оперативно реа-гувати i формувати упpавляючi дп на пepeвiзний про-цес, розробити найб^ьш ефективну та ращональну тeхнологiю курсування рейкових автобусiв, удоско-налити гpафiк обороту примкьких по!зд1в на основГ принцитв не маятникового руху та оpганiзувати за-галом роботу примшького комплексу на принципах пасажирсько! лопстики.
Лiтepатуpа
1. Zadeh L. A., "Fuzzy logic and soft computing: Issues, con-
tentions and perspectives, " in Proc. IIZUKA'94: 3rd Int. Conf. Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan, 1994, pp. 1-2.
2. Заде Л. "Понятие лингвистической переменной и его
применение к принятию приближенных решений. " -М.: Мир, 1976. -162 с.
3. Рутковская Д., Пилинский М., Рутковский Л. "Нейронные
сети, генетические алгоритмы и нечеткие системы: Пер. с польск. И.Д.Рудинского.-М.:Горячая линия - Телеком, 2004. -452 с.: ил.
4. Бутько Т.В., Прохорченко А.В. "Застосування нейро-не-
ч^кого моделювання в системах тдтримки прийняття ршень для оперативного корегування по'1'здоутворенням пасажирських состашв".//Восточно-европейский журнал передовых технологий. -Харьков,2006. - Вип.1/2(-19). - С.32-36.
5. Wright A."Genetic algorithms for real parameter optimiza-
tion"// Foundations of Genetic Algorithms, V. 1. - 1991.
- P. 205-218.
6. O. Cord 'on, F. Herrera, A two-stage evolutionary process for
designing TSK fuzzy rule-based systems, IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics 29:6 (1999) 703-715.
7. Eshelman LJ, Schaffer JD Real-coded genetic algorithms аЫ
interval-schemata. In: Foundations of genetic algorithms 2, Whitley LD (ed) Morgan Kaufmann Publishers, San Mateo, CA, pp 187-202 (1993).
8. Michalewicz Z. "Genetic Algorithms, Numerical Optimizat-
ion and Constraints, Proceedings of the 6th International Conference on Genetic Algorithms", Pittsburgh, July 15-19, 1995. - P. 151-158.
9. Бутько Т.В., Прохорченко А.В. Удосконалення систе-ми оперативного прогнозування пасажирських пото-гав на основГ використання штелектуальних технологш // Зб.наук.праць. - Харгав:УкрДАЗТ, 2007. - Вип.85.
- С.161-171.
10. Концепщя Державно! програми реформування зашзнич-ного транспорту вщ 27 грудня 2006 р. N 651-р. http:// www.uz.gov.ua/