Научная статья на тему 'MODELING FUNCTIONAL WHEY DRINKS WITH HIGH ANTIOXIDANT ACTIVITY USING POTENTIOMETRIC SENSOR SYSTEMS'

MODELING FUNCTIONAL WHEY DRINKS WITH HIGH ANTIOXIDANT ACTIVITY USING POTENTIOMETRIC SENSOR SYSTEMS Текст научной статьи по специальности «Медицинские технологии»

CC BY
25
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ANTIOXIDANT ACTIVITY / WHEY DRINKS / WHEY / MEDICINAL AND TECHNICAL RAW MATERIALS / POTENTIOMETRIC SENSOR SYSTEM / АRCTIC RAW MATERIALS

Аннотация научной статьи по медицинским технологиям, автор научной работы — Tarasov Aleksey V., Zavorokhina Natalia V.

The functional products development of mass consumption is an important state task and an element of legislative support for state policy in the field of functional and specialized food production in the Russian Federation. The study aim is to prototype whey drinks with a given antioxidant activity developed using potentiometric sensor systems. The authors used a preference field with specified criteria, such as antioxidant activity, organoleptic parameters and cost, and scored each criterion from 5.0 to 1.0. The manuscript presents the expert evaluation results of aqueous infusions of pharmacopoeial medicinal and technical raw materials according to the specified criteria, the samples formulation of whey drinks with high antioxidant activity, its physico-chemical parameters and the organoleptic evaluation results. The applicability coefficient for prototyping whey drinks based on sugar and sucralose was 4.83 at preset 4.5 value. A man formed descriptors panel; determined its intensity; constructed the flavor profile of the developed whey drinks with high antioxidant activity; studied the antioxidant activity dynamics during storage using the developed sensor potentiometric system Pt/AK relative to O/Ag/AK. Based on the study results in accordance with TR CU 033/2013, the researchers identified regulated indicators and storage modes: temperature (4 ± 2) °C, humidity - no more than 75 %, shelf life - no more than 30 days; after opening the package - temperature of (4 ± 2) °C - no more than 1 day. A man developed gentle technology to preserve valuable biologically active substances by introducing liquid nitrogen into PET containers. The antioxidant activity of the developed whey drinks was 85.1 % of the antioxidant activity of 90 mg of ascorbic acid ((9.98 ± 0.3) mmol-eq/dm3).

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MODELING FUNCTIONAL WHEY DRINKS WITH HIGH ANTIOXIDANT ACTIVITY USING POTENTIOMETRIC SENSOR SYSTEMS»

УДК 637.146

DOI 10.29141/2500-1922-2023-8-2-3 EDN CUWBOA

Modeling Functional Whey Drinks with High Antioxidant Activity Using Potentiometric Sensor Systems

Aleksey V. Tarasov1 Natalia V. Zavorokhina1

1Ural State University of Economics, Ekaterinburg, Russian Federation H tarasov_a.v@bk.ru

Abstract

The functional products development of mass consumption is an important state task and an element of legislative support for state policy in the field of functional and specialized food production in the Russian Federation. The study aim is to prototype whey drinks with a given antioxidant activity developed using potentiometric sensor systems. The authors used a preference field with specified criteria, such as antioxidant activity, organoleptic parameters and cost, and scored each criterion from 5.0 to 1.0. The manuscript presents the expert evaluation results of aqueous infusions of pharmacopoeial medicinal and technical raw materials according to the specified criteria, the samples formulation of whey drinks with high antioxidant activity, its physico-chemical parameters and the organoleptic evaluation results. The applicability coefficient for prototyping whey drinks based on sugar and sucralose was 4.83 at preset 4.5 value. A man formed descriptors panel; determined its intensity; constructed the flavor profile of the developed whey drinks with high antioxidant activity; studied the antioxidant activity dynamics during storage using the developed sensor potentiometric system Pt/AK relative to O/Ag/AK. Based on the study results in accordance with TR CU 033/2013, the researchers identified regulated indicators and storage modes: temperature (4 ± 2) °C, humidity - no more than 75 %, shelf life - no more than 30 days; after opening the package - temperature of (4 ± 2) °C - no more than 1 day. A man developed gentle technology to preserve valuable biologically active substances by introducing liquid nitrogen into PET containers. The antioxidant activity of the developed whey drinks was 85.1 % of the antioxidant activity of 90 mg of ascorbic acid ((9.98 ± 0.3) mmol-eq/dm3).

For citation: Aleksey V. Tarasov, Natalia V. Zavorokhina. Modeling Functional Whey Drinks with High Antioxidant Activity Using Potentiometric Sensor Systems. Индустрия питания|Food Industry 2023. Vol. 8, No. 2. Pp. 21-30. DOI: 10.29141/2500-1922-2023-8-2-3. EDN: CUWBOA.

Paper submitted: April 17, 2023

Keywords:

antioxidant activity; whey drinks; whey;

medicinal and technical raw materials; potentiometric sensor system;

arctic raw materials

Моделирование функциональных сывороточных напитков высокой антиоксидантной активности с использованием потенциометрических сенсорных систем

А.В. Тарасов1 Н.В. Заворохина1

1Уральский государственный экономический университет, г. Екатеринбург, Российская Федерация

Реферат

Разработка функциональных продуктов массового употребления является важной государственной задачей и элементом законодательного обеспечения государственной политики в области производства функциональных и специализированных пищевых продуктов питания в Российской Федерации. Цель исследования - моделирование сывороточных напитков с заданной антиоксидантной активностью, разработанных с применением потенциометрических сенсорных систем. Авторами использовано поле предпочтений с заданными критериями, такими как антиокси-дантная активность, органолептические показатели и стоимость, причем каждому критерию задавали оценку от 5,0 до 1,0. Приведены результаты экспертной оценки водных настоев фармакопейного лекарственно-технического сырья по заданным критериям, рецептуры образцов сывороточных напитков высокой антиоксидантной активности, их физико-химические показатели и результаты органолептической оценки. Коэффициент применимости при моделировании сывороточных напитков на сахаре и сукралозе составил 4,83 при заданных 4,5. Сформирована панель дескрипторов, установлена их интенсивность, построен вкусоароматический профиль разработанных сывороточных напитков высокой антиоксидантной активности; изучена динамика антиоксидантной активности в процессе хранения с использованием разработанной сенсорной потенциометрической системы Pt/АК относительно О/Ag/ АК. На основании результатов исследований в соответствии с ТР ТС 033/2013 установлены регламентируемые показатели и режимы хранения: температура (4 ± 2) °С, влажность не более 75 %, срок годности - не более 30 сут; после вскрытия упаковки при температуре (4 ± 2) °С - не более 1 сут. Разработана щадящая технология, позволяющая сохранить ценные биологически активные вещества за счет внесения жидкого азота в ПЭТ-тару. Антиоксидантная активность разработанных сывороточных напитков составила 85,1 % от антиоксидантной активности 90 мг аскорбиновой кислоты ((9,98 ± 0,3) ммоль-экв/дм3).

Для цитирования: Aleksey V. Tarasov, Natalia V. Zavorokhina. Modeling Functional Whey Drinks with High Antioxidant Activity Using Potentiometrie Sensor Systems //Индустрия питания|Food Industry 2023. Т. 8, № 2. С. 21-30. DOI: 10.29141/2500-1922-2023-8-2-3. EDN: CUWBOA.

Дата поступления статьи: 17 апреля 2023 г.

Н tarasov_a.v@bk.ru

Ключевые слова:

антиоксидантная активность; сывороточные напитки;

молочная сыворотка; лекарственно-техническое сырье; потенциометрическая сенсорная система

Introduction

Modern trends in the non-alcoholic industry field are increasingly focused on health, and healthy nutrition. At the same time, drinks are the most convenient objects for enrichment, since a person consumes at least 1.5-2 liters of liquid per day. It is easier to turn a functional drink to a product of mass consumption than other food products, which use is limited by human saturation [1; 2].

Whey is the waste remaining in the cottage cheese (curd whey) or cheese (cheese whey) production. Traditionally, in the non-alcoholic industry, a man uses curd whey for the beverages production, as it has a more harmonious flavor [3]. According to the beneficial properties, a whey: • has a very low-calorie content (up to 30 kcal per 100 g) and can be used in dietary nutrition;

• contains about 1 g of protein, represented by albumin, lactalbumin and beta-lactalbuminomi and 93-95% water;

• includes a significant amount of trace elements, such as minor components per 100 g of serum: retinol acetate - 2 mcg, thiamine - 42 mcg, riboflavin - 140 mcg, pantothenic acid - 380 mcg, pyrido-xine - 42 mcg, cyanobalamin - 180 mcg, ascorbic acid - 100 mcg, as well as potassium, calcium, phosphorus, iron, selenium, zinc;

• contains essential and interchangeable amino acids, PUFA and MNFA and is able to regulate the human gastrointestinal tract microflora [2].

Today, a man takes a whey at its worth and uses it in the food industry (an extensive assortment of drinks "Majitel"), cosmetology and beauty industry; and utilizes as a basis for the antioxidant-acting whey drinks development.

The aim of the research was to prototype whey drinks with a given antioxidant activity developed by using potentiometric sensor systems.

Research Objects and Methods

The study object was raw materials used for the model drinks preparation, model drinks, potentio-metric sensor systems.

When developing whey drinks, a man used curd whey obtained in the production conditions of the USUE Food Technology Department. The curd whey had the following characteristics: soluble solids content - 7.1 %, density - 1022 kg/m3. The ingredients were drinking water according to the GOST R 5123298, pharmacopoeia preparations purchased in a retail pharmacy chain - linden flowers (FS.2.5.0024.15), great nettle (FS.2.5.0019.15), turmeric according to the GOST ISO 5562-2017, black currant according to the GOST 6829-2015 and black currant juice according to the GOST 32102-2013, fresh cranberries according to the GOST 33309-2015 and cranberry juice according to GOST 32102-2013, rosehip fruits (FS.1.5.1.0007.15), sugar according to the GOST 33222-2015, sucralose according to the GOST 53904-2010 (manufacturer SPIRULINAFOOD, RF).

The researchers developed the whey drinks in reliance on the GOST ISO 11037-2013; descriptive terms on the basis of the GOST ISO 5492-2014. They run the organoleptic analysis in the laboratory of

the Center "Degustator" (Yekaterinburg). The touch panel consisted of seven people. All tasters had passed test for sensory capabilities in accordance with the GOST ISO 3972-2014, GOST ISO 5496-2014. They constructed sensory profiles in accordance with the GOST ISO 13299-2015 and the methodology for constructing flavor profiles. The sensory laboratory for organoleptic analysis corresponded to the GOST ISO 8589-2014.

When determining the whey drinks composition, a man followed the MP 2.3.1.0253-21 "Physiological Energy and Nutritional Needs Norms for Various Population Groups of the Russian Federation" (approved by the The Federal Service for the Oversight of Consumer Protection and Welfare on July 22, 2021). Sampling was according to the GOST 339572016.

When developing whey drinks, along with antioxidant activity (AOA), the variable parameters were vitamin C content and acidity determined by the ti-trimetric method according to the GOST 24556 and the GOST R 54669, respectively. The authors determined curcumin content in the pharmacopoeia extract of turmeric by spectrophotometric method according to the GOST 34146, organoleptic parameters - according to the GOST 33957-2016, GOST R ISO 22935-2-2011.

A man used potentiometric method to assess modified thick-film argentic electrode stability, measure pH and determine AOA. The basis of the AOA potentiometric determination is the chemical reaction (4) between the oxidized form of the mediator system K3[Fe(CN)6]/K4[Fe(CN)6] and antioxidants of the analyzed sample.

Potentiometric sensor systems with modified electrodes manufactured were according to [4] in order to control antioxidant activity in the modeling process and functional orientation of beverages.

Results and Its Discussion

The developed sensor systems [5] are useful not only in controlling functional properties (antioxi-dant activity, the content of P-active polyphenols and vitamin C), but also in the development of food products with specified functional properties, including functional beverages with high antioxidant activity.

Table 1. Preference Field while Modeling Whey Drinks with the Specified Criteria Таблица 1. Поле предпочтений при моделировании сывороточных напитков с задаваемыми критериями

Criterion Preference Field, Score

Antioxidant Activity 5 4 3 2 1

Organoleptic Characteristics 5 4 3 2 1

Cost, per dm3 5 4 3 2 1

Applicability Coefficient 4.5

Through the development, a man considered the criteria and assigned the required points to it (Table 1).

A man evaluated the criteria on a 5-point scale given in Table 2. Antioxidant activity was in accordance with the average AOA of freshly squeezed juices. The drink cost was in accordance with the consumers preferences (287 people aged 18-45 years; women - 54%, men - 46%; using a questionnaire in Google Forms).

The authors considered organoleptically comparable [7] infusions with a 1:10 hydromodule of pharmacopoeial medicinal and technical raw materials (great nettle, rosehip, linden flowers, black currant leaves, oregano) prepared in accordance with the manufacturer's recommendation on the package by the hot-water digestion with temperature 90-95 °C [8; 9]; freshly squeezed berry juices (black currant, fresh cranberries) rich in vitamin C, turmeric extract. Granulated sugar (in the dietary version, the sweetener sucralose) and the flavor "Raspberry", containing lactones in its composition and well combined with the fermented milk modality of the drink were the ingredients forming the flavor. In medicinal and technical raw materials infusions,

a man evaluated and calculated the average value of such indicators as antioxidant activity (AOA), functional orientation, taste indifference, organoleptic comparability, stability, accessibility by an expert method on a 5-point scale. Table 3 shows the criteria assessment of the antioxidant raw materials used.

Table 4 demonstrates the model samples formulations of beverages using drugs extracts with the highest antioxidant activity.

As turmeric extract has a sharp flavor, its introduced amount was due to trigeminal esthesia during organoleptic assessment. The blackcurrant and cranberry juices are highly acidic, and blackcurrant also has an astringent effect. Thus, a man varied juices content focusing on organoleptic indicators. The sucralose choice in sugar replacement accounts for the fact that this sweetener is as close as possible to sucrose in the sweetness profile [10], has a high action level and a sweetness coefficient of 600.

To assess the AOA, a man used disposable sensor potentiometric system Pt/AC relative to O/Ag/ AK [11-13]. The developed potentiometric sensor system use reduces the analysis complexity significantly.

Table 2. Point Scale of the Criteria Evaluation of the Preference Field Таблица 2. Балльная шкала оценки критериев поля предпочтений

Criterion Score

5 Excellent 4 Good 3 Satisfactory 2 Unsatisfactory 1 Unacceptable

Antioxidant activity, mmol-eq/dm3 1O-9 8-7 6-4 Less than 4

Organoleptic indicators, score not less than 4.5 4.O 3.5 3.O 2.O

Cost, per dm3, no more than 8O 81-9O 91-1OO 1O1- 12O

Subject AOA Functional Orientation Taste Indifference Comparability Stability Accessibility Total, average

Great Nettle 4 3 5 5 5 5 4.5

Linden 4 5 5 5 5 4 4.?

Black Currant (Leaf) 4 4 3 4 4 5 4.0

Oregano 4 5 4 4 4 4 4.2

Turmeric 4 4 5 5 4 5 4.5

Fresh Cranberry 5 3 5 5 4 5 4.5

Black currant 5 3 2 2 3 4 3.2

Rosa Majalis 5 4 5 5 5 5 4.8

Table 3. Aqueous Extracts Assessment of the Medicinal and Technical Raw Materials According

to the Specified Criteria, Score Таблица 3. Оценка водных экстрактов ЛТС по заданным критериям, балл

Table 4. Samples Formulations of Whey Drinks with High Antioxidant Activity, per dm3 of the Drink Таблица 4. Рецептуры образцов сывороточных напитков с высокой антиоксидантной активностью

Ingredient Sample, cm3 for 1 dm3 of the Drink

1 2 3 4 5

Milk Whey 600.0 45M 45M

Granulated Sugar* 7M SM 85.Q 67.Q 7M

Black Currant Juice 5M 5M 65.Q 43.Q 5M

Linden Flowers Infusion 5M 8М ЮМ ЮМ 12M

Great Nettle Extract 5M 5M 8М ЮМ ЮМ

Flavor "Raspberry" 1.5 2.Q 1.5 1.5 1.3

Cranberry Juice 1M 30.0 2М 4M 4M

Rosehip Infusion 5Q.Q 6Q.Q 5Q.Q 8M 8M

Turmeric Extract 1Л

Water up to 1 dm3

Note. *Sucralose equivalent amount replacement enabled.

Table 5. Physico-Chemical Parameters of the Developed Whey Drink with Defined AOA (n = 4) Таблица 5. Физико-химические показатели образцов разработанных сывороточных напитков с заданной

антиоксидантной активностью (n = 4)

Drink AOA, mmol-eq/dm3 Mass Fraction of Soluble Solids, % Acidity, 1 cm3 of 1M NaOH Solution / 100 cm3 of the Drink

1 6.22 ± a18 8.5 ± Q.1 2.27 ± an

2 8.12 ± an 9.2 ± a2 3.Q2 ± О

3 9.d ± a21 9.8 ± M 3.21 ± a12

4 8.82 ± M3 7.2 ± M 3.18 ± a11

5 9.12 ± Q.15 7.5 ± Q.2 3.41 ± Q.14

Table 5 presents the physico-chemical parameters of the developed drinks.

Table 6 demonstrates the organoleptic assessment results.

According to the analysis of the results obtained, sample No. 3 has optimal organoleptic characteristics and antioxidant activity. This drink has a harmonious flavor, sugar-acid index is 2.64. The nutritional value of the drink is the following: carbohydrates -8.56 g, protein - 0.5 g, fats - 0.04; energy value -39.3 kcal. The cost of 1 dm3 is: 83.75 rubles for drink on sugar, 73.7 rubles for drink on sucralose.

Further, a man evaluated the preference field in accordance with the specified criteria, calculated the applicability coefficient (Table 7).

The applicability coefficient was 4.83 points, corresponding to the specified criteria for antioxidant activity, organoleptic characteristics and cost. Using the descriptor profile method of tasting analysis, a man formed the descriptors panel of the developed drinks (Table 8), determined the descriptors intensity and formulated flavor profile for the purpose of identifying the developed drinks (Figure 1).

Table 6. Organoleptic Assessment of the Study Samples, Score Таблица 6. Органолептическая оценка образцов исследования, балл

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Samples Appearance Flavor Aroma Consistency Total, average

1 5.Q ± a2 4.Q ± a1 4.Q ± a2 5.Q ± a2 4.5 ± a2

2 5.Q ± a2 4.2 ± a2 4.Q ± a1 4.Q ± a2 4.25 ± a1

3 4.Q ± a2 5.Q ± M 4.2 ± a1 5.Q ± M 4.7 ± a1

4 4.Q ± a1 4.2 ± a1 4.9 ± a1 5.Q ± M 4.5 ± a2

5 4.Q ± Q.2 4.Q ± Q.2 4.9 ± Q.1 4.Q ± Q.1 4.25 ± Q.1

Table 7. Preference Field ofthe Developed Whey Drink with High AOA on Sugar Таблица 7. Поле предпочтений разработанного сывороточного напитка с высокой АОА на сахаре

Criterion Preference Field, Score

Antioxidant Activity 5 4 3 2 1

Organoleptic Characteristics 5 4 3 2 1

Cost, per dm3 5 4 3 2 1

Applicability Coefficient 4.83

Table 8. Descriptors Panel of Developed Drinks with High AOA Таблица 8. Панель дескрипторов разработанных напитков с высокой АОА

Descriptor Intensity, Score Descriptor Intensity, Score

Red Color 5.0 Herbs Complex Aroma 1.3

Brown Color 1.2 Aroma Harmony 4.7

Transparency 1.1 Sweet Flavor 3.0

Density 1.2 Sour Flavor 3.2

Aroma Intensity 3.4 Astringent Flavor 1.0

Black Currant Aroma 4.0 Aftertaste Duration 3.1

Raspberry Aroma 4.2 Flavor Harmony 4.7

Red Color

Flavor Harmony 5^, Brown Color

Aftertaste Duration

Astringent Flavor Sour Flavor

Sweet Flavor

Aroma Harmony

Transparency

Density

on Sugar — on Sucralose

Aroma Intensity

Black Currant Aroma

Raspberry Aroma

Herbs Complex Aroma

Figure 1. Taste and Aroma Profile ofthe Developed Whey Drinks with High AOA Рис. 1. Вкусоароматический профиль разработанных сывороточных напитков с высокой АОА

To establish the expiration dates and regulated indicators, a man packaged the drink in a PET container with a capacity of 250 cm3 at a temperature of (4 ± 2) °C and a total humidity of no more than 75 % for 36 days (the warranty period is 30 days +15 % of the margin). To assess the antioxidant activity, the most important criterion of functional orientation, a man used the developed sensor potentiometric system Pt/AC relative to O/Ag/AK; took measurements every 3 days. Figure 2 demonstrates the antioxidant activity dynamics during storage.

For 36 days in the developed whey drink with defined AOA, prepared both on sugar and using the sucralose sweetener, the microbiological parameters of the drinks did not exceed the regulatory values and met the requirements of TR CU 033/2013 (Annex 8, paragraph 1.3) throughout the entire shelf life. Based on the results of studies in accordance with TR CU 033/2013, a man established the following storage modes: temperature (4 ± 2) °C, humidity no more than 75 %, shelf life no more than 30 days, after opening the package - temperature

9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5

15

21

30

36

Days

Whey Drink with Defined AOA on Sucralose

Whey Drink with Defined AOA on Sugar

Figure 2. Antioxidant Activity Dynamics during Storage of Whey Drinks with High AOA, mmol-eq/dm3 Рис. 2. Динамика АОА в процессе хранения разработанных сывороточных напитков, ммоль-экв/дм3

of (4 ± 2) ° C no more than 1 day. Table 9 shows the regulated indicators of the developed whey drink with high AOA on sugar.

The production technology of the developed whey drinks with high AOA consists of the following stages.

1. Dilution and pasteurization of milk curd whey. A man acquires milk curd whey in accordance with the requirements of GOST 33957-2016;dilutes the serum according to the recipe, pasteurizes in a plate pasteurizer at a temperature of 74-78 °C for 15-20 seconds and cools to 20-25 °C with automatic temperature control instantly.

2. Water conditioning. A man conditions water with softening on ion exchange filters to an alkalinity of no more than 1.0-unit, hardness - no more than 0.05 mg-eq/dm3, with deodorizing and de-

flavoring on an activated carbon filter and subsequent filtration on mechanical filters with a pore size of no more than 5 microns and further disinfection of water using an installation with an ultraviolet lamp.

3. Sugar syrup procedure. A man puts granulated sugar and prepared hot water with a temperature of 85-90 °C into the syrup boiler, mixes the until completely dissolved, filters it, pasteurizes at a temperature of 85 °C, cools.

4. Ingredients Arranging. A man pre-dissolves concentrated juices, herbal infusions, curcumin extract in prepared water in a ratio of 1:1, filters.

5. Blend procedure. A man pumps pasteurized whey, sugar syrup, concentrated juices, infusions and extracts into a clean prepared blending tank, stirs with an anchor stirrer for 20 minutes and

Table 9. Regulated Quality Indicators ofthe Developed Whey Drink Таблица 9. Регламентируемые показатели качества разработанного сывороточного напитка

Indicator Value

Appearance Cloudy liquid of dark red color without impurity and dreg

Aroma Medium intensity, with a sour-milk, raspberries and black currants tones, harmonious

Flavor and Aftertaste Rich, sweet and sour, harmonious with tones of raspberries, black currants, herbs and a sour-milk in the aftertaste of medium duration

Content of Soluble Solids, % - on Sugar - on Sucralose 9.8 ± 0.2 1.3 ± 0.2

Acidity, cm3 of 1M NaOH Solution per 100 cm3 of the Titrated Drink 3.2 ± 0.3

Antioxidant Activity, AOA, mmol-eq/dm3, not Less Than 8.5

Mass Fraction of Ascorbic Acid, mg per 100 cm3, not Less Than 45.0

Microbiological Indicators Comply with the Requirements of TR CU 033/2013 (Annex 8, paragraph 1.3)

serves for bottling; measures the dry matter content, acidity, antioxidant activity using a potentio-metric sensor system; sends the drink for bottling if the indicators meet the regulatory document requirements.

6. Filling, capping, labeling and cooling. A man cans the resulting beverage samples with liquid nitrogen into an airtight container (bottles made of polymer materials) with a volume of 250 ml with shrink wrap; caps with polyethylene covers; labels and stores at a temperature of (4 ± 2) °C and relative humidity of (70 ± 2) % in the refrigerator for 30 days.

When making a drink using sucralose, a man weighs it accurate to ± 2 g; dissolves in prepared water in a ratio of 1:5; filters and introduces directly to the blending tank.

The developed technology is gentle, as a man introduces all the ingredients containing BAS (blackcurrant and cranberry juices, medical raw materials infusions, curcumin) after pasteurization, so they are not subjected to heat treatment, which has a detrimental effect on the vitamin content. Canning with liquid nitrogen provides an inert anaerobic environment above the drink surface.

Conclusion

The antioxidant activity of the developed high AOA whey drinks was 85.1% of the antioxidant activity of 90 mg ascorbic acid (9.98 ± 0.3) mmol-eq/ dm3). For the developed drinks the researchers elaborated TU 10.51.55-001-02069214-23 "Whey Drinks "Vita Antioxidant" - for the drink on sugar, TU 10.51.55-001-02069214-22 "Whey Drinks "Vita Plus" - for the drink on sucralose, Technological Instructions for the Production of Whey Drinks "Vita Antioxidant" TI 10.51.55-001-0206921423, Technological Instructions for the Production of Whey Drinks "Vita Plus" TI 10.51.55-00202069214.

Thus, the combination use of technological approaches such as the applicability coefficient calculation, the antioxidant ingredients selection according to specified criteria, the descriptor-profile method of tasting analysis use, the use of the developed potentiometric sensor system for determining AOA, enabled to simulate a whey drink with a given AOA. Its antioxidant activity was comparable to freshly squeezed juices. The use of the developed potentiometric method for assessing antioxidant activity reduced the time spent on sample processing and laboratory studies significantly.

Bibliography

1. Khramtsov, A.G.; Zhilina, M.A.; Nesterenko, P.G. i dr. Napitki Novo-go Pokoleniya iz Molochnoj Syvorotki [New Generation Drinks from Whey]. Molochnaya Promyshlennost'. 2006. No. 6. Pp. 87. EDN: KVJIVZ. (in Russ.)

2. Khramtsov, A.G.; Vasilisin, S.V.;Ryabceva, S.A. i dr. Original'nye Napitki iz MolochnojSyvorotki [Original Drinks from Whey]. Molochnaya Promyshlennost'. 2006. No. 6. Pp. 88-89. EDN: KVJIWJ. (in Russ.)

3. Lisicyn, V.A.; Ponomarenko, O.V. Funkcional'nye Produkty Pitaniya na Osnove Molochnoj Syvorotki, Perspektivy Pererabotki Molochnoj Syvorotki [Functional Foods Based on Whey, Whey Processing Prospects]. Pishchevye Innovacii i Biotekhnologii: Sb. Tezisov X Mezhdu-nar. Nauch. Konf. Studentov, Aspirantov i Molodyh Uchenyh (Kemerovo, 17 Maya 2022 g.). Kemerovo: KemGU, 2022. Vol. 1. Pp. 268-270. EDN: XONBPZ. (in Russ.)

4. Brainina, Kh.Z.; Tarasov, A.V.; Vidrevich, M.B., et al. Platinum Electrode Regeneration and Quality Control Method for Chronopoten-tiometric and Chronoamperometric Determination of Antioxidant Activity of Biological Fluids. Journal of Electroanalytical Chemistry. 2018. Vol. 808. Pp. 14-20. DOI: https://doi.org/10.1016/jjelech-em.2017.11.065. EDN: XNIXAM.

5. Tarasov, A.V.;Chugunova, O.V.;Stozhko, N.YU. Potenciometrich-eskaya Sensornaya Sistema na Osnove Modificirovannyh Tolstople-nochnyh Elektrodov dlya Opredeleniya Antioksidantnoj Aktivnosti

Библиографический список

1. Храмцов А.Г., Жилина М.А., Нестеренко П.Г. и др. Напитки нового поколения из молочной сыворотки // Молочная промышленность. 2006. № 6. С. 87. EDN: KVJIVZ.

2. Храмцов А.Г., Василисин С.В., Рябцева С.А. и др. Оригинальные напитки из молочной сыворотки // Молочная промышленность. 2006. № 6. С. 88-89. EDN: KVJIWJ.

3. Лисицын В.А., Пономаренко О.В. Функциональные продукты питания на основе молочной сыворотки, перспективы переработки молочной сыворотки // Пищевые инновации и биотехнологии: сб. тезисов X Междунар. науч. конф. студентов, аспирантов и молодых ученых (Кемерово, 17 мая 2022 г.). Кемерово: КемГУ, 2022. Т. 1. С. 268-270. EDN: XONBPZ.

4. Brainina, Kh.Z.; Tarasov, A.V.; Vidrevich, M.B., et al. Platinum Electrode Regeneration and Quality Control Method for Chronopoten-tiometric and Chronoamperometric Determination of Antioxidant Activity of Biological Fluids. Journal of Electroanalytical Chemistry. 2018. Vol. 808. Pp. 14-20. DOI: https://doi.org/10.1016/jjelech-em.2017.11.065. EDN: XNIXAM.

5. Тарасов А.В., Чугунова О.В., Стожко Н.Ю. Потенциометрическая сенсорная система на основе модифицированных толстопленочных электродов для определения антиоксидантной активности напитков // Индустрия питания|Food Industry. 2020. Т. 5, № 3. С. 85-96. DOI: https://doi.org/10.29141/2500-1922-2020-5-3-10. EDN: ABLSOE.

Napitkov [Potentiometric Sensor System Based on Modified Thick-Film Electrodes for the Antioxidant Activity Determination of Beverages]. Industriya Pitaniya|Food Industry. 2020. Vol. 5. No. 3. Pp. 85-96. DOI: https://doi.org/10.29141/2500-1922-2020-5-3-10. EDN: ABLSOE. (in Russ.)

6. Tarasov, A.V.; Buharinova, M.A.;Hamzina, E.I. Opredelenie An-tioksidantnoj Aktivnosti Vodnyh Ekstraktov Nekotoryh Rastenij Ural'skogo Regiona [Aqueous Extracts Antioxidant Activity Determination of Some Plants from the Ural Region]. Industriya Pitani-ya|Food Industry. 2018. Vol. 3. No. 2. Pp. 31-38. DOI: https://doi. org/10.29141/2500-1922-2018-3-2-5. EDN: XSVNHN. (in Russ.)

7. Zavorokhina, N.V.; Solovjeva, M.P. Sovremennye Podhody k Mode-lirovaniyu Receptur i Tekhnologii Nacional'nyh Russkih Napitkov [Modern Approaches to the Recipes and Technologies Modeling of the National Russian Drinks]. Industriya Pitaniya|Food Industry. 2017. No. 2. Pp. 25-37. EDN: ZMWCJT. (in Russ.)

8. Zavorokhina, N.V.;Bogomazova, Yu.I.; Tarasov, A.V. Primenenie Obobshchennoj Funkcii Zhelatel'nosti Harringtona dlya Mode-lirovaniya Sostava Napitkov Geroprotektornoj Napravlennosti [Application of the Generalized Harrington Desirability Function for the Composition Modeling of Geroprotective Drinks]. Pishchevaya Promyshlennost'. 2018. No. 8. Pp. 70-74. EDN: XVAKBN. (in Russ.)

9. Zavorokhina, N.V.; Mysakov, D.S.; Bochkova, A.G. Development of Adaptogenic Beverages from Arctic Raw Materials for the Far North Residents. Industriya Pitaniya|Food Industry. 2022. Vol. 7. Iss. 3. Pp. 41-49. DOI: https://doi.org/10.29141/2500-1922-2022-7-3-5. EDN: XMOQDP.

10. Gilina, A.A.; Zavorokhina, N.V.; Arisov, A.V. Poluchenie i Primenenie Mikrokapsul Sukralozy v Molochnoj Promyshlennosti [Production and Application of Sucralose Microcapsules in the Dairy Industry]. Molochnaya Promyshlennost'. 2022. No. 10. Pp. 58-60. DOI: https:// doi.org/10.31515/1019-8946-2022-10-58-60. EDN: FRSSVL. (in Russ.)

11. Apak, R.; Ozyurek, M.; Guglu, K., et al. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry. 2016. Vol. 64. Iss. 5. Pp. 997-1027. DOI: https://doi.org/10.1021/acs.jafc.5b04739. EDN: WUXYIH.

12. Apak, R.; Ozyurek, M.; Guglu, K., et al. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. Journal of Agricultural and Food Chemistry. 2016. Vol. 64. Iss. 5. Pp. 1028-1045. DOI: https://doi.org/10.1021/acs.jafc.5b04743. EDN: WUMEPV.

13. Haque, M.A.;Morozova, K.;Ferrentino, G., et al. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: a Review. Electroanalysis 2021. Vol. 33. Iss. 6. Pp. 1419-1435. DOI: https://doi.org/10.1002/elan.202060600. EDN: MMEPZN.

6. Тарасов А.В., Бухаринова М.А., Хамзина Е.И. Определение ан-тиоксидантной активности водных экстрактов некоторых растений Уральского региона // Индустрия питания|Food Industry. 2018. Т. 3, № 2. С. 31-38. DOI: https://doi.org/10.29141/2500-1922-2018-3-2-5. EDN: XSVNHN.

7. Заворохина Н.В., Соловьева М.П. Современные подходы к моделированию рецептур и технологии национальных русских напитков // Индустрия питания|Food Industry. 2017. № 2. С. 25-37. EDN: ZMWCJT.

8. Заворохина Н.В., Богомазова Ю.И., Тарасов А.В. Применение обобщенной функции желательности Харрингтона для моделирования состава напитков геропротекторной направленности // Пищевая промышленность. 2018. № 8. С. 70-74. EDN: XVAKBN.

9. Zavorokhina, N.V.; Mysakov, D.S.; Bochkova, A.G. Development of Adaptogenic Beverages from Arctic Raw Materials for the Far North Residents. Industriya Pitaniya|Food Industry. 2022. Vol. 7. Iss. 3. Pp. 41-49. DOI: https://doi.org/10.29141/2500-1922-2022-7-3-5. EDN: XMOQDP.

10. Гилина А.А., Заворохина Н.В., Арисов А.В. Получение и применение микрокапсул сукралозы в молочной промышленности // Молочная промышленность. 2022. № 10. С. 58-60. DOI: https:// doi.org/10.31515/1019-8946-2022-10-58-60. EDN: FRSSVL.

11. Apak, R.; Özyürek, M.; Güglü, K., et al. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry. 2016. Vol. 64. Iss. 5. Pp. 997-1027. DOI: https://doi.org/10.1021/acs.jafc.5b04739. EDN: WUXYIH.

12. Apak, R.; Özyürek, M.; Güglü, K., et al. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. Journal of Agricultural and Food Chemistry. 2016. Vol. 64. Iss. 5. Pp. 1028-1045. DOI: https://doi.org/10.1021/acs.jafc.5b04743. EDN: WUMEPV.

13. Haque, M.A.; Morozova, K.; Ferrentino, G., et al. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: a Review. Electroanalysis 2021. Vol. 33. Iss. 6. Pp. 1419-1435. DOI: https://doi.org/10.1002/elan.202060600. EDN: MMEPZN.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Information about Authors / Информация об авторах

Junior Researcher of the Research and Innovation Center for Sensor Technologies Ural State University of Economics

620144, Russian Federation, Ekaterinburg, 8 Marta St./Narodnoy Voli St., 62/45

Младший научный сотрудник научно-инновационного центра сенсорных технологий Уральский государственный экономический университет

620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0001-7642-6532

Tarasov,

Aleksey Valerjevich

Тарасов

Алексей Валерьевич

Тел./Phone: +7 (343) 283-10-69 E-mail: tarasov_a.v@bk.ru

Zavorokhina, Natalia Valerjevna

Заворохина Наталия Валерьевна

Твл./Phone: +7 (343) 283-12-72 E-mail: zavornv@usue.ru

Доктор технических наук, доцент, профессор кафедры технологии питания Уральский государственный экономический университет

620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0001-5458-8565

Doctor of Technical Sciences, Associate Professor, Professor of the Food Technologies Department

Ural State University of Economics

620144, Russian Federation, Ekaterinburg, 8 Marta St./Narodnoy Voli St., 62/45

Contribution of the Authors:

Тарасов А.В. - подготовка начального варианта текста. Заворохина Н.В. - научное руководство, формирование выводов.

Вклад авторов:

Tarasov, Aleksey V. - preparing the initial version of the text. Zavorokhina, Natalia V. - scientific guidance, drawing conclusions.

The authors declare no conflicts of interests.

Авторы заявляют об отсутствии конфликта интересов.

i Надоели баннеры? Вы всегда можете отключить рекламу.