Научная статья на тему 'МОДЕЛИРОВАНИЕ РЕЖИМА ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ТОНКОСТЕННОЙ КОНСТРУКЦИИ ИЗ СПЛАВА АД31'

МОДЕЛИРОВАНИЕ РЕЖИМА ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ТОНКОСТЕННОЙ КОНСТРУКЦИИ ИЗ СПЛАВА АД31 Текст научной статьи по специальности «Строительство и архитектура»

CC BY
34
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЛЕКТРОННО-ЛУЧЕВАЯ СВАРКА / МОДЕЛИРОВАНИЕ / ТЕХНОЛОГИЧЕСКИЕ ПАРАМЕТРЫ / ПРОГРАММА / ОПТИМИЗАЦИЯ / РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Курашкин С. О., Серегин Ю. Н., Тынченко В. С., Мурыгин А. В., Котельникова С. В.

В статье содержатся результаты, полученные авторами при исследовании возможности применения электронно-лучевой сварки (ЭЛС) для тонкостенных конструкций из алюминиевого сплава АД31. Сегодня ЭЛС подобных конструкций не используется вследствие отсутствия технологии. В настоящее время на производстве используются другие технологии соединения подобных конструкций, однако они имеют высокую себестоимость, причина которой объясняется высоким процентом брака. Предложенный авторами способ применения ЭЛС позволит существенно повысить качество соединения в тонкостенных конструкциях и воспроизводимость технологического режима сварки изделий. Авторы разработали технологическое решение представленной задачи, опираясь на многолетний опыт по использованию моделей тепловых процессов, сопровождаемых при электронно-лучевой сварке. В качестве предмета исследования предложено моделирование параметров электронно-лучевой сварки тонкостенных труб для волноводных трактов, изготавливаемых из алюминиевого сплава АД31. В статье приведены результаты математического моделирования технологических параметров при нагреве алюминиевого сплава источниками энергии, эквивалентными электронному пучку при ЭЛС. Анализ и оценка результатов моделирования проводилась с применением критерия оптимальности, разработанного авторами. В основе расчетов, выполненных авторами, применен функционал, использующий математические модели нагрева металла комплексным источником тепла, состоящим из подвижных мгновенных точечных и линейного источников энергии. В статье приведены результаты расчетов для пластины толщиной 0,12 см, которая соответствует опытным образцам, применяемых при изготовлении волноводных трактов. В результате путем изменения таких значений, как: ток пучка и скорость сварки, было получено распределение температуры на поверхности изделия в процессе ЭЛС, что показало, применимость моделирования для отработки нового технологического процесса.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Курашкин С. О., Серегин Ю. Н., Тынченко В. С., Мурыгин А. В., Котельникова С. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SIMULATION OF THE MODE OF ELECTRON-BEAM WELDING OF A THIN-WALL STRUCTURE FROM AD31 ALLOY

The article contains the results obtained by the authors in the study of the possibility of using electron beam welding (EBW) for thin-walled structures made of AD31 aluminum alloy. Today, EBW of similar designs are not used due to the lack of technology. Currently, other technologies for connecting similar structures are used in production, but they have a high cost, the reason for which is due to the high percentage of defects. The method of using EBW proposed by the authors will significantly improve the quality of the joint in thin-walled structures and the reproducibility of the technological mode of welding products. The authors have developed a technological solution to the presented problem, based on many years of experience in the use of models of thermal processes, accompanied by electron beam welding. As a subject of research, modeling of the parameters of electron-beam welding of thin-walled pipes for waveguide paths made of aluminum alloy AD31 is proposed. The article presents the results of mathematical modeling of technological parameters during heating of an aluminum alloy by energy sources equivalent to an electron beam during EBW. The analysis and evaluation of the simulation results was carried out using the optimality criterion developed by the authors. The calculations performed by the authors are based on functional using mathematical models of metal heating by a complex heat source consisting of moving instantaneous point and linear energy sources. The article presents the results of calculations for a plate with a thickness of 0.12 cm, which corresponds to prototypes used in the manufacture of waveguide paths. As a result, by changing such values as: beam current and welding speed, the temperature distribution on the surface of the product during the EBW process was obtained, which showed the applicability of modeling for developing a new technological process.

Текст научной работы на тему «МОДЕЛИРОВАНИЕ РЕЖИМА ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ТОНКОСТЕННОЙ КОНСТРУКЦИИ ИЗ СПЛАВА АД31»

УДК 621.791.722

Doi: 10.31772/2712-8970-2022-23-2-296-304

Для цитирования: Моделирование режима электронно-лучевой сварки тонкостенной конструкции из сплава АД31 / С. О. Курашкин, Ю. Н. Серегин, В. С. Тынченко и др. // Сибирский аэрокосмический журнал. 2022. Т. 23, № 2. С. 296-304. Doi: 10.31772/2712-8970-2022-23-2-296-304.

For citation: Kurashkin S. О., Seregin Yu. N., Tynchenko V. S., Murygin A. V., Kotelnikova S. V. [Simulation of the mode of electron-beam welding of a thin-wall structure from AD31 alloy], Siberian Aerospace Journal. 2022, Vol. 23, No. 2, P. 296-304. Doi: 10.31772/2712-8970-2022-23-2-296-304.

Моделирование режима электронно-лучевой сварки

тонкостенной конструкции из сплава АД31

*

С. О. Курашкин , Ю. Н. Серегин, В. С. Тынченко, А. В. Мурыгин, С. В. Котельникова

Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева Российская Федерация, 660037, Красноярск, просп. им. газ. «Красноярский Рабочий», 31

*E-mail: [email protected]

В статье содержатся результаты, полученные авторами при исследовании возможности применения электронно-лучевой сварки (ЭЛС) для тонкостенных конструкций из алюминиевого сплава АД31. Сегодня ЭЛС подобных конструкций не используется вследствие отсутствия технологии. В настоящее время на производстве используются другие технологии соединения подобных конструкций, однако они имеют высокую себестоимость, причина которой объясняется высоким процентом брака. Предложенный авторами способ применения ЭЛС позволит существенно повысить качество соединения в тонкостенных конструкциях и воспроизводимость технологического режима сварки изделий. Авторы разработали технологическое решение представленной задачи, опираясь на многолетний опыт по использованию моделей тепловых процессов, сопровождаемых при электронно-лучевой сварке. В качестве предмета исследования предложено моделирование параметров электронно-лучевой сварки тонкостенных труб для волноводных трактов, изготавливаемых из алюминиевого сплава АД31. В статье приведены результаты математического моделирования технологических параметров при нагреве алюминиевого сплава источниками энергии, эквивалентными электронному пучку при ЭЛС. Анализ и оценка результатов моделирования проводилась с применением критерия оптимальности, разработанного авторами. В основе расчетов, выполненных авторами, применен функционал, использующий математические модели нагрева металла комплексным источником тепла, состоящим из подвижных мгновенных точечных и линейного источников энергии. В статье приведены результаты расчетов для пластины толщиной 0,12 см, которая соответствует опытным образцам, применяемых при изготовлении волноводных трактов. В результате путем изменения таких значений, как: ток пучка и скорость сварки, было получено распределение температуры на поверхности изделия в процессе ЭЛС, что показало, применимость моделирования для отработки нового технологического процесса.

Ключевые слова: электронно-лучевая сварка, моделирование, технологические параметры, программа, оптимизация, распределение энергии.

Исследование выполнено при финансовой поддержке РФФИ, Правительства Красноярского края и Краевого фонда науки в рамках научного проекта № 20-48-242917 «Модели и методы управления процессом электронно-лучевой сварки тонкостенных конструкций».

The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project: "Models and methods for controlling the process of electron beam welding of thin-walled structures", project No 20-48-242917.

Simulation of the mode of electron-beam welding of a thin-wall structure from AD31 alloy

S. O. Kurashkin*, Yu. N. Seregin, V. S. Tynchenko, A. V. Murygin, S. V. Kotelnikova

Reshetnev Siberian State University of Science and Technology 31, Krasnoiarskii Rabochi prospekt, Krasnoyarsk, 660037, Russian Federation *E-mail: [email protected]

The article contains the results obtained by the authors in the study of the possibility of using electron beam welding (EBW) for thin-walled structures made ofAD31 aluminum alloy. Today, EBW of similar designs are not used due to the lack of technology. Currently, other technologies for connecting similar structures are used in production, but they have a high cost, the reason for which is due to the high percentage of defects. The method of using EBW proposed by the authors will significantly improve the quality of the joint in thin-walled structures and the reproducibility of the technological mode of welding products. The authors have developed a technological solution to the presented problem, based on many years of experience in the use of models of thermal processes, accompanied by electron beam welding. As a subject of research, modeling of the parameters of electron-beam welding of thin-walled pipes for waveguide paths made of aluminum alloy AD31 is proposed. The article presents the results of mathematical modeling of technological parameters during heating of an aluminum alloy by energy sources equivalent to an electron beam during EBW. The analysis and evaluation of the simulation results was carried out using the optimal-ity criterion developed by the authors. The calculations performed by the authors are based on functional using mathematical models of metal heating by a complex heat source consisting of moving instantaneous point and linear energy sources. The article presents the results of calculations for a plate with a thickness of 0.12 cm, which corresponds to prototypes used in the manufacture of waveguide paths. As a result, by changing such values as: beam current and welding speed, the temperature distribution on the surface of the product during the EBW process was obtained, which showed the applicability of modeling for developing a new technological process.

Keywords: electron-beam welding, modelling, technological parameters, software, optimisation, normal distribution law.

Введение

В настоящее время при производстве конструкций волноводных трактов применяются разнообразные технологии, несущие большие затраты вследствие низкой воспроизводимости качества соединений конструкций [1-3]. Малая толщина и низкая температура плавления соединяемых изделий ставит под сомнение целесообразность применения электронно-лучевой сварки в этом направлении [4-6]. В работах [7-9] авторы моделируют процесс электронно-лучевой сварки (ЭЛС) для титанового сплава с целью нахождения оптимального режима. Полученный опыт моделирования привел авторов к идее исследования возможности применения электронно-лучевой сварки тонкостенных алюминиевых конструкций. Таким образом была поставлена цель смоделировать процесс сварки исследуемого материала с заданной толщиной и сравнить результаты моделирования с возможностями электронно-лучевого оборудования.

За основу в исследованиях была принята классическая теория тепловых процессов [10; 11]. Распределение температур в тонкослойном материале при действии на его поверхности подвижного точечного источника может быть рассчитано с использованием метода суперпозиции (сложения источника) [12-15]. Действительный точечный источник, изображенный на рис. 1, принимают перемещающимся по поверхности полубесконечного тела.

Отражение потока теплоты, отдаваемая источником Qb от границы II учитываем введением источника Q4, симметричного источнику Qi относительно границы II, т.е. на расстоянии 25 от источника Qi, действующего на границе I. В свою очередь, граница I для источника Q4 будет

учтена, если ввести фиктивный источник удаленный от границы I на расстояние 25. Для учета толщины материала 5 при моделировании теплового процесса был введен линейный движущийся источник (}2.

Рис. 1. Схема введения фиктивных источников для расчета температур в плоском слое

Fig. 1. Scheme of introducing fictitious sources for calculating temperatures in a flat layer

Математический аппарат

Приняв выбранный комплекс источников нагрева и применив метод наложения [10], получаем итоговую модель температуры нагрева (1):

Tz=Tl+T2+T3+T4,

(1)

где 7, = '/,, +

Ол -ч-г -, е Za Icxp

cpJ(4nay о

f f ..2 2 , 2 , 2 Л

v г х +у +z 4 а 4ах

dx

3/2

температура нагрева от движуще-

гося по поверхности мгновенного точечного источника;

О -— 2а

(

jexp

v т 2Хх

4 а ср5 4 ах

dx

температура от нагрева движущегося

линеиного источника;

тз = 7н +"

0

ср^

з е 2 а

jexp

v2x x2+y2+(z- 25) 4а 4 ах

2 Л

dx

.3/2

температура нагрева от дви-

жущегося над поверхностью фиктивного мгновенного точечного источника;

т4=тн+-

Q.

Ф \1{4ж<)

4 е 2а jexp

та' Г v2x x2 + v2+(z + 25)21 dx

4 а

4 ах

3/2

температура нагрева от дви-

жущегося над поверхностью фиктивного мгновенного точечного источника.

При моделировании теплового процесса авторами используется разработанный ими функционал:

J = .

(2)

где Тт =

Т,

s .

Т

7',.,. = max/v .

Выбор параметров при моделировании осуществлялся по минимуму функционала. Так, например скорость перемещения источника нагрева определялась по координате положения экстремальной точки функционала, как показано на рис. 2.

Расчеты температуры нагрева (2) проводились при значениях времени интегрирования, соответствующих моменту достижения границы зоны термического влияния нижней поверхности нагреваемого материала, пример показан на рис. 3.

В качестве границы зоны термического влияния принято максимальное значение температуры, которой соответствуют справочные [11] свойства исследуемого материала (с, р, а, X).

Рис. 2. График изменения функционала от скорости Рис. 3. Моделирование поперечного сечения зоны

термического влияния: Л - толщина сварного шва; х - ширина изделия

перемещения источника нагрева

Fig. 2. Graph of the change in the functional from the speed of movement of the heating source

Fig. 3. Modeling a Cross-Section of a Heat-Affected Zone: h - the thickness of the weld; x - product width

Критерием оптимальности выбран минимум функционала при вариации того параметра, для которого осуществляется поиск решения Предлагаемый критерий привлекателен тем, что его характер имеет физическую смысловую направленность, вместе с этим критерий имеет экстремумы при характерных значениях варьируемых параметров. Вычисление функционала проводилось для объема, ограниченного зоной термического влияния, показанной на рис. 3. Для моделирования процесса использованы нормированные численные значения функционала.

С физической точки зрения сделано предположение, что минимум предлагаемого функционала пропорционален минимальному рассеянию температуры нагрева металла. Если учесть принятые авторами объемные ограничения на эту функцию, то можно предположить следующее: в случае равномерного нагрева материала, то есть минимальном рассеянии температуры в рассматриваемом объеме, вероятность равномерного расплавления металла будет наивысшей. Что повлечет за собой формирование шва наилучшими качественными показателями и минимальными остаточными напряжениями. Введение нормированных показателей повышает чувствительность критерия, что особенно важно для температур, не превышающих температур фазовых переходов свариваемых материалов.

Результаты

По результатам исследований поведения функционала для различных энергий источника нагрева, авторами был сформирован алгоритм вычислений параметров технологического процесса, рекомендуемых в дальнейшем для отработки технологии электронно-лучевой сварки.

Для наглядности получаемой при моделировании информации результаты вычислений сведены в таблицу.

Результаты вычисления модели (2)

1 2 3 4

С), [калл] J V, [см/с]

3 0,0979 0,21 1,107

4 0,0958 0,27 0,869

5 0,0939 0,32 0,721

6 0,0922 0,36 0,619

7 0,0907 0,40 0,545

8 0,0892 0,44 0,489

9 0,0874 0,49 0,446

10 0,0865 0,52 0,409

11 0,0857 0,56 0,379

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12 0,0837 0,60 0,355

13 0,0835 0,64 0,333

14 0,0815 0,67 0,314

15 0,0806 0,70 0,298

16 0,0809 0,74 0,284

17 0,0798 0,77 0,271

18 0,0795 0,80 0,259

19 0,0787 0,84 0,249

20 0,0782 0,86 0,239

21 0,0774 0,90 0,231

22 0,0770 0,93 0,223

23 0,0764 0,96 0,216

24 0,0762 0,99 0,209

25 0,0755 1,02 0,203

26 0,0742 1,05 0,198

27 0,0744 1,07 0,192

28 0,0743 1,11 0,187

29 0,0727 1,13 0,183

30 0,0733 1,16 0,178

31 0,0725 1,18 0,174

32 0,0727 1,22 0,170

33 0,0713 1,24 0,167

34 0,0718 1,27 0,163

35 0,0709 1,29 0,160

36 0,0705 1,32 0,157

37 0,0704 1,35 0,154

38 0,0702 1,37 0,151

39 0,0695 1,41 0,149

40 0,0693 1,42 0,146

41 0,0686 1,45 0,144

42 0,0690 1,47 0,141

43 0,0685 1,50 0,139

44 0,0680 1,52 0,137

45 0,0679 1,55 0,135

46 0,0676 1,57 0,133

47 0,0677 1,60 0,131

48 0,0676 1,62 0,129

49 0,0678 1,64 0,127

50 0,0667 1,67 0,126

В таблицу помещены численные значения заданного комплексного источника нагрева согласно уравнению (1). Численные значения скорости движущегося источника нагрева V и времени интегрирования / выбраны по аналогии с рис. 2 и 3 соответственно. Расчеты проводились

с применением упрощенной модели (2), то есть варьировались координаты у и г, а координата х выбрана по максимальной площади зоны термического влияния. При таком выборе параметров моделирования согласно результатам, полученным авторами ранее [8-10], форма зоны термического влияния максимально приближена к форме поперечного сечения сварного шва. Численные значения функционала J в таблице определены по уравнению (2) для всего объема материала, ограниченного зоной термического влияния. Авторы допустили наличие корреляции между значениями всех столбцов таблицы.

По результатам, представленным в таблице, авторами получен график зависимости функционала J от значения вводимой энергии комплексного источника нагрева, показанный на рис. 4. Если принять за основу гипотезу о пропорциональности между качеством сварного шва и численного значения функционала (2), то согласно полученной зависимости, изображенной на рис. 4, авторами сделано следующее предположение о том, что при сварке тонкостенных конструкций не требуется оборудование, обеспечивающее высокостабильный очень малый ток сварки.

Таким образом, используя современный инструмент разработки, авторы разработают новый подход к поиску режимов сварки с целью получения стабильного качества сварного шва и повторяемости.

По табличным результатам авторами получен график зависимости энергии источника нагрева и скорости его перемещения, изображенный на рис. 5. Этот график является важным дополнением к рис. 4. Он поясняет, как на практике можно реализовать предлагаемую авторами гипотезу о повышении качества сварного шва за счет правильного сочетания энергии источника нагрева и скорости его движения.

Следует принять во внимание тот факт, моделирование процесса выполнено для идеального источника нагрева. Для реального сварочного оборудования результаты моделирования не соответствуют. Поэтому авторы предлагают определить масштабный коэффициент конкретного оборудования. Для этого необходимо провести пробную сварку на образце с последующим замером глубины проплавления. На графике, показанном на рис. 5, необходимо найти точку, соответствующую скорости, при которой проводили сварку, определяем соответствующую этой точке энергию

Рис. 4. График зависимости функционала от энергии источника нагрева

Fig. 4. Graph of the dependence of the functional on the energy of the heating source

Рис. 5. График зависимости энергии источника нагрева от скорости его движения

Fig. 5. Graph of the dependence of the energy of the heating source on the speed of its movement

Сопоставив энергию с графика с введенной при сварке, получаем масштабный коэффициент. Таким образом адаптируем графики моделирования с реальным источником нагрева. На полученных авторами графиках представлено значение функционала, соответствующего реальному сварному шву. Также на основе полученных графиков зависимости, предоставляется возможным оценить возможность уменьшения значения функционала с помощью изменения энергии источника и соответствующей корректировкой скорости сварки.

Заключение

В статье разработан новый подход к поиску технологических режимов в электроннолучевой сварке. В ходе исследования авторы провели моделирование тонкостенной пластины из алюминиевого сплава АД31 толщиной 0,12 см. В результате путем изменения таких значений, как: ток пучка и скорость сварки, было получено распределение температуры на поверхности изделия в процессе электронно-лучевой сварки, что показало, что можно отработать новый технологический процесс с помощью моделирования.

Предложенный подход может быть применен при электронно-лучевой сварке элементов конструкций волноводных трактов для повышения надежности их работы за счет повышения коррозионной стойкости на стыках.

Библиографические ссылки

1. Hosseinib S. A., Abdollah-Zadeh A., Naffakh-Moosavy Н., Mehri A. Elimination of hot cracking in the electron beam welding of AA2024-T351 by controlling the welding speed and heat input //Journal of Manufacturing Processes. 2019. Vol. 46. P. 147-158.

2. Starkov I. N., Rozhkov K. A., Olshanskaya Т. V., Zubko I. A. Expansion of technological capabilities of the electron beam welding installation // Journal of Physics: Conference Series. IOP Publishing. 2021. Vol. 2077, No. 1. P. 012021.

3. Kornilov S. Y., Rempe N. G. Formation and focusing of electron beams in an electron-optical system with a plasma emitter in a magnetic field//Technical Physics Journal. 2012. Vol. 82, No. 3. P. 7984.

4. Tyunkov A. V., Burdovitsin V. A., Oks E. M., Yushkov Yu. G. An experimental test-stand for investigation of electron-beam synthesis of dielectric coatings in medium vacuum pressure range // Vacuum. 2019. Vol. 163. P. 31-36.

5. Oltean S. E. Strategies for monitoring and control with seam tracking in electron beam welding //Procedia Manufacturing. 2018. Vol. 22. P. 605-612.

6. David L., Gyorgy K., Galaczi L. A. Survey of optimal Control and model predictive Control with State estimation and a real time application // Miiszaki Tudomanyos Kozlemenyek. 2020. Vol. 13, No. 1. P. 19-30.

7. Zhang Q., Liu J., Bai L., Feng L., Guo Z. Numerical simulation on electron beam welding of titanium alloy based on ANSYS // Electric Welding Machine. 2015. Vol. 11. P. 1-10.

8. Kurashkin S., Rogova D., Tynchenko V., Petrenko V., Milov A. Modeling of Product Heating at the Stage of Beam Input in the Process of Electron Beam Welding Using the COMSOL Multiphysics System // Proceedings of the Computational Methods in Systems and Software. Springer, Cham. 2020. P.905-912.

9. Tynchenko V. S., Kurashkin S. O., Murygin A. V., Tynchenko Y. A. Energy distribution modelling in the weld zone for various electron beam current values in COMSOL Multiphysics // Journal of Physics: Conference Series. IOP Publishing, 2021. Vol. 1889, No. 4. P. 042058.

10. Kurashkin S. O., Seregin Y. N., Tynchenko V. S., Petrenko V. E., Murygin A. V. Mathematical functional for thermal distribution calculating during the electron-beam welding process // Journal of Physics: Conference Series. IOP Publishing, 2020. Vol. 1515, No. 5. P. 052049.

11. Коновалов А. В. Теория сварочных процессов. M. : Изд-во МГТУ им. Н. Э. Баумана. 2007. 752 с.

12. Гильмутдинов Р. 3. Аналитическое описание поверхностей методом суперпозиции // Наука сегодня: теоретические и практические аспекты. 2015. С. 132-138.

13. Отаров А., Утепбергенова Г., Артыкбаев М. Решение линейных краевых задач для обыкновенных дифференциальных уравнений методом суперпозиции // Вестник каракалпакского государственного университета имени бердаха. 2017. Т. 35. №. 4. С. 3-6.

14. Дельнов В. Н., Левченко Ю. Д., Шепелев С. Ф. Метод суперпозиции при моделировании температурного поля в теплообменных устройствах полем концентраций трассера // Известия вузов. Ядерная энергетика. 2009. №. 3. С. 152-160.

15. Kaniyazov S. К., Muratov A. S. Research of complex differential conductivity of multi-layer heterostructures // Radioelectronics and Communications Systems. 2011. Vol. 54, No. 11. P. 619-624.

References

1. Hosseinib S. A., Abdollah-Zadeh A., Naffakh-Moosavy H., Mehri A. Elimination of hot cracking in the electron beam welding of AA2024-T351 by controlling the welding speed and heat input. Journal of Manufacturing Processes. 2019, Vol. 46, P. 147-158.

2. Starkov I. N., Rozhkov K. A., Olshanskaya Т. V., Zubko I. A. Expansion of technological capabilities of the electron beam welding installation. Journal of Physics: Conference Series. IOP Publishing. 2021. Vol. 2077, No. 1, P. 012021.

3. Kornilov S. Y., Rempe N. G. Formation and focusing of electron beams in an electron-optical system with a plasma emitter in a magnetic field. Technical Physics Journal. 2012, Vol. 82, No. 3, P. 7984.

4. Tyunkov A. V., Burdovitsin V. A., Oks E. M., Yushkov Yu. G. An experimental test-stand for investigation of electron-beam synthesis of dielectric coatings in medium vacuum pressure range. Vacuum. 2019, Vol. 163, P. 31-36.

5. Oltean S. E. Strategies for monitoring and control with seam tracking in electron beam welding. ProcediaManufacturing. 2018, Vol. 22, P. 605-612.

6. David L., Gyorgy K., Galaczi L. A. Survey of optimal Control and model predictive Control with State estimation and a real time application. Miiszaki Tudomdnyos Kozlemenyek. 2020, Vol. 13, No. 1, P. 19-30.

7. Zhang Q., Liu J., Bai L., Feng L., Guo Z. Numerical simulation on electron beam welding of titanium alloy based on ANSYS. Electric Welding Machine. 2015, Vol. 11, P. 1-10.

8. Kurashkin S., Rogova D., Tynchenko V., Petrenko V., Milov A. Modeling of Product Heating at the Stage of Beam Input in the Process of Electron Beam Welding Using the COMSOL Multiphysics System. Proceedings of the Computational Methods in Systems and Software. Springer, Cham. 2020. P.905-912.

9. Tynchenko V. S., Kurashkin S. O., Murygin A. V., Tynchenko Y. A. Energy distribution modelling in the weld zone for various electron beam current values in COMSOL Multiphysics. Journal of Physics: Conference Series. IOP Publishing. 2021, Vol. 1889, No. 4, P. 042058.

10. Kurashkin S. O., Seregin Y. N., Tynchenko V. S., Petrenko V. E., Murygin A. V. Mathematical functional for thermal distribution calculating during the electron-beam welding process. Journal of Physics: Conference Series. IOP Publishing. 2020, Vol. 1515, No. 5, P. 052049.

11. Konovalov A. V. Teoriva svarochnykh protsessov [Theory of welding processes]. Moscow, Izd-vo MGTU im. N.E. Bauman Publ., 2007, 752 p. (In Russ.).

12. Gilmutdinov R. Z. [Analytical description of surfaces by the superposition method]. Science today: theoretical and practical aspects. 2015, P. 132-138. (In Russ.).

13. Otarov A., Utepbergenova G., Artykbaev M. [Solving linear boundary value problems for ordinary differential equations by the superposition method]. Bulletin ofBerdakh Karakalpak State University. 2017,. Vol. 35, No. 4, P. 3-6. (In Russ.).

14. Delnov V. N., Levchenko Yu. D., Shepelev S. F. [Superposition method for modeling the temperature field in heat exchange devices by the tracer concentration field]. News of higher educational institutions. Nuclear energy. 2009, No. 3, P. 152-160 (In Russ.).

15. Kaniyazov S. K., Muratov A. S. Research of complex differential conductivity of multilayer heterostructures. Radioelectronics and Communications Systems. 2011, Vol. 54, No. 11, P.619-624.

(§) Курашкин С. О, Серегин Ю. Н., Тынченко В. С., Мурыгин А. В., Котельникова С. В., 2022

Курашкин Сергей Олегович - аспирант; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].

Серегин Юрий Николаевич - кандидат технических наук, доцент кафедры информационно-управляющих систем; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].

Тынченко Вадим Сергеевич - кандидат технических наук, доцент кафедры информационно-управляющих систем; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].

Мурыгин Александр Владимирович - доктор технических наук, заведующий кафедрой информационно-управляющих систем; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].

Котельникова Светлана Владимировна - доцент кафедры информационно-управляющих систем; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].

Kurashkin Sergei Olegovich - post-graduate student, Department of Information-Control Systems; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].

Seregin Yuri Nikolaevich - Ph. D., Associate Professor, Department of Information-Control Systems; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].

Tynchenko Vadim Sergeevich - Ph. D., Associate Professor, Department of Information-Control Systems; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].

Murygin Aleksandr Vladimirovich - Dr. Sc., Professor, Head of the Information-Control Systems Department; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].

Kotelnikova Svetlana Vladimirovna - Associate Professor of the department of Information-Control Systems; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].

i Надоели баннеры? Вы всегда можете отключить рекламу.