Научная статья на тему 'Модель цифровой трансформации трудовых ресурсов производственного предприятия, учитывающая эффект запаздывания внутренних инвестиций'

Модель цифровой трансформации трудовых ресурсов производственного предприятия, учитывающая эффект запаздывания внутренних инвестиций Текст научной статьи по специальности «Экономика и бизнес»

CC BY
17
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
цифровая экономика / цифровизация / цифровая трансформация / цифровые технологии / предприятие / ресурсы / факторы производства / производственная функция / прибыль / производственные издержки / инновации / digital economy / digitalization / digital transformation / digital technologies / enterprise / resources / factors of production / production function / profit / production costs / innovation / digital economy / digitalization / digital transformation / digital technologies / enterprise / resources / factors of production / production function / profit / production costs / innovation

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Елена Алексеевна Ильина, Леонид Александрович Сараев

В публикуемой статье представлены варианты математических моделей производственных предприятий, в структуру трудовых ресурсов которых внедряются элементы искусственного интеллекта и робототехники. Эти модели динамики развития предприятий описываются системами дифференциальных уравнений относительно производственных факторов и учитывают эффект запаздывания вложения в производство внутренних инвестиций. Для разработки моделей предприятий используется динамическая двухфакторная производственная функция, в структуру которой включены логистическая функция цифровой трансформации трудовых ресурсов, начальная производственная функция, описывающая производственные процессы до внедрения цифровых технологий, и предельная производственная функция, описывающая производственные процессы после полной цифровой трансформации трудовых ресурсов. Вычислены предельные значения факторов производства, соответствующие равновесным состояниям работы предприятия и являющиеся стационарными решениями систем уравнений модели. Показано, что модели выпуска продукции предприятием, соответствующие отсутствию цифровой трансформации и полной цифровизации производства, представляют собой нижнюю и верхнюю границы всевозможных вариантов вытеснения человеческих трудовых ресурсов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по экономике и бизнесу , автор научной работы — Елена Алексеевна Ильина, Леонид Александрович Сараев

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Model of digital transformation of manufacturing labor resources enterprises, taking into account the lag effect of domestic investment

The published article presents variants of mathematical models of a manufacturing enterprise, in the structure of whose labor resources elements of artificial intelligence and robotics are introduced. They can be used to forecast and optimize production, taking into account the introduction of modern technologies and transformation of work processes. Models of dynamic development of an enterprise are presented in the form of systems of differential equations regarding production factors that take into account the lag effect of domestic investment. This model uses a dynamic two-factor production function of the enterprise, which is the basis for analysis. The structure of this function includes a logistics function of digitalization, reflecting the level of digital transformation of the enterprise, a production function corresponding to production processes before the introduction of digital technologies, a production function corresponding to production processes after full digitalization. The limiting values of production factors are calculated, corresponding to the equilibrium states of the enterprise and being stationary solutions to the systems of equations of the model. It is shown that models of production by an enterprise corresponding to the absence of digital transformation and complete digitalization of production represent the lower and upper boundaries of all possible options for replacing human labor resources.

Текст научной работы на тему «Модель цифровой трансформации трудовых ресурсов производственного предприятия, учитывающая эффект запаздывания внутренних инвестиций»

DOI: 10.18287/2542-0461-2023-14-4-174-185 ЮУ

НА УЧНАЯ СТАТЬЯ

УДК 330.42

Дата поступления: 30.07.2023 рецензирования: 06.09.2023 принятия: 30.11.2023

Модель цифровой трансформации трудовых ресурсов производственного предприятия, учитывающая эффект запаздывания внутренних

инвестиций

Е.А. Ильина

Самарский национальный исследовательский университет имени академика С.П. Королева,

г. Самара, Российская Федерация E-mail: [email protected]. ORCID: http://orcid.org/0000-0002-2590-6138

Л.А. Сараев

Самарский национальный исследовательский университет имени академика С.П. Королева,

г. Самара, Российская Федерация E-mail: [email protected]. ORCID: http://orcid.org/0000-0003-3625-5921

Аннотация: В публикуемой статье представлены варианты математических моделей производственных предприятий, в структуру трудовых ресурсов которых внедряются элементы искусственного интеллекта и робототехники. Эти модели динамики развития предприятий описываются системами дифференциальных уравнений относительно производственных факторов и учитывают эффект запаздывания вложения в производство внутренних инвестиций. Для разработки моделей предприятий используется динамическая двухфакторная производственная функция, в структуру которой включены логистическая функция цифровой трансформации трудовых ресурсов, начальная производственная функция, описывающая производственные процессы до внедрения цифровых технологий, и предельная производственная функция, описывающая производственные процессы после полной цифровой трансформации трудовых ресурсов. Вычислены предельные значения факторов производства, соответствующие равновесным состояниям работы предприятия и являющиеся стационарными решениями систем уравнений модели. Показано, что модели выпуска продукции предприятием, соответствующие отсутствию цифровой трансформации и полной цифровизации производства, представляют собой нижнюю и верхнюю границы всевозможных вариантов вытеснения человеческих трудовых ресурсов.

Ключевые слова: цифровая экономика; цифровизация; цифровая трансформация; цифровые технологии; предприятие; ресурсы; факторы производства; производственная функция; прибыль; производственные издержки; инновации.

Цитирование. Ильина Е.А., Сараев Л.А. Модель цифровой трансформации трудовых ресурсов производственного предприятия, учитывающая эффект запаздывания внутренних инвестиций // Вестник Самарского университета. Экономика и управление Vestnik of Samara University. Economies and Management. 2023. Т. 14, № 4. С. 174-185. DOI: http://doi.org/10.18287/2542-0461-2023-14-4-174-185. Информация о конфликте интересов: авторы заявляют об отсутствии конфликта интересов.

© Ильина Е.А., Сараев Л.А., 2023

Елена Алексеевна Ильина - кандидат физико-математических наук, доцент кафедры математики и бизнес- информатики, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.

Леонид Александрович Сараев - доктор физико-математических наук, профессор кафедры математики и бизнес-информатики, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.

SCIENTIFIC ARTICLE

Submitted: 30.07.2023 Revised: 06.09.2023 Accepted: 30.11.2023

Model of digital transformation of manufacturing labor resources enterprises, taking into account the lag effect of domestic investment

E.A. Ilyina

Samara National Research University, Samara, Russian Federation E-mail: [email protected]. ORCID: http://orcid.org/0000-0002-2590-6138

L.A. Saraev

Samara National Research University, Samara, Russian Federation E-mail: [email protected]. ORCID: http://orcid.org/0000-0003-3625-5921

Annotation: The published article presents variants of mathematical models of a manufacturing enterprise, in the structure of whose labor resources elements of artificial intelligence and robotics are introduced. They can be used to forecast and optimize production, taking into account the introduction of modern technologies and transformation of work processes. Models of dynamic development of an enterprise are presented in the form of systems of differential equations regarding production factors that take into account the lag effect of domestic investment. This model uses a dynamic two-factor production function of the enterprise, which is the basis for analysis. The structure of this function includes a logistics function of digitalization, reflecting the level of digital transformation of the enterprise, a production function corresponding to production processes before the introduction of digital technologies, a production function corresponding to production processes after full digitalization. The limiting values of production factors are calculated, corresponding to the equilibrium states of the enterprise and being stationary solutions to the systems of equations of the model. It is shown that models of production by an enterprise corresponding to the absence of digital transformation and complete digitalization of production represent the lower and upper boundaries of all possible options for replacing human labor resources.

Citation. Ilyina E.I., Saraev L.A. Model of digital transformation of manufacturing labor resources enterprises, taking into account the lag effect of domestic investment. Vestnik Samarskogo universiteta. Ekonomika i upravlenie Vestnik of Samara University. Economics and Management, 2023, vol. 14, no. 4, pp. 174-185. DOI: http://doi.org/10.18287/2542-0461-2023-14-4-174-185. (In Russ.) Information on the conflict of interest: authors declare no conflict of interest.

© Ilyina E.A., Saraev L.A., 2023

Elena A. Ilyina - Candidate of Physical and Mathematical Sciences, associate professor of the Department of Mathematics and Business Informatics, Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

Leonid A. Saraev - Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematics and Business Informatics, Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russian Federation.

Введение

Цифровая трансформация производственных предприятий существенно влияет на их экономические показатели. Она включает широкое применение новых информационных технологий в структуре предприятия. Снижение стоимости таких технологий, развитие компьютерной техники и доступность быстрой передачи данных способствуют активному внедрению цифровизации на предприятиях. Одним из важных аспектов цифровой трансформации предприятия является операционная цифровизация, которая включает внедрение цифровых инструментов для повышения эффективности работы предприятия в рамках его бизнес-модели.

Ход исследования

Комплексный процесс операционной цифровизации включает постепенную замену человеческого труда цифровыми технологиями, искусственным интеллектом и робототехникой. Эти преобразования способствуют увеличению выпуска готовой продукции, повышению ее качества,

сокращению затрат на материалы, амортизации промышленного оборудования и т. д. При этом сохраняется рост показателей национальной экономики и развитие производства [1; 2].

Модели развития предприятий учитывают значимость технических инноваций и информационных технологий в экономическом росте. Построение таких моделей основано на анализе баланса запаздывающих инвестиций, вложенных в производство, и выводимых ресурсов из него. Математические инструменты, такие как системы дифференциальных уравнений, используются для моделирования экономического развития предприятий.

Неуклонное увеличение показателей национальной экономики обеспечивается экономическим ростом и развитием производственных предприятий. Теоретические положения теории роста экономических систем за счет технических инноваций и информационных технологий представлены в работах [3-7].

Динамика развития предприятий определяется соотношением балансов вкладываемых в производство объемов запаздывающих инвестиций и выводимых в результате амортизации объемов ресурсов. Поэтому основным инструментом моделирования является математический аппарат теории систем дифференциальных уравнений [8-13].

Исследования и моделирование показывают, что вложение инвестиций и эффективное использование ресурсов являются ключевыми факторами для развития предприятий и стимулирования роста национальной экономики. Это позволяет оптимизировать процессы производства, повысить эффективность и конкурентоспособность предприятий, а также создать благоприятную среду для инноваций и развития.

1. Трансформационные производственные функции

Пусть выручка производственного предприятия обеспечивается определенными объемами ресурсов в виде капитала К, трудовых ресурсов Ь, технологий искусственного интеллекта и робототехники Я .

Выпуск продукции предприятием сопровождается цифровой трансформацией бизнес-процессов и модернизацией производства, основная цель которой заключается в максимально возможном вытеснении ручного труда.

Очевидно, что в самом начале процесса трансформации предприятия объем производимой предприятием продукции можно описать двухфакторной производственной функцией Кобба-Дугласа

V = Рь ■ ка ■ ЬЬ. (1)

После завершения процесса трансформации предприятия объем выручки предприятия будет определятся двухфакторной производственной функцией

Ук = Рк ■ Ка ■ Яс. (2)

Здесь параметры а, Ь, с - эластичности выпуска продукции по соответствующим ресурсам К, Ь, Я, коэффициенты Рь, Ря - выручки, соответствующие единичным объемам ресурсов.

Поскольку замена ручного труда полностью автоматизированным трудом приводит к значительному увеличению выпуска продукции предприятием, то целесообразно считать, что (Ь < с)

и (Рь < Ря ).

Процесс вытеснения человеческих ресурсов Ь ресурсами цифровых технологий робототехники Я определяется безразмерной функцией инновационного потенциала Н = Н (t),

(0 < Н < 1) . Ее значения близкие к нулю соответствуют началу процесса трансформации предприятия, а ее значения близкие к единице соответствуют концу этого процесса.

Динамическая производственная функция рассматриваемого предприятия имеет вид

(*) = Рь ■ К(t)а ■ Ь(t)Ь .(1 -Н(t)) + Ря ■ К(t)а ■ Я(t)с ■ Н^). (3)

Процесс трансформации трудовых ресурсов предприятия происходит на некотором интервале времени с центром в точке tC и радиусом с.

Если руководство предприятия, задавая рамки этого интервала, внедряет трансформацию трудовых ресурсов пропорционально, то функция Н = Н ) будет иметь вид

H ( t ) = и ( г ) =

0,

t < tC — а,

t — tC + а ^ ^

-C-,tC — а<t <tC + а,

2 •а

1, t > tC +а.

(4)

H (t )

1,0

0,5

U (t ) \fW (t )

J —1

0 6 12 Рисунок 1 - Графики функций инновационных потенциалов U (t ) ,W ( t ), построенные по формулам (4) и (6). Расчетные значения: tC = 6, а = 1. Сплошная линия соответствует формуле (4), штриховая линия соответствует формуле (6)

Figure 1 - Graphs of functions of innovation potentials U ( t ), W ( t ), built according to formulas (4) and (6). Estimated values: tC = 6, а = 1. The solid line corresponds to formula (4), the dashed line corresponds to formula (6)

В соответствии с формулой (4) процесс преобразований начинается точно в момент времени t = tC — а и заканчивается окончательно в момент времени t = tC + а . Однако, практика показывает, что на предприятии до момента времени t = tC — а всегда присутствуют элементы цифровой трансформации, а после момента времени t = tC + а остаются некоторые не трансформируемые фрагменты производства.

В этом случае безразмерную функцию инновационного потенциала H = W (t) целесообразно описывать логистическим дифференциальным уравнением

^=а w (- Ht—W (, )).

(5)

dt с

Поскольку момент времени ^ соответствует середине процесса трансформации, решением дифференциального уравнения (5) с начальным условием ^ () = 2 будет функция

W (t ) =

exp I 2 •t—— а

exp | 2 • —| +1

(6)

t

0

На рисунке 1 представлены графики функций инновационных потенциалов и (7) (7), построенные по формулам (4) и (6)

2. Модели динамики роста объемов ресурсов и выручки производственного предприятия

Рассмотрим несколько вариантов развития производственного предприятия.

Пусть цифровой трансформации трудовых ресурсов не происходит. Составим уравнения баланса для объемов факторов производства К и Ь.

Приращения величин К и Ь за некоторый малый промежуток времени а* можно представить в виде суммы двух слагаемых

AK (t ) = AKA (t ) + AK (t), AL (t ) = ALA (t )+AL (t).

(7)

Здесь AKA , ALA - доля приращении ресурсов K и L за счет амортизации, AK1 , AL1 - доля приращений ресурсов K и L за счет их восстановления внутренними инвестициями.

Амортизация ресурсов предполагается пропорциональной, поэтому величины AKA , ALA можно представить в виде

AKa (t) = -AK • K(t) • At, ALa (t ) = —AL • L (t )• At,

(8)

Здесь Ак , Аь - коэффициенты амортизации, доли выбывших за единицу времени объемов факторов производства К и Ь.

-1 А т1

Для запаздывающих внутренних инвестиций величины AK , AL можно записать в виде

AK1 (t ) = SK (t )-At, AL1 (t ) = SL (t) -At.

(9)

Здесь

Sk (t )= J Rk (t ,t)- Ik T dt,

—ад

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Sl (t )= J Rl (t ,t)- Il (t)-dT.

(10)

- объемы инвестиций, вложенные в предприятие к моменту времени t, ЯК (t,г),ЯЬ (t,г) -функции распределения постепенного и непрерывного ввода инвестиций за весь период работы предприятия, 1К (г), 1Ь (г) - инвестиции, сделанные в момент времени Т .

Для стационарного процесса ввода инвестиций формулы (10) принимают вид

Sk (t )= J RK (t — t)-IK (t)-dt = J IK (t — t)-RK (t)-dt,

—ад 0

t ад

Sl (t )= J Rl (t — T)-Il (t)-dt = JIL (t — t)-Rl (t) • dT.

ад

Функции распределения ввода инвестиций Як (г),Яь (г) удовлетворяют условиям нормировки

ад ад

| Як (г)-с1г = \ Яь (г)-с1г = 1,

0 0

в соответствии с которым, при перераспределении во времени потоков капиталовложений и трудовых ресурсов запаздывающих внутренних инвестиций суммы вложенных инвестиций за весь период остаются инвариантными.

Поскольку эффект от вводимых внутренних инвестиций будет тем меньше, чем ранее они были вложены, то функции распределения ввода инвестиций Як (г),Яь (г) являются монотонно убывающими.

Для экспоненциальных распределений ввода внутренних инвестиций

[X (г) = Лк ■ ехР(-*к -г), [яь (г) = Яь ■ ехр(-ЯЬ -г).

соотношения (11) принимают вид

SK (t) = ¿к • jIK (t - r) • exP(-ЯK ■r) • dr,

0

SL (t) = \ jIL (t -r) exp(-Al •*)• dr.

(12)

Здесь Як ,ЯЬ - параметры распределения, описывающие степени влияния ранее сделанных внутренних инвестиций на капиталовложения и трудовые ресурсы текущего момента. Следует отметить, что чем больше значения величин Ак ,ЯЬ, тем меньше эти влияния и наоборот.

Интегральные уравнения (12) могут быть представлены в виде дифференциальных уравнений. Для этого их следует продифференцировать по времени t, воспользоваться формулой интегрирования по частям и учесть очевидные равенства

д1к (/-г) д1к (/-г) п . ч л

—^-=--^-,11тЯк (г) = 0,

дt дг

&ь (t-г)= &ь (t-г),.

dt

dr

-,limRl (r) = 0.

Уравнения (12) принимают вид

dSK

dt

dSL dt

= ЯК • IK -Як • SK--

= ¿L • IL - ¿L • SL .

или

dS

dt dS

K = Я • B •V - Я • S

ЛК UK L ЛК K '■

dt

L = Я • B •V - Я • S

L UL L L L '

ж

0

Здесь ВК, ВЬ - нормы накопления внутренних инвестиций (0 < ВК < 1,0 < ВЬ < 1), с помощью которых объемы внутренних инвестиций 1К , 1Ь связаны с производственной функцией Уь соотношениями 1к = вк . v, 1ь = Вь ■ Уь .

Подставляя формулы (8) и (9) в уравнение баланса (7), получаем

AK(t) = (— AK • K (t) + SK (t)) • At AL(t) = (— Al • L(t) + Sl (t))• At.

(14)

Переходя в уравнении (14) к пределу при условии А ^0, находим систему нелинейных дифференциальных уравнений

^ = — Ak-K(t) + Sk (t),

^ = — AL • L (t) + SL (t).

(15)

Уравнения (13) и (15) образуют систему нормальных нелинейных связанных уравнений первого порядка. Исключение из них производственной функции V дает

ж )=-ак ■ К (г) + Бк (г),

dt

d Sk (t) =

dt dL (t)

dt dSL (t)

dt

= 4 • Bk • PL • K(t) • L(t) — 4 • SK (t),

= — AL • L (t) + SL (t), = 4 • BL • PL • K(t)a • L(t)b — 4 • SL (t).

(16)

Начальные условия для системы (16) имеют вид

K (0) = 4=0 = Ko

Sk (0) = Sk[=0 = SK,

L ( 0) = Lt=0 = L0>

SL (0)=slL=0=SL •

(17)

В общем случае нелинейная задача Коши (16) и (17) может быть решена только численно. Если в качестве функций распределения ввода инвестиций ЯК (г), ЯЬ (г) выбрать функцию Дирака ЯК (г) = ЯЬ (г) = 8(г), то построенная модель (16), (17) не будет учитывать эффект запаздывания внутренних инвестиций, и будет в точности совпадать с моделью полученной в работе [14].

Система уравнений (16) показывает, что рост ресурсов предприятия К и Ь будет иметь место

йК (t) л йЬ (t) с ~

только при строго положительных производных-> 0 и _> 0 . Если эти производные обратятся в нуль

-AK -K + BK - PL -Ka - Lb = 0,

-Al -L + BL -PL -Ka -Lb = 0:

(18)

то развитие предприятия остановится. Решением системы уравнений (18) являются предельные значения ресурсов Кот и [13]

K =

PL -

' Л Л V AL J

L_ =

PL -

' Л Л V al j

f B Л

Bk

V AK J

f D Л

Bk

V AK J

1-ьЛ

1

1-a-b

(19)

1

1-a-b

Совершенно аналогично рассматривается предельный вариант развития предприятия, который соответствует полной цифровой трансформации производства и замене человеческих ресурсов цифровыми технологиями и робототехникой. Уравнения баланса динамики предприятия относительно объемов факторов производства К и К в этом случае принимают вид

^ = -Ak - K (t) + SK (t),

dt

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

=^k - Bk - Pr - K (t )a - R (t )c -Ak - Sk (t),

^ = -Ar - R (t) + SR (t),

dt dSR (t)

dt

= Ar - Br - Pr - K ( t У- R ( t )- Ar - Sr ( t ).

(20)

Начальные условия для системы (20) имеют вид

K ( 0) = KL=о =

SK (0) = SkL=0 = SK0'

R ( 0) = Rlt=0 = R»

SR (0) = Sr[=0 = SR.

b

Предельные значения ресурсов K „ и ROT вычисляются по формулам [13]

K_ =

Í л V Í л V-c ^1-a-c

Pr ■

br

v ar j

R_ =

Pr ■

Br v Ar J

BK

v AK J

Bk

v AK J

(22)

Если рассматриваемое предприятие находится в условиях цифровой трансформации производства, то ее производственная функция описывается соотношением (3). Система уравнений баланса для такой функции относительно объемов факторов производства к, Ь, Я будет иметь вид

1

dK dt

ds dt

dL

dt

dSl

dt

dR

dt

dSR

dt

= -Ak ■ K + SK.

4 ■ Bk ■ Ka ■(PL ■ Lb ■(!-H) + PR ■ R ■ H)-ÄK ■ S

= -Al ■ L + SL:

4 ■ Bl ■ Ka ■(PL ■ Lb ■(!-H) + PR ■ R ■ H)-ÄL ■ SL .

= -Ar ■ R + SR:

4 ■ Br ■ Ka ■(PL ■ Lb ■(!-H) + PR ■ R ■ H)-4R ■ SR .

(23)

Начальные условия для системы (23) имеют вид

K ( 0) = KL=o = K0> Sk ( 0 ) = SKL=o = SK,

L ( 0 ) = Llt=0 = L» (24)

SL ( 0 ) = SL|t=0 = SL0.

R ( 0) = Rlt=0 = R0.

SR (0) = Sr[=0 = SR.

В общем случае нелинейная задача Коши (16), (17), нелинейная задача Коши (20), (21) и нелинейная задача Коши (23), (24) могут быть решены только численно.

На рисунке 2 показаны графики функций объемов выпуска продукции, построенные по результатам численных решений задачи Коши (16), (17), задачи Коши (20), (21) и задачи Коши (23), (24).

V (t )

140

70

0

/X (b /

.v/X" 7/ V (t )

vr

vr

0

6

12

Рисунок 2 - Графики функций объемов выпуска продукции, построенные по результатам численных решений задачи Коши (16), (17), задачи Коши (20), (21) и задачи Коши (23), (24). Сплошные линии соответствуют вариантам, в которых учитывается эффект запаздывания внутренних инвестиций. Штрихпунктирные линии соответствуют вариантами, в которых эффект запаздывания внутренних инвестиций не учитывается

Figure 2 - Graphs of functions of production volumes, constructed from the results of numerical solutions of the Cauchy problem (16), (17), Cauchy problem (20), (21) and Cauchy problem (23), (24). Solid lines correspond to options that take into account the lag effect of domestic investment. The dashed lines correspond to options in which the lag effect of domestic investment is not taken into account

Расчетные значения: Рь = 10; Рк = 12; а = 0,25; Ь = 0,20; с = 0,22; Ак = 0,1; Аь = 0,1; Ак = 0,1; Вк = 0,12 ; Вь = 0,12; Вк = 0,12; Як = 1; Яь = 1; Лк = 1; гс = 6; а = 1. Предельные значения объемов выпуска продукции У™ = 76,378 и У™ = 127,764 вычислены по формулам (1), (19) и (2), (22).

t

Заключение

1. Разработаны варианты новых расчетных математических моделей оценки динамики роста выручки предприятия, трудовые ресурсы которого постепенно вытесняются цифровыми технологиями, элементами искусственного интеллекта и робототехникой.

2. Полученные модели представляют собой системы дифференциальных уравнений относительно производственных факторов и учитывают эффект запаздывания вложений в производство внутренних инвестиций.

3. Вычислены предельные значения ресурсов и выручки, соответствующие равновесным состояниям работы предприятий и являющиеся стационарными решениями систем уравнений моделей.

4. Показано, что модели выпуска продукции предприятием соответствующие отсутствию цифровой трансформации и полной цифровизации производства представляют собой нижнюю и верхнюю границы всевозможных вариантов вытеснения человеческих трудовых ресурсов.

Библиографический список

1. Кешелава А.В. Цифровая трансформация предприятия // Сайт С.П. Курдюмова «Синергетика». 2018. URL: http://spkurdyumov.ru/digital_economy/cifrovaya-transformaciya-predpriyatiya (дата обращения: 20.02.2020).

2. Макаров И.Н., Широкова О.В., Арутюнян В.А., Путинцева Е.Э. Цифровая трансформация разномасштабных предприятий, вовлеченных в реальный сектор российской экономики // Экономические отношения. 2019. Т. 9, № 1. С. 313-326. DOI: https://doi.org/10.18334/eo.9.1.39966. URL: https://elibrary.ru/item.asp?id=38228725. EDN: https://elibrary.ru/eoyafj.

3. Harrod R.F. The trade cycle: an essay. Oxford: Clarendon Press, 1936. 234 p. URL: https://dspace.gipe.ac.in/xmlui/bitstream/handle/10973/21304/GIPE-011023.pdf?sequence=3&isAllowed=y.

4. Domar E.D. Capital Expansion, Rate of Growth, and Employment // Econometrica. April 1946. Vol. 14, issue 2. P. 137-147. DOI: https://doi.org/0012-9682(194604)14:2%3C137:CEROGA%3E2.0.TO;2-9.

5. Solow R.M. A Contribution to the Theory of Economic Growth // Quarterly Journal of Economics. February 1956, Vol. 70, no. 1. P. 65-94. URL: http://wwwjstor.org/stable/1884513?origin=JSTOR-pdf

6. Romer P.M. Increasing Returns and Long-run Growth // Journal of Political Economy. October 1986. Vol. 94, no. 5. P. 1002-1037. URL: http://linksjstor.org/sici?sici=0022-3808%28198610%2994%3A5% 3C1002%3AIRALG%3E2.0.C0%3B2-C.

7. Lucas R.E. On the Mechanics of Economic Development // Journal of Monetary Economics. July 1988. Vol. 22. P. 3-42. URL: https://www.sfu.ca/~kkasa/lucas88.pdf.

8. Нижегородцев Р.М. Модели логистической динамики как инструмент экономического анализа и прогнозирования // Моделирование экономической динамики: риск, оптимизация, прогнозирование. Москва, 1997. С. 34-51. URL: https://studylib.ru/doc/2206631/modeli-logisticheskoj-dinamiki-kak-instrument-e-konomicheskogo?ysclid=lr7k1rq2el478526678.

9. Бадаш Х.З. Экономико-математическая модель экономического роста предприятия // Вестник Удмуртского университета. Серия Экономика и право. 2009. № 1. С. 5-9. URL: https://elibrary.ru/item.asp?id=11700881. EDN: https://elibrary.ru/jwbhyv.

10. Кузнецов Ю.А., Мичасова О.В. Обобщенная модель экономического роста с учетом накопления человеческого капитала // Вестник Санкт-Петербургского университета. Сер. 10: Прикладная математика. Информатика. Процессы управления. 2012. № 4. С. 46-57. URL: https://www.mathnet.ru/rus/vspui93.

11. Ilyina E.A., Saraev L.A. Predicting the dynamics of the maximum and optimal profits of innovative enterprises // Journal of Physics: Conference Series. 2021. Vol. 1784. P. 012002. DOI: https://doi.org/10.1088/1742-6596/1784/1/012002. URL: https://elibrary.ru/item.asp?id=46408262. EDN: https://elibrary.ru/xwxltx.

12. Saraev A.L., Saraev L.A. Mathematical models of the development of industrial enterprises, with the effect of lagging internal and external investments // Journal of Physics: Conference Series. 2021. Vol. 1784. P. 012010. DOI: https://doi.org/10.1088/1742-6596/1784/1/012010. URL: https://elibrary.ru/item.asp?id=46408042. EDN: https://elibrary.ru/qvnrzq.

13. Saraev A.L., Saraev L.A. Equations of nonlinear dynamics of development of industrial enterprises, taking into account the amount of its maximum profit. // Vestnik Samarskogo universiteta. Ekonomika i upravlenie Vestnik of Samara University. Economics and Management. 2021, Vol. 12, no. 2. P. 154-170. DOI: https://doi.org/10.18287/2542-0461-2021-12-2-154-170. URL: https://journals.ssau.ru/eco/article/view/8984; https://elibrary.ru/item.asp?id=463 88435. EDN: https://elibrary.ru/nrppjc.

14. Ilyina E.A. Modeling the dynamics of product output by a manufacturing enterprise due to the digital transformation of its workforce // Vestnik Samarskogo universiteta. Ekonomika i upravlenie Vestnik of Samara University. Economics and Management, 2021. Vol. 12, no. 4. P. 173-181. DOI: http://doi.org/10.18287/2542-0461-2021-12-4-173-181. URL: https://journals.ssau.ru/eco/article/view/9959.

References

1. Keshelava A.V. Digital transformation of an enterprise. Retrieved from the official website of S.P. Kurdyumov «Synergetics». Available at: http://spkurdyumov.ru/digital_economy/cifrovaya-transformaciya-predpriyatiya/ (accessed 20.02.2020) (In Russ.)

2. Makarov I.N., Shirokova O.V., Arutyunyan V.A., Putintseva E.E. Digital transformation of multi-scale enterprises involved in the real sector of the Russian economy. Journal of International Economic Affairs, 2019, vol. 9, no. 1, pp. 313-326. DOI: https://doi.org/10.18334/eo.9.1.39966. Available at: https://elibrary.ru/ item.asp?id=38228725. EDN: https://elibrary.ru/eoyafj. (In Russ.)

3. Harrod R. F. The trade cycle: an essay. Oxford: Clarendon Press, 1936, 234 p. Available at: https://dspace.gipe.ac.in/xmlui/bitstream/handle/10973/21304/GIPE-011023.pdf?sequence=3&isAllowed=y.

4. Domar E.D. Capital Expansion, Rate of Growth, and Employment. Econometrica, April 1946, vol. 14, issue 2, pp. 137-147. DOI: https://doi.org/0012-9682(194604)14:2%3C137:CER0GA%3E2.0.C0;2-9.

5. Solow R.M. A Contribution to the Theory of Economic Growth. Quarterly Journal of Economics, February 1956, vol. 70, no. 1, pp. 65-94. Available at: http://www.jstor.org/stable/l8845l3?origin=JSTOR-pdf.

6. Romer P.M. Increasing Returns and Long-run Growth. Journal of Political Economy, October 1986, vol. 94, no. 5, pp. 1002-1037. Available at: http://links.jstor.org/sici?sici=0022-3808%28l986l0%2994% 3A5%3Cl002%3AIRALG%3E2.0.œ%3B2-C.

7. Lucas R.E. On the Mechanics of Economic Development. Journal of Monetary Economics, July 1988, vol. 22, pp. 3-42. Available at: https://www.sfu.ca/~kkasa/lucas88.pdf.

8. Nizhegorodtsev R.M. Models of logistics dynamics as a tool for economic analysis and forecasting. In: Modeling of economic dynamics: risk, optimization, forecasting. Moscow, 1997, pp. 34-51. Available at: https://studylib.ru/doc/220663l/modeli-logisticheskoj-dinamiki-kak-instrument-e-konomicheskogo?ysclid=lr7klrq2el478526678. (In Russ.)

9. Badash Kh.Z. The economic-mathematical model of the economic growth of enterprises. Bulletin of Udmurt University. Series Economics and Law, 2009, no. 1, pp. 5-9. Available at: https://elibrary.ru/ item.asp?id=ll70088l. EDN: https://elibrary.ru/jwbhyv. (In Russ.)

10. Kuznetsov Yu.A., Michasova O.V. The generalized model of economic growth with human capital accumulation. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2012, no. 4, pp. 46-57. Available at: https://www.mathnet.ru/rus/vspui93. (In Russ.)

11. Ilyina E.A., Saraev L.A. Predicting the dynamics of the maximum and optimal profits of innovative enterprises. Journal of Physics: Conference Series, 2021, vol. 1784, p. 012002. DOI: https://doi.org/l0.l088/l742-6596/l784/l/0l2002. Available at: https://elibrary.ru/item.asp?id=46408262. EDN: https://elibrary.ru/xwxltx.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Saraev A.L., Saraev L.A. Mathematical models of the development of industrial enterprises, with the effect of lagging internal and external investments. Journal of Physics: Conference Series, 2021, vol. 1784, p. 012010. DOI: https://doi.org/l0.l088/l742-6596/l784/l/0l20l0. Available at: https://elibrary.ru/item.asp?id=46408042. EDN: https://elibrary.ru/qvnrzq.

13. Saraev A.L., Saraev L.A. Equations of nonlinear dynamics of development of industrial enterprises, taking into account the amount of its maximum profit. Vestnik Samarskogo universiteta. Ekonomika i upravlenie Vestnik of Samara University. Economics and Management, 2021, vol. 12, no. 2, pp. 154-170. DOI: https://doi.org/l0.l8287/2542-046l-202l-l2-2-l54-l70. Available at: https://journals.ssau.ru/eco/article/view/ 8984; https://elibrary.ru/item.asp?id=46388435. EDN: https://elibrary.ru/nrppjc.

14. Ilyina E.A. Modeling the dynamics of product output by a manufacturing enterprise due to the digital transformation of its workforce. Vestnik Samarskogo universiteta. Ekonomika i upravlenie = Vestnik of Samara University. Economics and Management, 2021, vol. 12, no. 4, pp. 173-181. DOI: http://doi.org/l0.l8287/2542-0461-2021-12-4-173-181. Available at: https://journals.ssau.ru/eco/article/view/9959.

i Надоели баннеры? Вы всегда можете отключить рекламу.