Наука та прогрес транспорту. Вюник Дншропетровського нацюнального унiверситету залiзничного транспорту, 2018, № 5 (77)
UDC 004.942:316.454.54
P. S. NOSOV1*, I. V. PALAMARCHUK2*, M. S. SAFONOV3*, V. I. NOVIKOV4*.
'*Dep. «Navigation and Electronic Navigation Systems», Kherson State Maritime Academy, Ushakov Av., 20, Kherson, Ukraine, 73000, tel. +38 (050) 909 06 08, e-mail [email protected], ORCID 0000-0002-5067-9766
2*Dep. «Navigation and Electronic Navigation Systems», Kherson State Maritime Academy, Ushakov Av., 20, Kherson, Ukraine, 73000, tel. +38 (050) 909 06 08, e-mail [email protected], ORCID 0000-0001-9161-1592
3*Dep. «Computer Engineering and Software Engineering», Odessa National Polytechnic University, Kherson Polytechnic College, Nebesna Sotnia St., 23, Kherson, Ukraine, 73000, tel. +38 (066) 245 81 85, e-mail [email protected], ORCID 0000-0001-9742-8270
4*Dep. «Shipbuilding and Power Engineering», Admiral Makarov National University of Shipbuilding, Kherson Branch, Ushakov Av., 44, Kherson, Ukraine, 73022, tel. +38 (095) 365 67 08, e-mail [email protected], ORCID 0000-0002-1823-4919
MODELING THE MANIFESTATIONS OF THE HUMAN FACTOR OF THE MARITIME CREW
Purpose. The article investigates the trajectories of the watch team members in maritime transport that lead to a decrease in the level of security. A formal apparatus is proposed, as well as software and hardware to identify the location of members of the watch team during the execution of complex maneuvers. Methodology. In the course of constructing the mathematical model, the most common schemes of interaction of watch members at the time of performing complex maneuvers were considered. The general problem was considered as a series of watchkeeping interactions that solve micro-tasks of ship control at a certain moment. As a result of simulation it is determined that a key role is played by the first mate, who is the most likely to deviate from the instructions, because of excessive activity or passivity in actions. Also, interaction models of members of the watchkeeping service within the framework of a multi-day ship passage are considered. Findings. Research shows that the formation of established interactions depends on the level of experience and qualifications of the members of the watchkeeping service. Overly active relocation of the mate, as well as function duplication of individual members of the watchkeeping service adversely affects the safety level in ship management. Software and hardware tools are proposed that allow identifying the location and movements of the watch team members, indicating deviations from the watchkeeping instructions for maritime transport. Originality. The authors for the first time developed software and hardware for analyzing the movements of the watchkeeping service members, allowing identifying violations of official instructions. Practical value. Based on the developed software and hardware identification of positions and movements of the members of the watchkeeping service, it becomes possible to more effectively manage the process of training navigators during simulator practice on the basis of the navigation simulator NTPRO 5000 at the Kherson State Maritime Academy, Ukraine. These studies can also be useful in studying the discipline «Organization of the crew actions in extreme conditions».
Key words: human factor; behavioral model; teammate interaction; abnormal situations
Introduction
One of the important stages in the organization of work on maritime transport is the crew formation, taking into account behavioral characteristics at the time of taking managerial decisions. This approach is conditioned by security measures in accordance with international standards and regulations.
During the control of the vessel, both in real conditions and during practice simulations, a number of difficulties arise. They are related to the negative manifestation of the human factor [1, 2,
10, 14]. Such manifestations are directly reflected in the result of passage of locations and other maneuvers [11, 12] at the time of crew control on the captain's bridge. The situation is complicated by the fact that in addition to the factors directly affecting each specialist [3, 8, 13], factors of influence from the team members exist [16, 4]. The more complex the task and the features of the location [15], the larger is the amount of information signals that the navigator faces [9, 17]. At the time of decision-making, the number of such information signals may exceed the perception threshold, which leads to the concentration loss and, as a
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального унiверситету залiзничного транспорту, 2018, № 5 (77)
consequence, raises the subjective entropy of the navigator [4]. World practice shows that the human factor remains the most common cause of catastrophes in maritime transport in present day [5].
Purpose
Thus, the purpose of this article is to analyze the movements of crew members resulting in the safety level decrease during the maritime transport control.
The main purpose of the article is to determine the interactions of navigators leading to a decrease in the safety level during the performance of the watchkeeping service. It should be noted that for a more visual representation of the situations under study, it is necessary to build a mathematical model for the interaction of team members in terms of set theory, group theory, game theory and the theory of formal systems [6, 7].
Methodology
In the conditions of watchkeeping, especially when practicing maneuvers in relation to locations, several members of the watchkeeping duty influence the decision concerning ship control. In some cases, when it is required by the changes in the situation, the captain gives the command to immediately strengthen the watch on the bridge (Figure 1). Typically, this decision is affected by: visibility, weather and sea conditions, the intensity of navigation and other features of the navigation situation. At the same time, the number of members of the watchkeeping duty is increasing, which also contributes a factor capable of adversely affecting the decision of the navigator. To construct a formal model, consider the following scheme for the interaction of watch members. During the maneuvers, the naval officer requests the watch personnel to specify the indications of navigational instruments and other parameters necessary for steering the vessel.
Fig. 1. The layout of the watchkeeping service's posts
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2018, N° 5 (77)
In this case, local short-time interactions between the members of the watch and the deck officer (captain) occur.
We will assume that two subjects are involved in the interaction: W is the deck officer or captain and M is a member of the watch crew. In this example, the captain instructs before the start of the location passage, and immediately at the time of passage the first mate takes control (Figure 2). Thus, the participant 1 (the captain) does not participate in team interaction, but can prompt the first mate.
Each watch interaction solves the micro-task of steering the vessel at the current moment.
During the passage, the command performs a different kinds of tasks n consisting of a finite sequence of operations depending on the complexity ui,i = .
Members of the watchkeeping duty W and M are divided into interacting groups W1,...,Wq and
M,...,M£ depending on the level of qualification and experience (Figure 3).
This leads to the formation of groups WR, Ms for completing the tasks n and producing results cR , Cf.
Creating the model.
To describe the model, let us set: the set of I different groups of interaction between the watch-keeping members; the numbers NQ, Q e I of these groups; the set H = jy} of possible interaction types, where y = {(Q(l,y),. .,Q(m(y),y)), m(y) - the number
of interactions participants y, Q (i,y)e I is the group to which the participant with the number i belongs; function &(y), indicating for y e H, the
performance value of the micro-tasks, united into interaction y.
Let us denote the type of interaction corresponding to the individual member of the watch Q, who is not united with anyone using (Q) (Figure 4).
At the same time he can be a deck officer with high experience, who ignores the watchkeeping members or an unclaimed watchkeeping member due to low qualification, then
VQ eIQ e H, 3((Q) = С .
Fig. 2. Planned interaction of the navigators
In this situation the following condition will be true:
H = {( Q, Q e I
WR,Ms), R = 1,...,Q, S = 1,...,S}
when I = {W[,...,Wg,M1,...,Ms} . Proceeding from
the desire of watch members to maximize the vessel controllability, it is natural to assume that when the participants from the groups WR,Ms unite, they will give the following result:
i ^ max {uj -CR -CR) i.e. §({WR,Ms)).
Fig. 3. Interaction of the captain and the first mate
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2018, N° 5 (77)
Fig. 4. Doubling of members of the watchkeeping service
The situation when (Q) is a deck officer is fully justified in the conditions of passages with minimal risk, however, in the conditions of complex maneuvering this can lead to serious negative consequences. The case when (Q) is a member of the personnel on duty, whose skills are not trusted by the captain, is unlikely.
i a •: Щ, , чU • ШШ К "Ь о ; f^U
Based on Figure 4, the reduction in the safety level can be preceded by the duplication of the functions of the watchkeeping personnel by the watch officer. Even in situations when the maneuver was carried out successfully, the loss of experience by the personnel on duty due to inaction will subsequently lead to negative consequences.
This is justified in cases when the watch officer needs the support of a more experienced navigator, and the acting member of the watchkeeping service does not cope with the task in the allotted time. In such cases, there are unforeseen collisions in the source information for decision-making, uncoordinated actions are possible and as a consequence, the safety level decrease.
Findings
Initial conditions of the experiment: a team of five men is formed (captain, 1st-3rd mate and boatswain). Before start of the course plotting, the captain instructs on the peculiarities of the terrain and traffic congestion of sea transport (Figure 5).
Fig. 5. Vessel's transition path to locations
We describe the interaction of team members formally. Then, N0 when <9 = 1,...,<9 and Ns
when S = 1,...,S - we will take as the numbers of interaction groups of the personnel on duty with varying qualification in order if its descent.
Analyzing videomaterials on task completion by the watchkeeping members shows that the function of the micro-task performance S^ WQ, Ms ^
decreases monotonically with respect to Q and S, i.e. there is a performance increase due to the par-
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2018, № 5 (77)
ticipation of more qualified member of the watch.
In order to identify location of the members of the watchkeeping service, a computer program was developed that captures their local displacements and synchronizes with the moments of taking managerial decisions.
To determine the location of team members, a three-component system consisting of beacons, wearable sensors and a server is used. Beacons Mi, (i e (l..m)), are BLE transmitters (Bluetooth Low Energy), that use the Arduino technology in conjunction with the AT-09 BLE module. Wearable sensors Dk(к e (1..d)) use the Arduino Mega 2560 plate, heart rate sensor, temperature sensor and the ESP8266 Wi-Fi module.
Fig. 6. The scheme for determining the position of the object from distances
All beacons and sensors have their own batteries, which makes them autonomous. Dk sensors connect to all beacons Mi by turn and accept from them the packet time Tpac. Based on Tpac the distance Sik between the beacon Mi and the sensor Dk is determined with some error p. For unique determination of the location coordinates of the object with sensor, it is necessary to obtain information from at least three beacons.
Increase in the number of beacons will lead to increase in the determination accuracy of the indications. The server receives the data on distance, as well as data from temperature and heart rate sensors over the Wi-Fi network. Also in its memory are written the coordinates of all installed BLE-beacons, which allows accumulating in its database (DB) the coordinates of the object in real time (Figure 6).
Fig. 7. General scheme of the system operation
Beacons Mi can be placed at different heights, as well as the wearable sensors Dk. Given this fact, there will be an intersection of three spheres. The common part of the intersection will determine the object location with a certain sensor. Increasing the number of beacons will help avoid blind spots and increase the accuracy of the indications.
A special program is installed on the server, which registers the movements of all team members with the connected sensors. All their parameters (coordinates, heart rate and temperature) are stored every few seconds in the database. It is possible to view all movements of team members for conducting behavioral analysis.
The general scheme of the system operation is shown in Figure 7.
The software and hardware complex allows identifying not only the location of members of the watchkeeping service, but also physiological characteristics, such as heart rate and body temperature. These characteristics may indicate the level of stress and mental state of navigators (Figure 8).
Also, in the photo (9) during the experiment it is clear that the small experience of the third mate and the uncertainty in the actions attract the attention of the first mate, who subsequently makes the decision, independently replacing the third mate.
Thus, there is a situation:
VL 3(W-i> Ms )~&(Wq , Ms )ft S, i.e. maneuverability due to the involvement of a more qualified member of the watch grows faster. Thus, we assume that there are navigators W+i and M^+1 of
the lowest experience and qualification.
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального унiверситету залiзничного транспорту, 2018, № 5 (77)
¡1 >■» ■ •т^гт^ШЖ
ГЙЗ 22 05 2018
ф Copiai о Position ^ ! В)
Oi—
Position (g : S)
Puls* (brnlü/min) 87
n" Ol.»...-
Position: p ; 9)
Puls« (b::nts/min) 93
Position: p ; j)
Pulse (benls/min) 82
Position fS : I ?>
Pulse (beals/min) 73
Fig. 8. Program interface
Fig. 9. Doubling of the navigator
Q+1 5+1
2=1 5=1
s(wg,M§+1 ) = &(we+1№s ) < ovo,^
During the experiment, we define combinations Q(5) and 5(Q) of interactions between the watchkeeping members from the conditions:
Q( 5 H S Q(.s)
I Nq <2X
Q=1 Z=1 Q=1
s(QH Q 5 (Q)
I Ns <2X <I N5
5=1 Z=1 5=1
While: Q = 1,...,Q, S = 1,...,S. The most preferred interactions at the time of watchkeeping are of the most experienced members of the watchkeeping service in order of descending qualification, which confirms the existing problem. In this case, two options are possible:
l.For
deck officer 1,..., S is organized into a conversational interaction pair with the watchkeeping member 1,..., i.e. an experienced deck officer
and unexperienced watchkeeping member. According to the experiment, at a certain time, the deck officer begins to make decisions on his own (Figure 9).
2. For (?(<?), Q{S) ~ is the least experienced
deck officer with which the experienced member of the watchkeeping duty S interacts, i.e. members of the watchkeeping duty from the group S + 1 are united when S<S , similarly: .S'(6>) when
values pe,Q = l,...,Q, ps,S = \,..J
are determined from the following condition: Pn = Ps = " when
0>0(s),S>S,~Ps=&{wq(s),Ms)-Pq(s) and
Pq=^{wqMs[q))-Ps{q) When
S <S,0< . In situations when O and S are interchanged, the following is applied:
From formal expressions it follows that the most experienced navigators tend to interact with also more qualified members of the watchkeeping duty, in particular, avoiding interaction with unexperienced personnel. In normal circumstances, this does not carry a high risk. However, when performing complex maneuvers, the intensity and content of the information flow from the watch-keeping personnel increases significantly and consequently requires more participation of all members of the watch without exception.
Uncoordinated actions and violation of instructions in the interaction between members of the watchkeeping personnel greatly overloads the navigators' perception, which reduces the safety level of the vessel control. So in the course of the experiment (problem variant No. 2), an abnormal emergency occurred in such a chronology:
1. 13:11:19 - Stop the engine;
2. 13:12:57 - Emergency anchoring for breaking, full astern.
3. 13:13:13 - Touched the ground at the speed of 2.2 knots (Fig. 10).
Наука та прогрес транспорту. Вюник Дншропетровського нацюнального унiверситету залiзничного транспорту, 2018, № 5 (77)
Fig. 10. Catastrophic situation
It should be taken into account that the indicated situations and their formal models are not situational, but have a vector of development and change the structure with discrete time.
Thus, the set I = {1,...,m} I = {1,...,m} of interactions and the sets JQ of behavior strategies for each interaction Q e I are given in the model under study. So, from task to task the model is a cycle (passage) of periods t = 0, 1,2,... , in each of them interaction between members of the watchkeeping duty occurs. Moreover, each watch Q is divided in a given transition t into subgroups
(Q, j)(t), j e JQ, according to strategies in a given period, therefore, the subgroups are represented as Nf (t), and its number in the designated period
is Nq (t).
The behavior of watch members Q forms
' NQ (t) >
hazards - z (t), as well as technical parameters
whose totality is denoted by q (t). This totality can
include the numbers NL (t), time t, etc. Thus, the behavior of the watchkeeping duty in the long term will be described by the following dependence:
§ (t +1) = G ({§ (t) ,f (t) , z (т), q (t)}^)
In real conditions, the composition of the watch duty Q e I is constant, in turn, members of the watchkeeping duty change their strategies depending on the tasks, adapting to the conditions of interaction with the aim of maximizing ff (t) . During the duty, each watch member compares the strategy i and the strategy j with respect to the interaction partner, possibly subconsciously choosing the more effective one: ff (t) > ff (t) regardless of the composition of the watch.
The performance loss from the initially chosen strategy i, leads to the choice of strategy j.
This is a significant problem because individual members of the team will form stable coalition relationships of interactions, which violates the watchkeeping instructions.
In the conditions that the recruitment of the watch-keeping personnel on a vessel is of an accidental nature, we get:
* (ff (*)-fQ (*))' * (°)=о
Then:
- distribution by
NQ (t), j ■
strategy, and the cumulative behavior of watchmen in the given period is described by the set
§(t) = (^Q (t), Q eI).
The result of the interaction in the period t is characterized by the vector
f (t) = (ff (t)), Q e I, j e JQ , where ff defines
the outcome of the solution of the micro-problem for the group (Q, j). Next it is necessary to indicate the dependence of f jQ fjQ on the conditions in the form of a distribution according to strategies of behavior - ^ (t); weather conditions, visibility, intensity of navigation, proximity to navigational
Nf (t +1) =
= 1 u ( ff (t)-ff (t)) Nf (t) Nf (t)/ Nq
reJ /
The forecast of the state of carrying the watch on the passage at time t +1 will be:
§f (t + l) = £u (ff (t)-ff (t)) §Q (t), i e JQ.
r
Thus, there is a problem of inconsistency and spontaneous replacement of the watchkeeping personnel by the mate, which violates the instructions and reduces the safety level. During simulator practice is an imbalance in training useful skills among cadets during the training practice. Passive members of the watchkeeping service do not learn
Наука та прогрес транспорту. Вюник Дншропетровського нащонального ушверситету залiзничного транспорту, 2018, N° 5 (77)
the location and psychophysiological parameters of navigators was developed. Exceeding the temperature and heart rate of navigators, as well as fast moving of individual members of the watchkeeping service to the positions of other team members, testifies the violation of watchkeeping instructions. The automatic identification of these manifestations will prevent the negative manifestations of the human factor of the team, both in the course of simulator practice, and in the real situation.
Conclusions
Based on the results of the simulation, it can be concluded that, regardless of the composition and functional duties of the watchkeeping personnel, navigators with the highest qualifications tend to interact with the most experienced members of the watch, which significantly affects the safety level in maritime transport. However, the selection of the team consisting of the most qualified and experienced navigators in practice are not possible. The developed software and hardware complex will allow preventing undesirable interactions and objectively assessing the fulfillment of tasks by cadets during the simulator practice. It will also be possible to classify and form the members of the watchkeep-ing service in relation to the same qualifications, which will reduce the risk of unwanted interactions.
LIST OF REFERENCE LINKS
1. Бень, А. П. Людський фактор в автоматизованих системах управлтня судном та шляхи зниження його впливу / А. П. Бень // Наук. вюн. Херсон. держ. морс. акад. - 2012. - № 2 (7). - С. 26-30.
2. Каминский, В. Ю. Методика учёта профессионально-ценностного аспекта действий судоводителя во время тренажёрной подготовки / В. Ю. Каминский, М. Л. Маринов, Д. А. Скороходов // Морские интеллектуальные технологии. - 2018. - Т. 1, № 1 (39). - С. 209-214.
3. Косенко, Ю. I. Система щентифжацп функцюнально! ентропп суб'екта критично! шфраструктури / Ю. I. Косенко, С. В. Рослякова, П. С. Носов // Современные направления теоретических и прикладных исследований : сб. науч. тр. по матер. Междунар. науч.-практ. интернет-конф. (19-30 марта 2013 г.). -Одеса, 2013. - Т. 8 : Технические науки. - С. 50-54.
4. A new hybrid approach to human error probability quantification-applications in maritime operations / Y. T. Xi, Z. L. Yang, Q. G. Fang, W. J. Chen, J. Wang // Ocean Engineering. - 2017. - Vol. 138. - P. 45-54. doi: 10.1016/j.oceaneng.2017.04.018
5. Arslan, O. Effects of Fatigue on Navigation Officers and SWOT Analyze for Reducing Fatigue Related Human Errors on Board / O. Arslan, I. D. Er // TransNav, the Intern. Journal on Marine Navigation and Safety of Sea Transportation. - 2007. - Vol. 1, №. 3. - Р. 345-349.
6. Berg, H. P. Human Factors and Safety Culture in Maritime Safety (revised) / H. P. Berg // TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. - 2013. - Vol. 7. - Iss. 3. -Р. 343-352. doi: 10.12716/1001.07.03.04
7. Can We Learn from Aviation: Safety Enhancements in Transport by Achieving Human Orientated Resilient Shipping Environment / O. Turan, R. E. Kurt, V. Arslan [et al.] // Transportation Research Procedia. - 2016. -Vol. 14. - P. 1669-1678. doi: 10.1016/j.trpro.2016.05.132
the necessary practical skills, but active ones do this in overabundance.
The situation is complicated by the fact that for the laying and passage of a new route the composition of the watch team is formed randomly and there is a possibility of recruiting cadets who do not have the necessary skills, which will lead to the task failure.
When maneuvers are carried out in real conditions, the security threat increases significantly and can lead to catastrophic consequences.
In order to clarify the facts of the negative manifestation of the human factor, it is recommended to use the means of diagnosing the psycho-emotional state of navigators in the form of Smart Watch. Synchronization of data from Smart Watch is displayed in the program interface (Fig. 8.). Complex use of software and hardware will allow the most accurate localization of individual human factor manifestations in maritime transport.
Originality and practical value
The authors for the first time developed software and hardware for analyzing the movements of members of the watchkeeping service, allowing identifying violations of safety regulations. As a result, a hardware-software complex for identifying
Наука та прогрес транспорту. Вюник Дншропетровського нащонального ушверситету залiзничного транспорту, 2018, N° 5 (77)
8. Dixena, D. Application of Case-Based Reasoning for Ship turning Emergency to prevent Collision / D. Dixena, B. Chakraborty, N. Debnath // 9th IEEE Intern.l Conference on Industrial Informatics (26-29 July 2011). - Lisbon, 2011. doi: 10.1109/indin.2011.6034956
9. Flow networks: A characterization of geophysical fluid transport / Enrico Ser-Giacomi, Vincent Rossi, Cristóbal López, Emilio Hernández-García // Chaos: An Interdisciplinary Journal of Nonlinear Science. - 2015. -Vol. 25. - Iss. 3. doi: 10.1063/1.4908231
10. Jech, T. Set theory / T. Jech. - Berlin ; Heidelberg : Springer, 1997. - 243 р. doi: 10.1007/3-540-44761-X
11. Lazarowska, A. Safe ship control method with the use of ant colony optimization / A. Lazarowska // Solid State Phenomena. - 2014. - Vol. 210. - P. 234-244. doi: 10.4028/www.scientific.net/SSP.210.234
12. Magnus, W. Combinatorial group theory: presentation of groups in terms of generators and relations / W. Magnus, A. Karrass, D. Solitar. - New York : Dover Publications. - 1976. - 464 p.
13. Osekowska, E. Potential Fields in Modeling Transport over Water / E. Osekowska, S. Axelsson, B. Carlsson // Transport of Water versus Transport over Water. - Cham : Springer, 2015. - P. 259-280. doi: 10.1007/978-3-319-16133-4_14
14. Özdemir, Ü. Strategic approach model for investigating the cause of maritime accidents / Ü. Özdemir, A. Güneroglu // PROMET-Traffic&Transportation. - 2015. - Vol. 27. - Iss. 2. - P. 113-123. doi: 10.7307/ptt.v27i2.1461
15. The Psychological General Well-Being Index (PGWBI) for assessing stress of seafarers on board merchant ships / A. Carotenuto, M. F. Angiola, M. Ivana, F. Sibilio, A. Saturnino, E. Traini, F. Amenta // International Maritime Health. - 2013. - Vol. 64. - Iss. 4. - P. 215-220. doi: 10.5603/IMH.2013.0007
16. Understanding the outcome in the chinese changjiang disaster in 2015: a retrospective study / C. Yang, J. Gao, J. Du, H. Y. Wang, J. X. Jiang, Z. G. Wang // The Journal of Emergency Medicine. - 2017. - Vol. 52. - Iss. 2. - P. 197-204. doi: 10.1016/j.jemermed.2016.08.013
17. Zhang, L. Analyzing Human Error in Maritime Transportation in China Based on Game Theory / L. Zhang, J. Lu, Y. Ai // Journal of Wuhan University of Technology (Transportation Science & Engineering). - 2014. -Vol. 6. - P. 1282-1290. doi: 10.3963/j.issn.2095-3844.2014.06.022
П. С. НОСОВ1*, I. В. ПАЛАМАРЧУК2*, М. С. САФОНОВ3*, В. I. НОВИКОВ4*
'*Каф. «Судноводшня та електронн навггацшт системи», Херсонська державна морська академш, просп. Ушакова, 20,
Херсон, Украша, 73000, тел. +38 (050) 909 06 08, ел. пошта [email protected], ORCID 0000-0002-5067-9766
2*Каф. «Судноводшня та електронш навЬацшт системи», Херсонська державна морська академ1я, просп. Ушакова, 20,
Херсон, Украша, 73000, тел. +38 (050) 909 06 08, ел. пошта [email protected], ORCID 0000-0001-9161-1592
3*Каф. «Комп'ютерна шженер1я та шженерш програмного забезпечення», Одеський нащональний полггехшчний унгвер-
ситет, Херсонський полггехшчний коледж, вул. Небесно! сотш, 23, Херсон, Украша, 73000,
тел. +38 (066) 245 81 85, ел. пошта [email protected], ORCID 0000-0001-9742-8270
4*Каф. «Суднове машинобудування й енергетика», Нащональний ушверситет кораблебудування 1меш адм1рала Макарова, Херсонська фЫя, просп. Ушакова, 44, Херсон, Украша, 73022, тел. +38 (095) 365 67 08, ел. пошта [email protected], ORCID 0000-0002-1823-4919
МОДЕЛЮВАННЯ ПРОЯВ1В ЛЮДСЬКОГО ФАКТОРА У КОМАНДИ МОРСЬКОГО ТРАНСПОРТНОГО ЗАСОБУ
Мета. У статп передбачасться дослвдити траекторп перемщення члешв вахтово! команди на морському транспорт^ що призводять до зниження рiвня безпеки. Метою дослщження е розробка формального апара-ту, а також програмно-апаратних засобiв щентифжацй розташування члешв вахтово! команди шд час вико-нання складних маневрiв. Методика. У ходi побудови математично! моделi були розглянуп найбшьш по-ширеш схеми взаемодп члешв вахти в момент виконання складних маневрiв. Загальна задача була розгляну-та як серiя вахтових взаемодш для виршення мжрозадач управлшня судном на певний момент. У результата iмiтацiйного моделювання визначено, що ключову роль виконуе перший помiчник капiтана, який з найбшь-шою ймовiрнiстю схильний вщхилитися вiд iнструкцiй через надмiрну актившсть або пасивнiсть у дiях. Також розглянуп моделi взаемодй' членiв вахтово! служби в рамках багатоденного переходу судна. Результати. Дослщження свiдчить, що утворення сталих взаемодiй залежить вщ рiвня досвiду й квалiфiка-цп членiв вахтово! служби. Надмiрно активне перемiщення помiчника капiтана, а також дублювання функ-цiй окремих члешв вахтово! служби негативно впливае на рiвень безпеки пiд час управлшня судном. Запро-
Наука та прогрес транспорту. Вюник Дншропетровського нащонального ушверситету залiзничного транспорту, 2018, № 5 (77)
поновано програмно-апаратнi засоби, що дозволяють iдентифiкувати розташування й перемщення членiв вахтово! команди, як1 призводять до ввдхилень вiд iнструкцiй несения вахти на морському транспортi. Наукова новизна. Уперше були розробленi програмно-апаратш засоби для аналiзу перемiщень члешв вахтово! служби, що дозволяють вдентифжувати порушення посадових iнструкцiй. Практична значимкть. На основi розроблених програмно-апаратних засобiв iдентифiкацi! розташування й перемщення члешв вахтово! команди з'являеться можливють бiльш ефективно оцiнювати дп курсанпв-судноводпв пiд час прохо-дження практики на базi навiгацiйного тренажера NTPRO 5000 у Херсонськ1й державнш морськiй академi!, Укра!на. Цi дослщження також можуть бути корисними тд час вивчення дисциплiни «Оргашзащя дш еш-пажу в екстремальних умовах».
Ключовi слова: людський фактор; модель поведшки; взаeмодiя членiв команди; позаштатш ситуацi!
П. С. НОСОВ1*, И. В. ПАЛАМАРЧУК2*, М. С. САФОНОВ3*, В. И. НОВИКОВ4*
'*Каф. «Судовождение и электронные навигационные системы», Херсонская государственная морская академия, просп. Ушакова, 20, Херсон, Украина, 73000, тел. +38 (050) 909 06 08, эл. почта [email protected], ОЯСГО 0000-0002-5067-9766
2*Каф. «Судовождение и электронные навигационные системы», Херсонская государственная морская академия, просп. Ушакова, 20, Херсон, Украина, 73000, тел. +38 (050) 909 06 08, эл. почта [email protected], ОЯСГО 0000-0001-9161-1592
3*Каф. «Компьютерная инженерия и инженерия программного обеспечения», Одесский национальный политехнический университет, Херсонский политехнический колледж, ул. Небесной сотни, 23, Херсон, Украина, 73000, тел. +38 (066) 245 81 85, эл. почта [email protected], ОЯСГО 0000-0001-9742-8270
4*Каф. «Судовое машиностроение и энергетика», Национальный университет кораблестроения имени адмирала Макарова, Херсонский филиал, просп. Ушакова, 44, Херсон, Украина, 73022, тел. +38 (095) 365 67 08, эл. почта [email protected], ОЯСГО 0000-0002-1823-4919
МОДЕЛИРОВАНИЕ ПРОЯВЛЕНИЙ ЧЕЛОВЕЧЕСКОГО ФАКТОРА У КОМАНДЫ МОРСКОГО ТРАНСПОРТНОГО СРЕДСТВА
Цель. В статье предполагается исследовать траектории перемещения членов вахтенной команды на морском транспорте, приводящие к снижению уровня безопасности. Целью исследования является разработка формального аппарата, а также программно-аппаратных средств идентификации расположения членов вахтенной команды во время выполнения сложных маневров. Методика. В ходе построения математической модели были рассмотрены наиболее распространенные схемы взаимодействия членов вахты в момент выполнения сложных маневров. Общая задача была рассмотрена как серия вахтенных взаимодействий для решения микрозадач управления судном на определенный момент. В результате имитационного моделирования определено, что ключевую роль выполняет первый помощник капитана, который с наибольшей вероятностью подвержен отклониться от инструкций ввиду чрезмерной активности или пассивности в действиях. Также рассмотрены модели взаимодействия членов вахтенной службы в рамках многодневного перехода судна. Результаты. Исследование свидетельствует, что образование устоявшихся взаимодействий зависит от уровня опыта и квалификации членов вахтенной службы. Чрезмерно активное перемещение помощника капитана, а также дублирование функций отдельных членов вахтенной службы негативно влияет на уровень безопасности при управлении судном. Предложены программно-аппаратные средства, позволяющие идентифицировать расположение и перемещение членов вахтенной команды, указывающие на отклонения от инструкций несения вахты на морском транспорте. Научная новизна. Впервые разработаны программно-аппаратные средства для анализа перемещений членов вахтенной службы, позволяющие идентифицировать нарушения должностных инструкций. Практическая значимость. На основе разработанных программно-аппаратных средств идентификации расположения и перемещения членов вахтенной команды появляется возможность более эффективно оценивать действия курсантов-судоводителей при прохождении практики на базе навигационного тренажера МТРЯО 5000 в Херсонской государственной морской академии, Украина. Данные исследования также могут быть полезными при изучении дисциплины «Организация действий экипажа в экстремальных условиях».
Ключевые слова: человеческий фактор; модель поведения; взаимодействие членов команды; внештатные ситуации
Наука та прогрес транспорту. Вюник Дншропетровського нащонального ушверситету залiзничного транспорту, 2018, № 5 (77)
REFERENCES
1. Ben, A. P. (2012). Liudskyi faktor v avtomatyzovanykh systemakh upravlinnia sudnom ta shliakhy znyzhennia yoho vplyvu. The Scientific Bulletin of Kherson State Maritime Academy, 2(7), 26-30. (in Ukranian)
2. Kaminsky, V. Y. (2018). The treatment of professional-value aspect of action navigators during simulator training. Marine Intellectual Ttechnologies, 1(39), 209-214. (in Russian)
3. Kosenko, Y. I., Rosliakova, S. V., & Nosov, P. S. (2013). Systema identyfikatsii funktsionalnoi entropii sub'iekta krytychnoi infrastruktury. Sovremennye napravleniya teoreticheskikh i prikladnykh issledovaniy: Sbornik nauchnykh trudov po materialam Mezhdunarodnoy nauchno-prakticheskoy Internet-konferentsii (19— 30 marta 2013 g.). (pp. 50-54). Odessa. (in Ukranian)
4. Xi, Y. T., Yang, Z. L., Fang, Q. G., Chen, W. J., & Wang, J. (2017). A new hybrid approach to human error probability quantification-applications in maritime operations. Ocean Engineering, 138, 45-54. doi: 10.1016/j.oceaneng.2017.04.018 (in English)
5. Arslan, O. (2007). Effects of Fatigue on Navigation Officers and SWOT Analyze for Reducing Fatigue Related Human Errors on Board. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 1(3). 345-349. (in English)
6. Berg, H. P. (2013). Human Factors and Safety Culture in Maritime Safety (revised). TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 7(3), 343-352. doi: 10.12716/1001.07.03.04 (in English)
7. Turan, O., Kurt, R. E., Arslan, V., Silvagni, S., Ducci, M., Liston, P., ... Papadakis, G. (2016). Can We Learn from Aviation: Safety Enhancements in Transport by Achieving Human Orientated Resilient Shipping Environment. Transportation Research Procedía, 14, 1669-1678. doi: 10.1016/j.trpro.2016.05.132 (in English)
8. Dixena, D., Chakraborty, B., & Debnath, N. (2011). Application of Case-based reasoning for ship turning emergency to prevent collision. 2011 9th IEEE International Conference on Industrial Informatics. Lisbon. doi: 10.1109/indin.2011.6034956 (in English)
9. Ser-Giacomi, E., Rossi, V., López, C., & Hernández-García, E. (2015). Flow networks: A characterization of geophysical fluid transport. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3). doi: 10.1063/1.4908231 (in English)
10. Jech, T. (2003). Set Theory. Berlin; Heidelberg: Springer. doi: 10.1007/3-540-44761-X (in English)
11. Lazarowska, A. (2013). Safe Ship Control Method with the Use of Ant Colony Optimization. Solid State Phenomena, 210, 234-244. doi: 10.4028/www.scientific.net/SSP.210.234 (in English)
12. Magnus, W., Karrass, A., & Solitar, D. (1976). Combinatorial group theory: presentation of groups in terms of generators and relations. New York: Dover Publications. (in English)
13. Osekowska, E., Axelsson, S., & Carlsson, B. (2015). Potential Fields in Modeling Transport over Water. Transport of Water Versus Transport over Water (pp. 259-280). Cham: Springer. doi: 10.1007/978-3-319-16133-4_14 (in English)
14. Özdemir, Ü., & Güneroglu, A. (2015). Strategic Approach Model for Investigating the Cause of Maritime Accidents. PROMET-Traffic&Transportation, 27(2), 113-123. doi: 10.7307/ptt.v27i2.1461 (in English)
15. Carotenuto, A., Fasanaro, A. M., Molino, I., Sibilio, F., Saturnino, A., Traini, E., & Amenta, F. (2013). The Psychological General Well-Being Index (PGWBI) for assessing stress of seafarers on board merchant ships. International Maritime Health, 64(4), 215-220. doi: 10.5603/imh.2013.0007 (in English)
16. Yang, C., Gao, J., Du, J., Wang, H., Jiang, J., & Wang, Z. (2017). Understanding the Outcome in the Chinese Changjiang Disaster in 2015: A Retrospective Study. The Journal of Emergency Medicine, 52(2), 197-204. doi: 10.1016/j.jemermed.2016.08.013 (in English)
17. Zhang, L., Lu, J., & Ai, Y. (2014). Analyzing Human Error in Maritime Transportation in China Based on Game Theory. Journal of Wuhan University of Technology (Transportation Science & Engineering), 6, 12821290. doi: 10.3963/j.issn.2095-3844.2014.06.022 (in English)
Received: March 29, 2016 Accepted: July 29, 2016