Научная статья на тему 'Model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine'

Model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine Текст научной статьи по специальности «Механика и машиностроение»

CC BY
128
46
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Лесотехнический журнал
ВАК
AGRIS
RSCI
Ключевые слова
ЛЕСОЗАГОТОВИТЕЛЬНАЯ МАШИНА / ДВИЖЕНИЕ / MOTION / ХОДОВАЯ СИСТЕМА / PROPEL SYSTEM / ГРУНТ / SOIL / ОПОРНАЯ ПОВЕРХНОСТЬ / BEARING SURFACE / МОДЕЛЬ / MODEL / ЭЛЕМЕНТ / ELEMENT / ГУСЕНИЦА / HARVESTER / TRACK

Аннотация научной статьи по механике и машиностроению, автор научной работы — Klubnichkin Vladislav Evgenyevich, Klubnichkin Eugeny Evgenyevich, Zaprudnov Vyacheslav Ilyich, Bukhtoyarov Leonid Dmitrievich, Malyukov Sergey Vladimirovich

It is impossible to accomplish the task set by the development strategy of the timber complex of the Russian Federation until 2020 to increase timber harvesting up to 294 mln. m 3. without providing the timber harvesting enterprises with a complex of machines and equipment ensuring efficient timber harvesting, including in the severe weather conditions which prevail in most forest areas (weak soil, heavily waterlogged area, deep snow, etc.). It is advisable to use tracked machines on the waterlogged cutting areas, steep slopes, in deep snow, multi-storeyed wood, cross-country full of obstacles in the form of stubs, stones and fallen trees, where the performance and traction power of the wheeled vehicles are insufficient. The advantage of the tracked running gear is even more evident on the ice surface. This paper offers a model of loading of the transmission elements at controlled curvilinear motion of the tracked timber harvesting machine. This model is based on evaluation of the effect of the external and internal factors on the loading of the tracked machine transmission. The main loads in the transmission result from the external action of the ground contacting area during the vehicle movement. The caterpillar band tracks interact with the ground contacting area and translate force to the track drive sprockets. As a basis of a model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine was taken model of interaction between elements of the timber harvesting machine track ground contacting area.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Klubnichkin Vladislav Evgenyevich, Klubnichkin Eugeny Evgenyevich, Zaprudnov Vyacheslav Ilyich, Bukhtoyarov Leonid Dmitrievich, Malyukov Sergey Vladimirovich

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine»

Технологии. Машины и оборудование

DOI: 10.12737/111991 УДК 630*377.44

МОДЕЛЬ РАСЧЕТА НАГРУЖЕННОСТИ ЭЛЕМЕНТОВ ТРАНСМИССИИ ПРИ УПРАВЛЯЕМОМ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ ГУСЕНИЧНОЙ ЛЕСОЗАГОТОВИТЕЛЬНОЙ МАШИНЫ

кандидат технических наук, доцент В. Е. Клубничкин1 кандидат технических наук, доцент Е. Е. Клубничкин1 доктор технических наук, профессор В. И. Запруднов1 кандидат технических наук, доцент Л. Д. Бухтояров2 кандидат технических наук С. В. Малюков2 кандидат технических наук Д. Ю. Дручинин2 1 - ФГБОУ ВПО «Московский государственный университет леса», г. Москва, Российская Федерация

2 - ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», Воронеж, Российская Федерация

Выполнение задачи, поставленной в стратегии развития лесного комплекса Российской Федерации до 2020 года по увеличению заготовок древесины до 294 млн м3 в год, невозможно без оснащения лесозаготовительных предприятий комплексом машин и оборудования, обеспечивающих эффективную заготовку древесины, в том числе в сложных природных условиях, которые преобладают на большинстве лесных площадей (слабонесущие грунты, сильно переувлажненная местность, глубокий снежный покров и т.д.). На переувлажненных лесосеках, крутых склонах, при глубоком снеге, там, где многоярусный лес, в пересеченной местности с изобилием препятствий в виде пней, камней и поваленных деревьев, где проходимость и сила тяги колесных машин недостаточны, целесообразно использование гусеничных машин. На обледенелых поверхностях преимущества гусеничного движителя еще более значительны. В данной статье предлагается модель нагруженности элементов трансмиссий при управляемом криволинейном движении гусеничной лесозаготовительной машины. В основу этой модели положена оценка влияния внешних и внутренних факторов, воздействующих на нагруженность трансмиссий гусеничных лесозаготовительных машин, модель взаимодействия элементов опорной поверхности гусениц лесозаготовительной машины с грунтом. Основные нагрузки в трансмиссии возникают в результате внешнего воздействия со стороны опорной поверхности при движении машины. Траки гусеничной ленты взаимодействуют с опорной поверхностью и передают усилия на ведущие звездочки. В основу модели расчета нагруженности элементов трансмиссии при управляемом криволинейном движении гусеничной лесозаготовительной машины была положена ранее полученная модель взаимодействия элементов опорной поверхности гусениц лесозаготовительной машины с грунтом.

Ключевые слова: лесозаготовительная машина; движение; ходовая система; грунт; опорная поверхность; модель; элемент; гусеница.

166

Лесотехнический журнал 2/2015

Технологии. Машины и оборудование

MODEL ТО CALCULATE LOADING OF TRANSMISSION ELEMENTS AT CONTROLLED CURVILINEAR MOTION OF THE TRACKED TIMBER HARVESTING

MACHINE

Ph.D. in Engineering, Associate Professor V. E. Klubnichkin1 Ph.D. in Engineering, Associate Professor E. E. Klubnichkin1 DSc in Engineering, Professor V. I. Zaprudnov1 Ph.D. in Engineering, Associate Professor L. D. Bukhtoyarov2 Ph.D. in Engineering S. V. Malyukov2 Ph.D. in Engineering D. Y. Druchinin2

1 - Federal State Budget Education Institution of Higher Professional Education «Moscow State

Forest University», Moscow, Russian Federation

2 - Federal State Budget Education Institution of Higher Education «Voronezh State University of Forestry and Technologies named after G.F. Morozov», Voronezh, Russian Federation

Abstract

It is impossible to accomplish the task set by the development strategy of the timber complex of the Russian Federation until 2020 to increase timber harvesting up to 294 min. m3. without providing the timber harvesting enterprises with a complex of machines and equipment ensuring efficient timber harvesting, including in the severe weather conditions which prevail in most forest areas (weak soil, heavily waterlogged area, deep snow, etc.). It is advisable to use tracked machines on the waterlogged cutting areas, steep slopes, in deep snow, multi-storeyed wood, cross-country full of obstacles in the form of stubs, stones and fallen trees, where the performance and traction power of the wheeled vehicles are insufficient. The advantage of the tracked running gear is even more evident on the ice surface. This paper offers a model of loading of the transmission elements at controlled curvilinear motion of the tracked timber harvesting machine. This model is based on evaluation of the effect of the external and internal factors on the loading of the tracked machine transmission. The main loads in the transmission result from the external action of the ground contacting area during the vehicle movement. The caterpillar band tracks interact with the ground contacting area and translate force to the track drive sprockets. As a basis of a model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine was taken model of interaction between elements of the timber harvesting machine track ground contacting area.

Keywords: harvester; motion; propel system; soil; bearing surface; model; element; track.

It is impossible to accomplish the task set by the development strategy of the timber complex of the Russian Federation until 2020 to increase timber harvesting up to 294 min. cu.m, without providing the timber harvesting enterprises with a complex of machines and

equipment ensuring efficient timber harvesting, including in the severe weather conditions which prevail in most forest areas (weak soil, heavily waterlogged area, deep snow, etc.) [11, 12].

It is advisable to use tracked machines

Лесотехнический журнал 2/2015

167

Технологии. Машины и оборудование

on the waterlogged cutting areas, steep slopes, in deep snow, multi-storeyed wood, crosscountry full of obstacles in the form of stubs, stones and fallen trees, where the performance and traction power of the wheeled vehicles are insufficient. The advantage of the tracked running gear is even more evident on the ice surface [2, 5, 8, 10].

This paper offers a model of loading of the transmission elements at controlled curvilinear motion of the tracked timber harvesting machine. This model is based on evaluation of the effect of the external and internal factors on the loading of the tracked machine transmission. The main loading is caused by the external action from the ground contacting area at interaction with the track links.

Work [3] presents a model of interaction between elements of the timber harvesting machine track ground contacting area, which was taken as a basis of a model to calculate loading of transmission elements at controlled curvilinear motion of the tracked timber harvesting machine.

Let us suppose the track is loaded with force Q (normal track-on-soil load) which is normal to its surface. When the track travels relative to the soil, this causes a response force that we mark as R. This force is proportional to the normal load:

R= R Q. (i)

The proportionality factor R is called a factor of the track-soil interaction.

Let us call the hodograph of force R at Q= 1 the hodograph of the track-soil interaction coefficient R .

The results of experiments [1, 5, 7, 8, 9] showed that this hodograph practically has the shape of ellipsis and may be described in the

following equation:

R

Rx'Ry

• sin2 a + ц2 • cos2 a

(2)

where Rx , ^ У is a value of the coefficient of the track-soil interaction at (separate) travel of the track by value <7 in longitudinal and lateral directions; Ct is an angle between direction of the track displacement and longitudinal axis of the tracked timber harvesting machine.

Let us record expressions for elementary forces acting from the soil on the element of the ground contacting area of the leading track.

Basing on the expresions (1) we can record:

dR, = -r(x) -q2(x)-dx, (3)

where q2(x) - is a load from the weight of the tracked timber harvesting machine per unit of the length of the track ground contacting area. Sign "minus" is because the forces acting on the element of the ground contacting area are opposite to the velocity of travel of this element relative to the soil.

For the longitudinal and lateral components of the elementary response force dR^

we can record the following expressions:

dP2 = dR2-cos a;

dS2=dR2• sin a;

(4)

or

(5)

dS2 = -r(x) ■ q2(x) • sin a • dx, where

cosa=vx2/v;bc; sma = Vy2IV“bc. (6)

Using expressions (2) and (6), we record the formulas (5) in the following form:

168

Лесотехнический журнал 2/2015

Технологии. Машины и оборудование

dP2 = q2(x)- Mx2 ' My2 ■Vx2-dx; (7)

ЫЛ+&-V;2

s. & 11 q2(x)-~ Mx2 ' My2 ЫЛ+Ар2 ■Vy2-dx. (8)

The value of velocity VX2 does not clearly depend on the position of the element along the length of the track ground contacting area and traveltime parameters of turn, while the value of velocity Vy2 is a function of traveltime parameters of the curvilinear motion of the tracked timber harvesting machine. Considering the above, dependencies (7) and (8) can be presented in the following form:

Mx2 ' My2

dl\ = -q2(x) dS2=~q2{x)

\jMv2 ' Kx2 Mx2 ' ■*)

Mx2 ' My2

r-Vx2-dx;

y/dy2-K22+dx2-®2(X-X)2

Hence

p2=-\ qi(x)-

^2 = -f <h(x)-

Mx2 ' My2

P;2-K2 + A-°>4x-*f

■Vx2-dx\

Mx2 ' My2

■a>-(x~x)-dx,

(9)

(10)

(И)

(12)

where

K=h-td! 2.

k ~h+td/2',

The elementary moment of cornering resistance determined by the track-soil interaction, relative to the center-of-mass of the tracked timber harvesting machine shall be calculated by the following formula

dM2 =x-dS2.

Then we obtain the following expression for the moment of cornering resistance:

к'

M2=-\ 92(X)'

ln

Similar for the retreating track:

V

№x2 * №y2

p<=- ] 41,1

n

$i =-J ?iW-

Mxl ■ My,

^уг-Ух21 + Ц2х1-со2(х-х)2

■ со ■ (X - x) ■ x ■ dx.

■vxi~dx;

Mx, ■ My,

l'

V

Ml =-} qx{x)-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

■sjMy • ,u: ■(■> (x x):

Mx 1' Myl

■<x>-(x-x)-dx,

■ со ■ (X - x) ■ x ■ dx.

(13)

(14)

(15)

(16)

/; ^My,-V2 + y2xl-co2(x-x)2

In formulas (11) - (16) the law of load distribution along the length of the track ground contacting

Лесотехнический журнал 2/2015

169

Технологии. Машины и оборудование

area does not depend on the traveltime parameters of the track-soil interaction. All other values are determined by the nature of track elements-to-soil interaction. With the given law of track elements-to-soil

interaction Uc(?x). forces P2, S2 and the cornering resistance moment M2 are determined by slipping

velocity VX2 and longitudinal displacement of the center-of-tum X , and forces Pi, Si and moment Mi, by slipping velocity Vx/ and longitudinal displacement of the center-of-tum, respectively.

For the controlled curvilinear motion, we can assume that normal responses of the support rollers to the soil are concentrated. This assumption was proved experimentally [1, 4, 6, 7, 9]. Considering the above, we can record the following expressions:

A = -I<22i-

7

У 2

■V.,

(17)

^ = -Za,-

Pxl'Pyl

4v2yi-K+A-(°2(,x-h)2

■yA\

(18)

y=y1+y2 = -£a

n

-IG:

Pxl ■ Myl

■■=' " Jp2yi-K\ + pli-®2(x-h)

Px2 ' Py2

■co-(X-h)-

(19)

m=m1+m2 = -YjQ1

i=1 V^2'Fx2+^2-® (X~h)

Pxl ■ Pyl

-Z0

Px2 ' Py2

а-(Х~1,У,

■a-ix-h)-1,-

(20)

i=1 ^ ^Р2у2-К22+Р2х2-®2(Х-1г)2

®-(x~h)-h-

where n is the number of support rollers on one side of the machine;

Qt is a normal load from /-nd roller on the soil;

i is the roller's number counted from the bow of the tracked timber harvesting machine to the aft; h is a distance between the center-of-mass of the tracked timber harvesting machine to the center of the /-nd support roller.

The equation system of the controlled curvilinear motion of the tracked timber harvesting machine has the following form [4, 6]:

m-'s = [(Pj + P2) - (Pj + P2)] • cos /3 - (Sl + S2) ■ sin /3;

Jz • ^(s) • 5 +• s2 + /3 j = (M„ -MR -Mc);

V2

m----= -[(P1+P2)-(P1 +P2)]-sin/3-(P1 +P2)-cos/3.

Pc

(21)

In accordance with this system it is necessary to determine the laws of distribution of the normal

loads on the ground contacting area Q and expressions for the motion resistance forces R/ and P2.

When moving over the non-deforming soil the analytical expressions for forces Ri and P2 can

170

Лесотехнический журнал 2/2015

Технологии. Машины и оборудование

be pretty exactly recorded in the following form:

(22)

- (23)

where frp is a coefficient of motion resistance of the tracked timber harvesting machine.

All forces acting on the tracked timber harvesting machine can be reduced to two resultants directed along and across the longitudinal axis of the machine and applied to its center-of-mass. Under these forces the normal loads from the rollers on the soil are re-distributed (Fig. 1, 2).

Assuming that under the action of the above forces the deformation of the flexible elements of the cushioning system is insignificant and within those deformations the stiffness of the flexible elements can be taken constant, let us find out the law of distribution of the normal loads on the track ground contacting area using the following expressions:

Fig. 1. Re-distribution of normal loads on the track ground contacting area under the axial forces

Fig. 2. Re-distribution of normal loads on the track ground contacting area under the cross forces

Qh 'dfir- (24)

Qu=Pm+Cr5f,n (25)

where 0?/, Qu are normal load on the ground contacting area from /'-nd roller of the leading and retreating tracks, respectively;

Pot is a static load from the /'-nd roller on the ground contacting area;

Cj is stiffness of suspension of the /-nd roller around its static position;

is additional from axial and cross

forces, relative travel of the /'-nd roller.

For additional travels we can record:

3/у=-1г(р-В/2-в; (26)

Лесотехнический журнал 2/2015

171

Технологии. Машины и оборудование

Sf2i=-lr(p+B/2-6, (27)

where ^ is an angle of axial tilt of the body; в is an angle of cross tilt of the body; Let us substitute (26), (27) to (24), (25)

On =I1H ~сг •(-<P+Ct-B/2-&, (28)

Ou=1m-crlr(P-crB/2-^ (29)

Then,

Qi = = ±p„-'Lcr/r(P+

7=1 7=1 7=1

„ (30)

+£c,-B/2-0;

7=1

a =Sa=2A-2>-

7=1 7=1 7=1

„ (31)

crB/2-e.

7=1

Let us formulate an equation of moments of active forces and response forces relative to the center-of-mass of the tracked timber harvesting machine in the cross plane

f(ZGa-Sa]-^e=o, (32)

^ V *=1 1=1 j

where hc is a distance from the center-of-mass of the machine to the ground contacting area.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Let us substitute (30), (31) to equation

(32) and solve it relative to ^

П

52-2><

(33)

7=1

Let us formulate an equation of moments of active forces and response forces relative to the center-of-mass of the tracked timber harvesting machine in the axis plane

■/,=*■*■ (34)

7=1

7=1

Let us substitute (30), (31) to equation (34)

ixv+lx-/,-

7=1

7=1

-l-(p-Ycrl=X-hc.

7=1

In this equation

S^207 ^7+=0-

(35)

7=1

7=1

Then,

<P = -

X-h

7=1

(36)

(37)

Let us substitute expressions (33) and (37) to equations (28) and (29):

027 - P20i +

X-h-Cr l Y -h- c.

C l l

в-Ъ

(38)

„ _ X-h -c •/ Y-h -c

a=p,o,+—^ (39)

2 ■!>,■/’ B-Y^c,

7=1 7=1

If we assume that the stifihess of all flexible elements of the cushioning system is equal, then

027 - Р2Ш +

X-h-l Y-h

2-B!

Bn

(40)

a

Pm +

x-K-h

n

2-B!

7=1

r-K.

Bn ’

(41)

Thus, all forces included into equation of system (21) become defined. Now we use the expression for those forces and represent the system of equations of the controlled motion of the tracked timber harvesting machine in the final form.

172

Лесотехнический журнал 2/2015

Технологии. Машины и оборудование

т-

dV

dt

-Z&,

Их2’Иу2

Jvb-Ki+Mrt-n'-iX-I,)

^2-za,

AVPyl

-fim-G + C,n) ]-cos/3-

Vxl’Vyl

У q, -=____________________________

sJm^i ■K+A-^-ix-iy r<o<X-h)-

J., -

-la,

•1

V1

Их2-Ну2

m

* “V^V^2+^v®2-a-/,) (

-Za,

«•a-/,)

Pc

sin j6;

K2-XQ,-

Ихги

У 1

ч ’=‘ ' VaVF,2+P22'®2-a-/,)2 " ‘=1 ‘ yl^yl-K

'Ki-

-Лт-G + Gn)-sin/3 -

Mxl-Myl

^Qu Va2i -Fn+p,2i -®2 -a-a2

■«•a-o-

-Za

Vx2-t*y2

> ‘ VaVF,22+p22-®2-a-a2

т-ю-а-о

cos /?;

Г PA: .

Jz ------5 + k(P) -5 + P =

V Ps

■Za

j

Vxl'Vyl

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Aft2 ' Afy2

-Za,

- ^a4-^+a4-®2-(p-/,):

2 ic2 , ,,2 „2

V^2 A /

•-+lza,

^2 +

'=' “VaVFn+ar®2-a-o; 2 v-> 21 VaVaz+apV®2-^-/)

Л

Их2'Му2

Mx-0 +

-Za

AAti' Af,i

A

yIti-K]+Krv2 -(x-1,Y

^®a-a

A' . n \ D

-|Za,-Za, I ■ fdm '~z-

(42)

4\

Conclusion

The obtained system of equations defines the possibility of motion of the tracked timber harvesting machine in the preset mode and along the preset trajectory. Those equations can form the basis of calculation of loading of the transmission elements at the controlled curvilinear motion of the machine. The analysis of this system of equations indeed demonstrates that at the given laws of

track-soil interaction M:(^x)and №у(&у) the forces acting in the plane of the ground contacting areas of the tracked timber harvesting machine are defined by the controlled parameters of turn: motion velocity and trajectory curvature. Adding a computed model of transmission to this mathematical model of the controlled curvilinear motion of the tracked timber harvesting machine gives a mathematical model to calculate loading of the transmission elements.

Библиографический список

1. Котиков, В. М. Воздействие лесозаготовительных машин на лесные почвы [Текст] : дисс. ... док. техн. наук / В.М. Котиков. - М. : МЛТИ, 1995. - 214 с.

2. Wong J. Y. Terramechanics and Off-Road Vehicle Engineering 2nd Edition, 2009, 488 p.

3. Клубничкин, В. E. Модель взаимодействия элементов опорной поверхности гусениц лесозаготовительной машины с грунтом [Текст] / В. Е. Клубничкин, Е. Е. Клубничкин, В. И.

Лесотехнический журнал 2/2015

173

Технологии. Машины и оборудование

Запруднов, Л. Д. Бухтояров, Д. Ю. Дручинин, С. В. Малю ков // Лесотехнический журнал. -

2014. -№ 4. -С. 191-200.-DOI: 10.12737/8472.

4. Said, Al-Milli Track-terrain modelling and traversability prediction for tracked vehicles on soft terrain [Text] / Said Al-Milli, Lakmal D. Seneviratne, Kaspar Althoefer // Journal of Terra-mechanics. - 2010. - Vol. 47. - Issue 3. - pp. 151-160.

5. Ксеневич, И. П. Наземные тягово-транспортные системы. Технико-экономические основы проектирования машин и процессов [Текст] Методологические аспекты управления проектной деятельностью и принятие решений / И. П. Ксеневич, В. А. Гоберман, Л. А. Гобер-ман // Энциклопедия. - М. : Машиностроение, 2003. - Т. 3. - 788 с.

6. Клубничкин, В. Е. Совершенствование расчётных моделей нагруженности трансмиссий гусеничных лесозаготовительных машин в зависимости от внешних условий движения [Текст] : автореф. ... канд. техн. наук / В. Е. Клубничкин. - Москва : Моек. гос. ун-т леса, 2012. - 18 с.

7. Rakheja, S. Dynamic analysis of tracked vehicles with trailing arm suspension and assessment of ride vibrations [Text] / S. Rakheja, Afonso M.F.R. and Sankar S. // International Journal of Vehicle Design. - 1992. - Vol. 13. - no. 1.

8. Wong, J. Y. Theory of Ground Vehicles [Text] / J. Y. Wong - third ed. John Wiley & Sons, NY, 2001. ISBN 0-471-35461-9.

9. Клубничкин, В. E. Исследование кинематики и динамики движителя гусеничной лесозаготовительной машины [Текст] / В. Е. Клубничкин, Е. Е. Клубничкин, Л. Д. Бухтояров // Лесотехнический журнал. -2014. -№4. - С. 179-190. -DOI: 10.12737/8471.

10. Анисимов, Е. М. Основные направления повышения эксплуатационной эффективности гусеничных трелевочных тракторов [Текст] / Е. М. Анисимов, А. М. Кочнев. - СПб.: изд-во СПбЕПУ, 2007. - 456 с.

11. Bekker, М. G. Introduction to Terrain-Vehicle Systems [Text] / M. G. Bekker. - The University of Michigan Press, Ann Arbor, 1969.

12. Bodin, A. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain [Text] / A. Bodin // Journal of Terramechanics. - 1999. -Vol. 36. - Issue 3. - pp. 167-181.

References

1. Kotikov V.M. Vozdejstvie lesozagotovitel'nyh mashin na lesnye pochvy. Diss. dokt. tekhn. nauk [The Impact of logging machines on forest soils. Dr. eng. sci. diss], Moscow, 1995. 214 p. (In Russian).

2. Wong J. Y. Terramechanics and Off-Road Vehicle Engineering, 2nd Edition. 2009. Pages 488.

3. Klubnichkin V.E., Klubnichkin E.E., Zaprudnov V.I., Bukhtoyarov L.D., Druchinin D.Y., Malyukov S. V. Model' vzaimodejstvija jelementov opornojpoverhnosti gusenic lesozagotovitel'noj mashiny s gruntom [Model of the interaction of elements of track supporting surface of harvester with soil], Lesotekhnicheskii zhurnal, 2014, no. 4, pp. 191-200 (In Russian).

4. Said Al-Milli, Lakmal D. Seneviratne, Kaspar Althoefer., Track-terrain modelling and traversability prediction for tracked vehicles on soft terrain. Journal of Terramechanics, 2010, Vol. 47, Issue 3, pp. 151-160.

174

Лесотехнический журнал 2/2015

Технологии. Машины и оборудование

5. Ksenevich I.P., Goberman L.A., Goberman V.A. Nazemnye tjagovo-transportnye sistemy. Tehniko-jekonomicheskie osnovy proektirovanija mashin i processov [Ground trailer transport systems. Technical and economic bases of designing machines and processes], Jenciklopedija [Encyclopedia], Moscow, 2003, Vol. 3, 788 p. (In Russian).

6. Klubnichkin V.E. Sovershenstvovanie raschjotnyh modelej nagruzhennosti transmissij guse-nichnyh lesozagotovitel'nyh mashin v zavisimosti ot vneshnih uslovij dvizhenija avtoref kand. tehn. nauk [Improvement of the models the load TRANS-missions tracked forestry machines, depending on the external conditions DWI-ment. Dis. cand. tehn. Science], Moscow, 2012, 18 p. (In Russian).

7. Rakheja S., Afonso M.F.R. and Sankar S., Dynamic analysis of tracked vehicles with trailing arm suspension and assessment of ride vibrations. International Journal of Vehicle Design, 1992, Vol. 13, no. 1.

8. Wong, J.Y. Theory of Ground Vehicles, third ed. John Wiley & Sons, NY, ISBN 0-47135461-9, 2001.

9. Klubnichkin V.E., Klubnichkin E.E, Bukhtoyarov L.D. Issledovanie kinematiki i dinamiki dvizhitelja gusenichnoj lesozagotovitel'noj mashiny [Investigation of the kinematics and dynamics of propulsor of track harvester], Lesotekhnicheskii zhurnal, 2014, Vol. 4, Issue. 4, 179-190. DOI: 10.12737/8471. (In Russian).

10. Anisimov G.M., Kochnev A.M. Osnovnye napravlenija povyshenija jekspluatacionnoj jeffektivnosti gusenichnyh trelevochnyh traktorov [The main directions of improving the operational efficiency of tracked skidders]. Saint Petersburg, 2007, 456 p. (In Russian).

11. Bekker M.G. Introduction to Terrain-Vehicle Systems. The University of Michigan Press, Ann Arbor, 1969.

12. Bodin A. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain. Journal of Terramechanics, 1999, Vol. 36, Issue 3, 167-181.

Сведения об авторах

Клубничкин Владислав Евгеньевич - доцент кафедры колесных и гусеничных машин, ФЕБОУ ВПО «Московский государственный университет леса», кандидат технических наук, доцент, г. Москва, Российская Федерация; e-mail: vklubnichkin@mgul.ac.ru.

Клубничкин Евгений Евгеньевич - доцент кафедры колесных и гусеничных машин, ФЕБОУ ВПО «Московский государственный университет леса», кандидат технических наук, доцент, г. Москва, Российская Федерация; e-mail: klubnichkin@mgul.ac.ru.

Запруднов Вячеслав Ильич - заведующий кафедрой геодезии и строительного дела, ФЕБОУ ВПО «Московский государственный университет леса», доктор технических наук, профессор, г. Москва, Российская Федерация; e-mail: zaprudnov@mgul.ac.ru.

Бухтояров Леонид Дмитриевич - заведующий кафедрой лесной промышленности, метрологии, стандартизации и сертификации, ФЕБОУ ВО «Воронежский государственный лесотехнический университет имени Е.Ф. Морозова», кандидат технических наук, доцент, г. Воронеж, Российская Федерация; e-mail: vglta-mlx@yandex.ru.

Лесотехнический журнал 2/2015

175

Технологии. Машины и оборудование

Малюков Сергей Владимирович - старший преподаватель кафедры механизации лесного хозяйства и проектирования машин, ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», кандидат технических наук, г. Воронеж, Российская Федерация; e-mail: maljukov-sergejj@rambler.ru.

Дручинин Денис Юрьевич - старший преподаватель кафедры механизации лесного хозяйства и проектирования машин, ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», кандидат технических наук, г. Воронеж, Российская Федерация; e-mail: druchinin.denis@rambler.ru.

Information about authors

Klubnichkin Vladislav Evgenyevich - Associate Professor of Wheeled and Tracked Vehicles department, FSBEI HPE «Moscow State Forest University», Ph.D. in Engineering, Associate Professor, Moscow, Russian Federation; e-mail: vklubnichkin@mgul.ac.ru.

Klubnichkin Eugeny Evgenyevich - Associate Professor of Wheeled and Tracked Vehicles department, FSBEI HPE «Moscow State Forest University», Ph.D. in Engineering, Associate Professor, Moscow, Russian Federation; e-mail: klubnichkin@mgul.ac.ru.

Zaprudnov Vyacheslav Ilyich - Head of the Department of Geodesy and Construction, FSBEI HPE «Moscow State Forest University», DSc in Engineering, Professor, Moscow, Russian Federation; e-mail: zaprudnov@mgul.ac.ru.

Bukhtoyarov Leonid Dmitrievich - Head of Department of Forest Industries, metrology, standardization and certification, FSBEI HE «Voronezh State University of Forestry and Technologies named after G.F. Morozov», Ph.D. in Engineering, Associate Professor, Voronezh, Russian Federation; e-mail: vglta-mlx@yandex.ru.

Malyukov Sergey Vladimirovich - Senior Lecturer Department of Forestry Mechanization and Machine Design, FSBEI HE «Voronezh State University of Forestry and Technologies named after G.F. Morozov», PhD in Engineering, Voronezh, Russian Federation; e-mail: maljukov-sergejj@rambler.ru.

Druchinin Denis Yuryevich - Senior Lecturer Department of Forestry Mechanization and Machine Design, FSBEI HE «Voronezh State University of Forestry and Technologies named after G.F. Morozov», PhD in Engineering, Voronezh, Russian Federation; e-mail: druchinin.denis@rambler.ru.

176

Лесотехнический журнал 2/2015

i Надоели баннеры? Вы всегда можете отключить рекламу.