Научная статья на тему 'MODELING THE RESIDENTIAL BUILDINGS ERECTION OF LARGE-SIZED BLOCKS'

MODELING THE RESIDENTIAL BUILDINGS ERECTION OF LARGE-SIZED BLOCKS Текст научной статьи по специальности «Строительство и архитектура»

CC BY
18
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
BUILDINGS ERECTION OF BLOCKS / LARGE-SIZED BLOCKS / CONSTRUCTION DURATION / LABOR INTENSITY OF WORK / TIMING OF BUILDING ERECTION / INSTALLATION OPERATIONS / OPERATION EXECUTION TIME / PESSIMISTIC ASSESSMENT / SATISFACTORY ASSESSMENT / OPTIMISTIC ASSESSMENT

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Oleynik Pavel P., Pakhomova Liliya A.

Introduction. the development analysis of domestic residential building construction of volumetric blocks, starting from the 60s of the twentieth century to the present time, is given. It is noted the innovative nature of the transition from low-volume blocks to large-sized blocks of high and full factory readiness. The problems that have arisen in this case are indicated, of which one of the most acute is the determination of organizational and technological parameters for the construction of residential buildings. Materials and methods. the role of organizational and technological parameters of the objects’ construction is described - the duration of construction and its stages, the complexity of work, the number of workers. The content of the timing carried out by the MonArch Group of Companies for the installation of large-sized volumetric blocks of a four-story residential building in Yakovlevo-2 village (New Moscow) is revealed. The main installation operations are analyzed with an indication of the time spent on each floor and the roof arrangement. Results. based on the final results of the timekeeping materials generalization, three estimates of the duration of a building construction of large-sized blocks are proposed - pessimistic, satisfactory, optimistic. The found dependences “duration of building construction - the number of large-sized blocks installed taking into account the roof arrangement” are revealed with the corresponding calculation formulas. The formula for calculating the labor intensity of installers work and crane maintenance workers is also given. Conclusions. the prospects for the innovative technology development for the construction of residential buildings of large-sized blocks are substantiated, provided that capital investments are allocated and the efforts of research and design organizations are combined to comprehensively solve the problems that have arisen. To solve the problematic tasks of determining the indicators of organizational and technological parameters of buildings construction of large-sized blocks, an approach and methods for assessing the duration of construction and the complexity of installation work on the assembly of buildings are proposed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MODELING THE RESIDENTIAL BUILDINGS ERECTION OF LARGE-SIZED BLOCKS»

ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА. ЭКОНОМИКА И УПРАВЛЕНИЕ В СТРОИТЕЛЬСТВЕ

RESEARCH PAPER / НАУЧНАЯ СТАТЬЯ UDC 69.055

DOI: 10.22227/1997-0935.2023.3.463-470

Modeling the residential buildings erection of large-sized blocks

Pavel P. Oleynik, Liliya A. Pakhomova

Moscow State University of Civil Engineering (National Research University) (MGSU);

Moscow, Russian Federation

ABSTRACT

Introduction. The development analysis of domestic residential building construction of volumetric blocks, starting from the 60s of the twentieth century to the present time, is given. It is noted the innovative nature of the transition from low-volume blocks to large-sized blocks of high and full factory readiness. The problems that have arisen in this case are indicated, of which one of the most acute is the determination of organizational and technological parameters for the construction of residential buildings.

Materials and methods. The role of organizational and technological parameters of the objects' construction is described — the duration of construction and its stages, the complexity of work, the number of workers. The content of the timing carried out by the MonArch Group of Companies for the installation of large-sized volumetric blocks of a four-story residential building in Yakovlevo-2 village (New Moscow) is revealed. The main installation operations are analyzed with an indication ^ n of the time spent on each floor and the roof arrangement. s ®

Results. Based on the final results of the timekeeping materials generalization, three estimates of the duration of a building n h construction of large-sized blocks are proposed — pessimistic, satisfactory, optimistic. The found dependences "duration ^ | of building construction — the number of large-sized blocks installed taking into account the roof arrangement" are revealed _ * with the corresponding calculation formulas. The formula for calculating the labor intensity of installers work and crane ^ S maintenance workers is also given. 5) C

Conclusions. The prospects for the innovative technology development for the construction of residential buildings of large- * y sized blocks are substantiated, provided that capital investments are allocated and the efforts of research and design organi- ^ I zations are combined to comprehensively solve the problems that have arisen. To solve the problematic tasks of determining o S the indicators of organizational and technological parameters of buildings construction of large-sized blocks, an approach l z and methods for assessing the duration of construction and the complexity of installation work on the assembly of buildings J 9 are proposed. o 7

n 0

KEYWORDS: buildings erection of blocks, large-sized blocks, construction duration, labor intensity of work, timing of l 3 building erection, installation operations, operation execution time, pessimistic assessment, satisfactory assessment, opti- o ( mistic assessment

О о

CO CO

Acknowledgements. The authors of the article express their gratitude to the head of the MonArch Group of Companies, Professor, Doctor of Technical Sciences Sergey Aleksandrovich Ambartsumyan for the constant attention and support of scientific maintenance for buildings construction of large-sized blocks.

3 M

CO

FOR CITATION: Oleynik P.P., Pakhomova L.A. Modeling the residential buildings erection of large-sized blocks. Vestnik n 0 MGSU [Monthly Journal on Construction and Architecture]. 2023; 18(3):063-070. DOI: 10.22227/1997-0935.2023.3.063-070 (rus.). о 6

> 6 о о

Corresponding author: Liliya A. Pakhomova, liliya_7172@mail.ru. i о

Ii

r =

Моделирование возведения жилых зданий D !

из крупногабаритных блоков с О

e1

Павел Павлович Олейник, Лилия Алексеевна Пахомова 1 D®

Национальный исследовательский Московский государственный строительный университет

(НИУМГСУ); г. Москва, Россия S э

с с DD К

АННОТАЦИЯ , ,

Введение. Приводится анализ развития отечественного домостроения из объемных блоков, начиная с 60-х гг. ХХ в. 22 до настоящего времени. Отмечается инновационный характер перехода от малообъемных блоков на крупногабарит- 2 2 ные блоки высокой и полной заводской готовности. Указывается на возникшие при этом проблемы, из которых одной U U из наиболее острых является определение организационно-технологических параметров возведения жилых зданий.

© П.П. Олейник, Л.А. Пахомова, 2023

Распространяется на основании Creative Commons Attribution Non-Commercial (CC BY-NC)

Материалы и методы. Описывается роль организационно-технологических параметров возведения объектов — продолжительность строительства и его этапов, трудоемкость работ, численность рабочих кадров. Раскрывается содержание проведенного ГК «МонАрх» хронометража по монтажу крупногабаритных объемных блоков четырехэтажного жилого здания в деревне Яковлево-2 (Новая Москва). Анализируются основные монтажные операции с указанием затраченного времени на каждом этаже и устройстве крыши.

Результаты. На основе итоговых результатов обобщения материалов хронометража предложены три оценки продолжительности возведения здания из крупногабаритных блоков — пессимистическая, удовлетворительная, оптимистическая. Раскрываются найденные зависимости «продолжительность возведения здания — количество смонтированных крупногабаритных блоков с учетом устройства крыши» с приведением соответствующих расчетных формул. Приводится также формула подсчета трудоемкости работ монтажников и обслуживающих кран рабочих. Выводы. Обоснованы перспективы развития инновационной технологии возведения жилых зданий из крупногабаритных блоков при условии выделения капитальных вложений и объединения усилий научно-исследовательских и проектно-конструкторских организаций для комплексного решения возникших проблем. Для решения проблемных задач определения показателей организационно-технологических параметров возведения зданий из крупногабаритных блоков предложен подход и способы оценки продолжительности строительства и трудоемкости монтажных работ по сборке зданий.

КЛЮЧЕВЫЕ СЛОВА: возведение зданий из блоков, крупногабаритные блоки, продолжительность строительства, трудоемкость работ, хронометраж возведения здания, монтажные операции, время выполнения операции, пессимистическая оценка, удовлетворительная оценка, оптимистическая оценка

Благодарности. Авторы выражают благодарность руководителю ГК «МонАрх», профессору, доктору технических наук Сергею Александровичу Амбарцумяну за постоянное внимание и поддержку научного сопровождения возведения зданий из крупногабаритных блоков.

ДЛЯ ЦИТИРОВАНИЯ: Олейник П.П., Пахомова Л.А. Modeling the residential buildings erection of large-sized blocks // Вестник МГСУ. 2023. Т. 18. Вып. 3. С. 463-470. DOI: 10.22227/1997-0935.2023.3.463-470

Автор, ответственный за переписку: Лилия Алексеевна Пахомова, liliya_7172@mail.ru.

INTRODUCTION

o o

N N

The beginning of residential buildings construc-x o tion of the fifth industrial generation is characterized by > j« the emergence of innovative technology of their con-2 ~ veyor assembly on construction sites from large-sized . t- volumetric blocks of full factory readiness. The transfer t- of main volumes of work from construction produc-| 3 tion to industrial production will qualitatively change •7 £ the entire system of reproduction of the housing stock, i including the design, construction and operation of resits -g dential buildings [1].

S. .-2 The residential buildings erection from volumetric

o y blocks began in the second half of the 60s of the twen-

co <£ 0

J? 13 tieth century. By number of research and design organi-

° zations — the Central Research Laboratory (TSNIL-3)

z .2 of Glavstroy (Moscow), the Research Institute of Con-

$ E struction and Architecture (Minsk), Gidroproekt (Mos-—

c £= cow), Dalmorproekt (Artem), etc. in the period 1956-

iz O

£ o 1958, a number of new projects were developed for

¡n ° the construction of residential buildings from volumetCO —

g [z ric blocks. Most of these projects provided for the use of

fj o volumetric blocks in the form of a block room, a block

? >, for two rooms, block apartments and block sections.

For example, a block-room was a reinforced concrete

— 2 box with dimensions from 2.4 x 4.8 m to 3.6 x 6.0 m

>» 3 and a weight of 6-10 tons, and a block for two rooms

l_ w had a length of 6-10 m and a width of 6 m with a weight

® EE of 20-30 tons. Structural schemes of residential build-

| s£ ings made of volumetric blocks provided for three op-

¡3 +5 tions — panel-block, frame-block and block. In 1959,

u ¡¡^ the first experimental building was built in Lublino, Moscow region, in which block rooms were assembled

from leca flat panels in a special conductor with their fixing by welding together.

Widespread construction of residential buildings of volumetric blocks began in 1961 in Krasnodar, Minsk, etc. In Krasnodar, residential 5-storey buildings were erected according to the GPI-5 project (Moscow) from block rooms consisting of monolithically connected three walls and a bottom in the form of ribbed slabs 10 cm thick for the walls and 12 cm for the bottom. The block rooms of the Minsk variant differed in that they consisted of four walls, but without a bottom. Since 1963, according to the project by Permproject, 5-storey buildings made of leca block boxes have been built in Perm. All blocks were divided into three types — residential, sanitary-kitchen and staircase with the same size of 3.2 x 5.2 x 2.7 m [2].

It should be noted that all the volumetric blocks used had a high factory readiness. In particular, glazed windows, doors and wall cabinets were installed in them, engineering networks with full wiring, plumbing and electrical appliances were installed. The finished blocks were installed by cranes equipped with balancing traverses on trailer platforms. The blocks were installed, as a rule, from wheels. The timing carried out at that time allowed one to establish that the costs of manufacturing and completing the blocks came to about 75-85 %, reducing the consumption of concrete by 25-28 %, reducing the duration of construction by 3-4 times. The installation time of one unit in the design position was 20-30 minutes. During one shift, from 7 to 10 blocks were installed, and in 10-12 working days, with three shifts, a five-story residential building for 60 apartments was erected [3-8].

Modeling the residential buildings erection of large-sized blocks

C. 463-470

Modern technology of residential buildings erection of volumetric blocks is characterized by the transition to large-sized blocks of full factory readiness [9-15]. Conducted at the present time by the MonArch Group of Companies (Moscow) a unique experiment includes the construction of an enterprise for the manufacture and assembly of large-sized object blocks, consisting of an experimental workshop of 186.6 x 150.8 m, equipped with innovative technological equipment, the manufacture of large-sized blocks of full factory readiness weighing up to 65 tons, the residential buildings assembly of large-sized blocks in sizes up to 15.5 x 7.5 x 3.3 m. The results obtained during the experiment confirm the large-scale prospects for the development of this direction as a highly industrial conveyor method of assembling residential buildings with high productivity and minimum erection duration [16].

At the same time, due to the pioneering nature, problems have been revealed at almost all stages of this technology for the construction of residential buildings, requiring their resolution by the integrated forces of research, design and construction organizations. Especially difficult are the tasks of forming the type of unified large-sized volumetric blocks, the development of modern space-planning solutions for buildings with the layout of large-sized blocks, the reasonable selection of their rational options for standard series, the use of high-performance automated means of mechanization of assembly operations, the creation of reliable and safe technological equipment for the stable positioning of blocks. To date, a clear methodology for modeling residential buildings erection of large-sized volumetric blocks has not been developed, linking the solutions to the above-mentioned tasks. But for this, first of all, it is necessary to determine the organizational and technological parameters that characterize the development of the technological process of erecting residential buildings of large-sized blocks, both as a whole and its individual operations [17, 18].

MATERIALS AND METHODS

The main organizational and technological parameters of an object erection are the total duration of construction, the duration of individual stages (periods) of construction, the labor intensity and machine intensity of work, the number of workers. These indicators are mandatory as part of construction organization projects and are determined by federal and territorial standards and indicators, and in some cases by analogous objects. For work production projects, the organizational and technological indicators given in construction organization projects are directive and represent the final technical and economic indicators of an object construction. Their calculation is based on determining the scope of work according to working drawings and estimates in units of measurement adopted in the estimated norms and prices [19].

Regarding the technology of residential buildings erection of volumetric large-sized blocks, the regulatory framework is just beginning to be formed, and therefore the definition of organizational and technological parameters and ranges of changes in their indicators depending on the conditions of work requires a special approach. Such an approach should be based on the generalization of the experience of the past years and the experiments currently being conducted, the accumulation and processing of the received statistical information with its subsequent correction as a result of the influence of scientific and technological progress [20, 21].

In order to determine the indicators of organizational and technological parameters of buildings erection of volumetric large-sized blocks, the MonArch group of companies carried out the timing of the installation of a residential building in the Desenovskoye settlement of Yakovlevo-2 village on the territory of the New Moscow (Fig. 1).

Fig. 1. General view on a building of large-sized volumetric blocks

This object is a four-story building with a plan size of 28.8 x 15.5 m. The building's volume and planning solutions form 7 blocks each, of which blocks B1, B2 and B3 are presented in 2 copies, and block B4 in one copy (Table 1), the height of all blocks is 3.3 m. The location of the blocks and the sequence of their installation on the ground floor are shown in Fig. 2, in which the fraction is indicated — in the numerator the number of the block, in the denominator — the number of its installation.

On all subsequent floors, the arrangement and installation sequence of blocks is similar to the scheme of the first floor (Table 2).

< n

iH

k K

G !

S 2

0 Co § CO

1 o

y 1

J to

u-

^ I

n 0

O 3 o

zs (

o i

o §

E w § 2

n g

o 6

r 6 t ( an

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

SS )

Î!

® 00

os n

■ T

s □

s y c o <D K WW

M 2

O O

10 10

u w

Table 1. Characteristics of large-sized volumetric blocks

Block's Quantity of Blocks' parameters

number blocks, pcs Block's size, m Block's volume, m3 Block's weight, ton

B1 2 14.4 x 6.3 301.0 50.9

B2 2 9.2 x 8.0 245.0 43.9

B3 2 9.2 x 3.7 113.0 22.6

B4 1 9.2 x 7.0 215.0 42.7

W (0 N N

o o

N N WW

* <D

U 3 > in

C M

HQ oo

. r

« gi j

<D <U

O ë

---' "t^

o

o <£

CO [J co iE

E o

CL° c

LO O

S g

o E c5 o

CD ^

CO CO

> 1

Ü w

S S

iE 35

0 (0

Fig. 2. Arrangement and sequence of installation of large-sized blocks

Table 2. The sequence of floor-by-floor installation of large-sized blocks

Block's On-floor block installation number

number 1 floor 2 floor 3 floor 4 floor

B1 1.2 8.9 15.16 22.23

B2 3.7 10.14 17.21 24.28

B3 4.6 11.13 18.20 25.27

B4 5 12 19 26

A Liebherr LTM 1650 crane with a maximum lifting capacity of 650 tons was used as a lifting-and-carry vehicle. The telescopic boom of the crane has a length from 16.7 to 80 m. The crane was used in modification T3, T3Y. Modification of the crane T3Y has a telescopic boom from 33.9 to 54 m. At R = 5 m, L. = 33.9 m,

min ' boom 7

and at R = 52 m, L, = 54 m1. The advantages of

max ' boom &

this powerful crane should also include high maneuverability and a large service area.

The main installation operations included:

• rigging, related to block preparation for lifting (traverse preparation, slinging);

• mounting, consisting of lifting (moving), aiming, orientation, installation, alignment, block fixing.

1 URL: https://www.liebherr.com/external/products/products-assets/d0979887-eb7a-4e99-b4fb-d3cbea406b3e-6/liebherr-275-ltm-1650-8-1-td-275-05-defisr12-2021.pdf

All information on the installation processes timing was summarized in the form of a report, a fragment of which is given in Table 3.

In work production process, rigging operations included slinging blocks (3-15 min), lowering and uncoupling the traverse grips (3-17 min), bringing the traverse to the storage area for unslinging the four extreme slings (4-10 min).

When performing the actual installation operations, the time spent was distributed as follows: bringing a block to installation location into design position (10-27 min), lowering the block (8-17 min), boom lifting with a turn to a location of a block (5-8 min), block lifting and turning (3-6 min).

A certain amount of time was spent on related operations, such as beating off swells on the supporting embedded parts (9-27 min), screwing — unscrewing fittings and tensioning chain slings to determine the center of gravity of a block (26 min). Unforeseen circumstances also arise related to difficulties in block installing into design position, for example, due to loose communication (27 min).

As a result, the duration of installation of large-sized volumetric block per floor was:

• 1st floor — 5.0 hours;

• 2nd floor — 4.7 hours;

• 3rd floor — 3.4 hours;

• 4th floor — 3.1 hours.

Modeling the residential buildings erection

,, „ ill i C. 463-470

of large-sized blocks

Table 3. Report on the timing of a residential building erection (fragment)

Number Operation Start of operation, time End of operation, time Duration, min Comments

54 Slinging of block B2 17-47 17-51 4 -

55 Feeding of B2 block to installation location into design position 17-51 18-02 11 -

56 Removal of slings of B2 and turn the crane boom to the next block 18-02 18-10 8 -

57 Slinging and lifting of block B3 to installation location into design position 18-10 18-29 19 -

58 Removal of slings of B3 and turn the crane boom to the next block 18-29 18-36 7 -

59 Slinging of block B4 "from wheels" 18-36 - - -

60 Break Till 18-50 14 -

61 Feeding of B4 block to installation location into design position 18-50 19-20 30 -

62 Removal of slings of B4 and turn the crane boom to the next block 19-20 19-27 7 -

The roof installation of a building consisted of installing four covers in 1.1 hours.

Thus, the total duration of installation of the four-story building was 17.3 hours.

RESULTS OF THE RESEARCH

The final results of the timing showed that, despite the floor-by-floor use of identical types of large-sized blocks, their symmetrical arrangement and the same sequence of installation, as well as absolutely equal working conditions, there is a significant variation in floors arrangement duration. So, the maximum installation time of one floor is 5.0 hours (1st floor), and the minimum time is 3.1 hours (4th floor). The analysis made it possible to establish that the main reason for such a spread of duration indicators is mainly due to non-compliance with a clear sequence of installation operations and lack of practical experience. A certain negative role was played by the use of a non-automatic traverse, which slightly increased labor costs. At the same time, it should be borne in mind that the duration of installation of the 1st floor will be slightly higher than the duration of installation of each subsequent floor due to the specific conditions of installation of blocks on the foundation of the underground part of a building.

The materials of this timing are the first statistical data, based on which it is possible to deduce the dependence "the building erection duration — the number of large-sized blocks installed, taking into account the roof arrangement". Such dependence, of course, reflects the features and conditions of work production on erection of this particular building, but it can also serve as a predictive guideline for further solving scientific and practical problems.

It is advisable to present three estimates of building erection duration of large-sized volumetric blocks, which will be able to take into account a wide variety

of work options. Such assessments are pessimistic, satisfactory, optimistic.

The pessimistic assessment provides for the most unfavorable working conditions — lack of practical experience, use of mechanical technological equipment, displacement of gravity center and blocks offset, tightness on a floor, cutting of concrete flows, etc.

The duration of a block installation is defined as:

t ' = -

N

5 • 4 +1.13 28

= 0.76 hour,

(1)

here t — duration of a block installation, hour (with a pessimistic assessment); t — maximum duration

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

A '7 max

of blocks installation per floor, hour; m — number of floors; t — duration of roof arrangement, hour; N — number of blocks for a building.

Then the indicator of the pessimistic assessment of the duration of a building installation, floor(s) arrangement will be:

T ' = 0.76n,

(2)

here T — duration of a building, floor(s) installation, hour (with a pessimistic assessment); n — number of blocks per building, floor(s).

A satisfactory assessment is focused on normal working conditions, but with the possible appearance of difficulties that cause additional labor and time costs. The duration of a block installation is equal to:

rim ^ _luj=h

+ T

N

(5.0 + 4.7 + 3.4 + 3.1) + !.13

(3)

28

= 0.62 hour,

here t" — duration of a block installation, hour (with a satisfactory assessment).

An indicator of satisfactory assessment of duration of a building, floor(s) installation will be:

< n i H

k K

g !

S 2

o n

1 o

y 1

J to

u-I

n

o 3 o

=! (

o i n

u § 2

n g

o 6

r 6 t ( an

o )

ii

® »

» n ■

s □

s y c o D K WW M M

o o 10 10 u w

T " = 0.62n,

(4)

W (0

N N

O O

N N

CO CO

* Ol

U 3

> in

E M

U 00

. r

« gi j

<D <u

O ë —■ "t^ o

o <£

here T" — duration of a building, floor(s) installation, hour (with a satisfactory assessment).

An optimistic assessment is calculated for the clear implementation of technological operations of the installation process during the entire duration of an object erection. The indicator of the duration of a block installation is expressed as:

t rn = ¿min m + T

N

3.1-4 +1.13 28

= 0.48 hour,

(5)

here t" — duration of a block installation, hour (with an optimistic assessment); t — minimum duration of

A '7 min

blocks installation per a floor, hour.

The indicator of an optimistic assessment of the duration of building, floor(s) installation is determined by an expression of the form:

T '" = 0.48 n,

(6)

here T" — duration of building, floor(s) installation, hour (with an optimistic assessment).

The labor intensity of large-sized volumetric blocks installation includes the total labor costs associated with the installation process, and it is recommended to determine it by the formula:

Q = ( + ?2 )P + ?3

Tß4j

j=1

(7)

here Q — labor intensity of blocks installation, man hours; ql — labor costs for a crane delivery to site, man hours; q2 — labor costs of machinists and crane maintenance workers, man hours; p — number of cranes; q3 — labor costs of installers for preparation of technological equipment, man hours; q4j — labor costs of installers for blocks installation on the j-th floor, man hours.

CONCLUSIONS AND DISCUSSION

Long-term construction practice has confirmed the technical feasibility and economic efficiency of residential buildings erection of volumetric blocks of high or full factory readiness as an important highly industrial direction of housing stock reproduction. In this regard, industrial production and conveyor assembly on construction sites of large-sized volumetric blocks should receive mass development, allowing to solve large-scale housing construction tasks in any natural and climatic conditions in a short time and with high quality.

At the same time, the development of building construction of large-sized volumetric blocks will require huge capital investments and, first of all, the formation of integrated efforts of research and design organizations to create appropriate industrial enterprises equipped with advanced robotic technology, and system solutions for the typification and unification of blocks, the development of modern volume planning and structural solutions of buildings, the creation of specialized transport and installation equipment and reliably positioned technological equipment.

The first steps, which have no analogues in the world, were taken by the MonArch group of companies, who took upon themselves the pioneering development of this technology of the future and at the same time revealed the entire complex of operational tasks, the solution of which will allow the construction industry to switch to buildings erection of large-sized blocks. One of such key tasks is the development of adequate organizational and technological solutions, as a decisive factor in the high efficiency of construction production. The approaches proposed in the article to determining the parameters of such organizational and technological solutions are initial and at the same time reflect the achieved level of production in this area, and they can be extended to other regions that have begun the construction of buildings of large-sized blocks.

o

CO CM

REFERENCES

co "

co iE

E o

CL° c

LT> O

S «

o E

CD ^

CO co

I ï

O (0

1. Pakhomova L.A., Oleinik P.P. Comfortable housing of the new industrial generation. Construction Production. 2020; 2:23-28. (rus.).

2. Abrahamyan S.G., Burlachenko O.V., Gal-da Z.Yu. Volumetric block modules as a kind of modular structures of prefabricated building systems. Bulletin of the Volgograd State University of Architecture and Civil Engineering. Series : Construction and Architecture. 2021; 1(82):5-13. (rus.).

3. Abramyan S.G., Ulanovskiy I.A. Modular construction and opportunities to use of modular structures in building superstructures. Engineering Journal of Don. 2018; 4. URL: http://www.ivdon.ru/ru/magazine/ archive/n4y2018/5371 (rus.).

4. Kazakov Yu.N. Prefabricated buildings: foreign experience. Stroyprofil. 2004; 4. (rus.).

5. Asaul A.N., Kazakov Yu.N., Knyaz I.P., Ero-feev P.Yu. Theory and practice of using prefabricated buildings in normal conditions and emergency situations in Russia and abroad. St. Petersburg, Humanistics, 2004; 464. (rus.).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6. Gao Y., Tian X.-L. Prefabrication policies and the performance of construction industry in China. Journal of Cleaner Production. 2020; 253:120042. DOI: 10.1016/j.jclepro.2020.120042

7. Akinradewo O., Aigbavboa C., Aghimien D., Oke A., Ogunbayo B. Modular method of construction in developing countries: the underlying challenges. International Journal of Construction Management. 2021; 1-11. DOI: 10.1080/15623599.2021.1970300

8. Pittau F., Malighetti L.E., Iannaccone G., Masera G. Prefabrication as large-scale efficient strat-

Modeling the residential buildings erection of large-sized blocks

С. 463-470

egy for the energy retrofit of the housing stock: An Italian case study. Procedia Engineering. 2017; 180:11601169. DOI: 10.1016/j.proeng.2017.04.276

9. Cao J., Zhao P., Liu G. Optimizing the production process of modular construction using an assembly line-integrated supermarket. Automation in Construction. 2022; 142:104495. DOI: 10.1016/j.aut-con.2022.104495

10. Chatzimichailidou M., Ma Y. Using BIM in the safety risk management of modular construction. Safety Science. 2022; 154:105852. DOI: 10.1016/j. ssci.2022.105852

11. Arashpour M., Kamat V., Bai Y., Wakefield R., Abbasi B. Optimization modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction. Automation in Construction. 2018; 95:1-9. DOI: 10.1016/j. autcon.2018.07.027

12. Oleynik P.P. Industrial-mobile methods of construction of enterprises, buildings and structures : monograph. Moscow, ASV Publishing House, 2021; 488. (rus.).

13. Shin J., Moon S., Cho B., Hwang B., Choi B. Extended technology acceptance model to explain the mechanism of modular construction adoption. Journal of Cleaner Production. 2022; 342:130963. DOI: 10.1016/j.jclepro.2022.130963

14. Bhandari S., Riggio M., Jahedi S., Fischer E.C., Muszynski L., Luo Z. A review of modular cross lami-

nated timber construction: Implications for temporary housing in seismic areas. Journal of Building Engineering. 2023; 63:105485. DOI: 10.1016/j.jobe.2022.105485

15. Sychev S.A. High-tech installation of prefabricated transformable buildings in the conditions of the Far North : monograph. St. Petersburg, SPbGASU, 2017; 356. (rus.).

16. Shepeleva E.A., Shepelev A.L. Organization of construction ofproduction facilities by the complete-block method. Arkhangelsk, SAFU, 2013; 139.

17. Sychev S.A. Alternative projecting technique of technologies for erecting buildings and structures from prefabricated modules. Bulletin of Civil Engineers. 2015; 5(52):119-125. (rus.).

18. Kozachun G.U. Types of residential buildings. Rostov-on-Don, Phoenix Publ., 2011; 398. (rus.).

19. Goh M., Goh Ya.M. Lean production theory-based simulation of modular construction processes. Automation in Construction. 2019; 101:227-244. DOI: 10.1016/j.autcon.2018.12.017

20. Oleynik P.P. Scientific and technical progress in construction production : monograph. Moscow, ASV Publishing House, 2019; 442. (rus.).

21. Rybakova A.O. Evaluating the efficiency of modular design based on prefabricated elements. Stroitel'stvo: nauka i obrazovanie [Construction: Science and Education]. 2022; 12(3):9. URL: http://nso-journal.ru. DOI: 10.22227/23055502.2022.3.9 (rus.).

Received December 12, 2022.

Adopted in revised form on February 7, 2023.

Approved for publication on March 9, 2023.

Bionotes: Pavel P. Oleynik — Doctor of Technical Sciences, Professor of the Department of Technology and Organization of Construction Production; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ID RSCI: 399946, Scopus: 10043771900, ResearcherlD: X-4463-2019, ORCID: 0001-8425-2974; cniomtp@mail.ru;

Liliya A. Pakhomova — senior lecturer, postgraduate student of the Department of Technology and Organization of Construction Production; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ID RSCI: 1035400, Scopus: 57205446200, ORCID: 0002-1347-3355; liliya_7172@mail.ru.

Contribution of the authors:

Pavel P. Oleynik — scientific guidance, formation of a methodology for modeling parameters, preparation of conclusions, writing a text.

Liliya A. Pakhomova — analysis of the state of the problem, research of technological processes, development of modeling stages, establishing of parameter estimates, writing a text. The authors declare no conflicts of interest.

СПИСОК ИСТОЧНИКОВ

< п

iH

k к

g Г

s 2

1. Пахомова Л.А., Олейник П.П. Комфортное жилье нового индустриального поколения // Строительное производство. 2020. № 2. С. 23-28.

2. Абрамян С.Г., Бурлаченко О.В., Галда З.Ю. Объемные блок-модули как разновидность модуль-

ных конструкций быстровозводимых строительных систем // Вестник Волгоградского государственного архитектурно-строительного университета. Серия : Строительство и архитектура. 2021. № 1 (82). С. 5-13.

0 СО

§ со

1 2

y 1

j со

u-

^ i

n ° о

3 (

о i

о §

§ 2 n g

о 6

Г œ t ( an

0 )

® 00

СО В ■ £

s У с о

1 к WW M 2

о о 10 10 U W

W (0 N N

о о

сч N

ri ri К Ol U 3 > 1Л С И

U oo

. г

« g. j

<D <U

о S —■

о

о <£

S c 8 «

™ . I

w ? со iE

E о ^ с

ю о

s H

о E c5 °

СП ^

CO co

^ 1

ü w

Ig ;

iE 3s

О (П

3. Абрамян С.Г., Улановский И.А. Модульное строительство и возможность применения модульных конструкций при надстройке зданий // Инженерный вестник Дона. 2018. № 4. URL: http://www. ivdon.ru/ru/magazine/archive/n4y2018/5371

4. Казаков Ю.Н. Быстровозводимые здания: зарубежный опыт // Стройпрофиль. 2004. № 4.

5. Асаул А.Н., Казаков Ю.Н., Князь И.П., Ерофеев П.Ю. Теория и практика использования бы-стровозводимых зданий в обычных условиях и чрезвычайных ситуациях в России и зарубежом. СПб. : Гуманистика, 2004. 464 с.

6. Gao Y., Tian X.-L. Prefabrication policies and the performance of construction industry in China // Journal of Cleaner Production. 2020. Vol. 253. P. 120042. DOI: 10.1016/j.jclepro.2020.120042

7. Akinradewo O., Aigbavboa C., Aghimien D., Oke A., Ogunbayo B. Modular method of construction in developing countries: the underlying challenges // International Journal of Construction Management. 2021. Pp. 1-11. DOI: 10.1080/15623599.2021.1970300

8. Pittau F., Malighetti L.E., Iannaccone G., Masera G. Prefabrication as large-scale efficient strategy for the energy retrofit of the housing stock: An Italian case study // Procedia Engineering. 2017. Vol. 180. Pp. 1160-1169. DOI: 10.1016/j.proeng.2017.04.276

9. Cao J., Zhao P., Liu G. Optimizing the production process of modular construction using an assembly line-integrated supermarket // Automation in Construction. 2022. Vol. 142. P. 104495. DOI: 10.1016/j.autcon.2022.104495

10. Chatzimichailidou M., Ma Y. Using BIM in the safety risk management of modular construction // Safety Science. 2022. Vol. 154. P. 105852. DOI: 10.1016/j.ssci.2022.105852

11. Arashpour M., Kamat V., Bai Y., Wakefield R., Abbasi B. Optimization modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction // Automation in Construction. 2018. Vol. 95. Pp. 1-9. DOI: 10.1016/j.autcon.2018.07.027

Поступила в редакцию 12 декабря 2022 г. Принята в доработанном виде 7 февраля 2023 г. Одобрена для публикации 9 марта 2023 г.

Об авторах: Павел Павлович Олейник — доктор технических наук, профессор кафедры технологий и организации строительного производства; Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); 129337, г. Москва, Ярославское шоссе, д. 26; РИНЦ ID: 399946, Scopus: 10043771900, ResearcherID: Х-4463-2019, ORCID: 0001-8425-2974; cniomtp@mail.ru;

Лилия Алексеевна Пахомова — старший преподаватель, аспирант кафедры технологий и организации строительного производства; Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); 129337, г. Москва, Ярославское шоссе, д. 26; РИНЦ ID: 1035400, Scopus: 57205446200, ORCID: 0002-1347-3355; liliya_7172@mail.ru.

Вклад авторов:

Олейник П.П. — научное руководство, формирование методологии моделирования параметров, подготовка выводов, написание текста.

Пахомова Л.А. — анализ состояния проблемы, исследование технологических процессов, разработка этапов моделирования, установление оценок параметров, написание текста. Авторы заявляют об отсутствии конфликта интересов.

12. Олейник П.П. Индустриально-мобильные методы возведения предприятий, зданий и сооружений : монография. М. : Изд-во АСВ, 2021. 488 с.

13. Shin J., Moon S., Cho B., Hwang B., Choi B. Extended technology acceptance model to explain the mechanism of modular construction adoption // Journal of Cleaner Production. 2022. Vol. 342. P. 130963. DOI: 10.1016/j.jclepro.2022.130963

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

14. Bhandari S., Riggio М., Jahedi S., Fischer E.C., Muszynski L., Luo Z. A review of modular cross laminated timber construction: Implications for temporary housing in seismic areas // Journal of Building Engineering. 2023. Vol. 63. P. 105485. DOI: 10.1016/j. jobe.2022.105485

15. Сычев С.А. Высокотехнологичный монтаж быстровозводимых трансформируемых зданий в условиях Крайнего Севера : монография. СПб. : СПбГАСУ, 2017. 353 с.

16. Шепелева Е.А., Шепелев А.Л. Организация строительства производственных объектов комплектно-блочным методом. Архангельск : САФУ, 2013. 139 с.

17. Сычев С.А. Методика вариантного проектирования технологий возведения зданий и сооружений из модулей заводской готовности // Вестник гражданских инженеров. 2015. № 5 (52). C. 119-125.

18. Казачун Г. У. Типы жилых зданий. Ростов н/Д : Феникс, 2011. 398 с.

19. Goh M., Goh Ya.M. Lean production theory-based simulation of modular construction processes // Automation in Construction. 2019. Vol. 101. Pp. 227244. DOI: 10.1016/j.autcon.2018.12.017

20. Олейник П.П. Научно-технический прогресс в строительном производстве : монография. М. : Изд-во АСВ, 2019. 442 с.

21. Рыбакова А.О. Оценка эффективности проектирования на основе модульных элементов максимальной готовности // Строительство: наука и образование. 2022. Т. 12. Вып. 3. Ст. 9. URL: http:// nso-journal.ru. DOI: 10.22227/2305-5502.2022.3.9

i Надоели баннеры? Вы всегда можете отключить рекламу.