Научная статья на тему 'Модель регрессии со сложной функцией (цепное правило) для оценки производительности производственного процесса на примере сварки трением с перемешиванием'

Модель регрессии со сложной функцией (цепное правило) для оценки производительности производственного процесса на примере сварки трением с перемешиванием Текст научной статьи по специальности «Физика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Область наук
Ключевые слова
функциональная регрессия / моделирование процесса / функциональный анализ данных / обнаружение точек изменения / сварка трением с перемешиванием / functional regression / process modeling / functional data analysis / change-point detection / friction stir welding

Аннотация научной статьи по физике, автор научной работы — Farshad Ramezankhani, Rassoul Noorossana, Mohammad Reza Mohammad Aliha

Сварка трением с перемешиванием является относительно новым способом соединения твердых материалов с использованием неплавящегося инструмента для сварки деталей без плавления материалов. Данная технология широко применяется в различных отраслях промышленности, включая автомобилестроение, судостроение, авиакосмическую отрасль. Разрушающие испытания являются неотъемлемой, но очень затратной частью прикладных технических исследований. В связи с этим актуальной становится задача сокращения количества разрушающих испытаний за счет использования численных методов для контроля качества сварных соединений. С другой стороны, благодаря достижениям в области компьютерных технологий и встроенных сенсорных систем накоплен огромный объем данных, что привело к необходимости их эффективного использования. Функциональные данные позволяют моделировать и анализировать данные высокой размерности. В настоящей статье предложена полнофункциональная модель линейной регрессии для количественной оценки и прогнозирования качества результатов процесса за счет сокращения количества разрушающих испытаний и использования модели обнаружения точек изменения, чтобы избежать использования модели, которая учитывает изменение в одном из компонентов процесса. В представленной модели учитываются автокорреляция и корреляция. Функциональные переменные модели определяются путем полиномиального разложения базисной функции. Результаты экспериментальных испытаний показывают, что предлагаемый метод эффективен для обнаружения неконтролируемых условий и определения местоположения точки изменения. Подтверждением служат полученные значения коэффициента множественной корреляции 0.98 и соответствующее значение величины F, равное 652.95.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Farshad Ramezankhani, Rassoul Noorossana, Mohammad Reza Mohammad Aliha

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A function-on-function regression model for monitoring the manufacturing process performance with application in friction stir welding

Friction stir welding is a relatively new way to join solid materials without melting using a nonconsumable tool, which has many applications in different industries including automotive, shipbuilding, and aerospace. Destructive testing is an integral part of engineering science, which costs a lot. Reducing the number of destructive tests via numerical calculations to determine the quality of welded parts is valuable. On the other hand, advances in computer technology and embedded sensing systems in different domains have made it possible to collect a variety of data in huge volume at an unbelievable velocity, which provides an opportunity and at the same time a challenge to engineers and practitioners to utilize this rich source of information efficiently. Functional data as a rich form of structured data allows for high dimensionality modeling and analysis of the data. In this paper, we develop a fully functional linear regression model to quantify and predict the quality of the process outputs by reducing the number of destructive tests and presenting a change-point detection model to avoid using the model when a change has occurred in one of the components of the process. Important issues such as autocorrelation and correlation are taken into account in the presented model. The functional variables of the model are solved by polynomial basis function expansions. The results of the experimental tests indicate that the proposed method performs well in detecting out-of-control conditions as well as estimating the change-point location. The obtained value of the multiple correlation coefficient 0.98 and the corresponding F-value equal to 652.95 support these results.

Текст научной работы на тему «Модель регрессии со сложной функцией (цепное правило) для оценки производительности производственного процесса на примере сварки трением с перемешиванием»

УДК 519.237.5, 621.791.14

Модель регрессии со сложной функцией (цепное правило) для оценки производительности производственного процесса

на примере сварки трением с перемешиванием

1 12 1 F. Ramezankhani , R. Noorossana , M.R.M. Aliha

1 Научно-технологический университет Ирана, Тегеран, 16846-13114, Иран 2 Университет Центральной Оклахомы, Эдмонд, Оклахома, 73034, США

Сварка трением с перемешиванием является относительно новым способом соединения твердых материалов с использованием неплавящегося инструмента для сварки деталей без плавления материалов. Данная технология широко применяется в различных отраслях промышленности, включая автомобилестроение, судостроение, авиакосмическую отрасль. Разрушающие испытания являются неотъемлемой, но очень затратной частью прикладных технических исследований. В связи с этим актуальной становится задача сокращения количества разрушающих испытаний за счет использования численных методов для контроля качества сварных соединений. С другой стороны, благодаря достижениям в области компьютерных технологий и встроенных сенсорных систем накоплен огромный объем данных, что привело к необходимости их эффективного использования. Функциональные данные позволяют моделировать и анализировать данные высокой размерности. В настоящей статье предложена полнофункциональная модель линейной регрессии для количественной оценки и прогнозирования качества результатов процесса за счет сокращения количества разрушающих испытаний и использования модели обнаружения точек изменения, чтобы избежать использования модели, которая учитывает изменение в одном из компонентов процесса. В представленной модели учитываются автокорреляция и корреляция. Функциональные переменные модели определяются путем полиномиального разложения базисной функции. Результаты экспериментальных испытаний показывают, что предлагаемый метод эффективен для обнаружения неконтролируемых условий и определения местоположения точки изменения. Подтверждением служат полученные значения коэффициента множественной корреляции 0.98 и соответствующее значение величины F, равное 652.95.

Ключевые слова: функциональная регрессия, моделирование процесса, функциональный анализ данных, обнаружение точек изменения, сварка трением с перемешиванием

DOI 10.55652/1683-805X_2024_27_3_169-172

A function-on-function regression model for monitoring the manufacturing process performance with application in friction stir welding

F. Ramezankhani1, R. Noorossana1,2, and M.R. Mohammad Aliha1

1 Industrial Engineering Department, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran 2 Information Systems and Operations Management Department, College of Business, University of Central Oklahoma, Edmond, Oklahoma, 73034, USA

Friction stir welding is a relatively new way to join solid materials without melting using a nonconsumable tool, which has many applications in different industries including automotive, shipbuilding, and aerospace. Destructive testing is an integral part of engineering science, which costs a lot. Reducing the number of destructive tests via numerical calculations to determine the quality of welded parts is valuable. On the other hand, advances in computer technology and embedded sensing systems in different domains have made it possible to collect a variety of data in huge volume at an unbelievable velocity, which provides an opportunity and at the same time a challenge to engineers and practitioners to utilize this rich source of information efficiently. Functional data as a rich form of structured data allows for high dimensionality modeling and analysis of the data. In this paper, we develop a fully functional linear regression model to quantify and predict the quality of the process outputs by reducing the number of destructive tests and presenting a change-point detection model to avoid using the model when a change has occurred in one of the components of the process. Important issues such as autocorrelation and correlation are taken into account in the presented model. The functional variables of the model are solved by polynomial basis function expansions. The results of the experimental tests indicate that the proposed method performs well in detecting out-of-control conditions as well as estimating the change-point location. The obtained value of the multiple correlation coefficient 0.98 and the corresponding F-value equal to 652.95 support these results.

Keywords: functional regression, process modeling, functional data analysis, change-point detection, friction stir welding

© Ramezankhani F., Noorossana R., Aliha M.R.M., 2024

1. Introduction

Friction stir welding involves a multi-physics phenomenon, including viscoplasticity, material flow, metallurgical transformation, heat generation, thermal straining, and structural interaction. Heat is generated by friction between the tool and the joint line, which leads to a softened region near the FSW tool. While the tool is traversed along the objects, it mixes the two objects of metal, and forges the hot and softened metal by mechanical pressure. The schematic view of the FSW process is shown in Fig. 1.

There are many studies on various aspects of FSW [1-5] aimed to achieve high-quality welded products [6-9]. Residual stress, like other response variables extracted from the literature and presented in Table 1, can be an indicator of output quality showing whether the final quality of a weld is acceptable. Residual stress that can result from a variety of mechanisms, including structural changes, inelastic deformations or temperature gradients, is a measure of resistance to localized plastic deformation induced by either mechanical abrasion or indentation. The heat generated in the process and the axial tool force are more significant parameters for residual stress. The temperature value is affected by unknown factors such as microstructure of the object, vibration of the device or any other factor that is not controllable.

Many manufacturing processes including FSW involve destructive tests performed to determine the quality of products. Destructive tests are very expensive and time consuming. It is very important to be able to determine the output of the process by reducing the number of destructive tests. Therefore, the main purpose of this study is to develop a model for quantifying and predicting the quality of the process outputs by reducing the number of destructive tests.

On the other hand, significant growth in the volume, variety and acquisition rate of data in various fields including healthcare [10, 11], supply chain [12, 13], internet of things (IOT), social networking, manufacturing [14], geographic information system, and quality management [15] indicate that big data is the environment that cannot be effectively processed by conventional data analysis methods [9].

In manufacturing environments, different software packages and equipment are used to collect valuable data to increase the efficiency and productivity of systems [16]. Enterprise resource planning, coordinate measuring machine, automated storage and retrieval systems, programmable logic controllers, computerized numerical control machines, automated guided vehicles, and cloud manufacturing environ-

ment [17] are just a few examples of such software packages and equipment. However, the lack of effective analysis methods has contributed to inefficient use of such data that has high or ultrahigh dimensionality and structural complexity, which poses novel challenges both theoretically and computationally to classical methods.

Functional data is one of the most important types of complex structured data with high dimensionality [18]. Such data provide information about curves, surfaces, or anything varying over a continuum. Each functional observation should be considered as a single entity rather than as a sequence of discrete observations. In many operational stochastic processes, the generated data have a functional form. However, one could misrepresent functional data inappropriately as multivariate data, which leads to losing important inherent information. Functional data can be defined as multivariate data where the number of variables is infinite.

Functional data analysis (FDA) has many advantages including reduction of the curse of dimensionality, easier data modeling, and recovering the entire function or its derivatives. There are some important challenges in technical aspect of functional data such as autocorrelation, correlation, and changes in the parameters of the underlying distribution. Core theoretical contributions to FDA were made by J.O. Ramsay in the early 1990s [18]. For more information on FDA see [10-12].

Generalized linear model (GLM) is a useful classical regression model with many applications, however, it is not adequate for cases when independent variables are digitized points of a curve [20]. When one or more dependent or independent variables in a regression equation is in the form of a function, functional regression is used. Functional regression analysis that combines FDA and regression is used to describe the relationship between response variables and their predictors when at least one of the random variables is a function. In statistical process monitoring and control, in addition to parameter prediction [21], parameter monitoring [22] and change-point analysis are also of great importance.

In this paper, we develop a fully functional linear regression model in which both the response variable and covariate(s) are functions (function-on-function regression) by utilizing functional data analysis to quantify the relationship between dependent and independent variables. The focus of this paper is on functional analogues of linear regression analysis. The output of the regression model is the estimation

of coefficients to predict the value of the response variable. For change-point estimation, a likelihood ratio-based model is applied to cluster the functions. The remainder of this paper is structured as follows. A literature review on functional regression analysis is presented in Sect. 2. Functional regression model is explained in Sect. 3. Section 4 is dedicated to simulation analysis and a real-world case study. Our concluding remarks and future research topics are presented in the final section.

References

1. Aliha M.R.M., Gharehbaghi H. The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder // Eng. Fract. Mech. - 2017. - V. 180. - P. 213-228. -https://doi.org/10.1016/j.engfracmech.2017.05.003

2. Torabi A.R., Kalantari M.H., Aliha M.R.M., Ghorei-shi S.M.N. Pure mode II fracture analysis of dissimilar Al-Al and Al-Cu friction stir welded joints using the generalized MTS criterion // Theor. Appl. Fract. Mech. -2019. - V. 104. - P. 102369. - https://doi.org/10.1016/j. tafmec.2019.102369

3. AlihaM.R.M., Ghoreishi S.M.N., Imani D.M., Fotoohi Y., Berto F. Mechanical and fracture properties of aluminium cylinders manufactured by orbital friction stir welding // Fatigue Fract. Eng. Mater. Struct. - 2020. - V. 43. -No. 7. - P. 1514-1528. - https://doi.org/10.1111/ffe. 13229

4. Torabi A.R., Kalantari M.H., Aliha M.R.M. Fracture analysis of dissimilar Al-Al friction stir welded joints under tensile/shear loading // Fatigue Fract. Eng. Mater. Struct. - 2018. - V. 41. - No. 9. - P. 2040-2053. -https://doi.org/10.1111/ffe.12841

5. Mohammad Aliha M.R., Fotouhi Y., Berto F. Experimental notched fracture resistance study for the interface of Al-Cu bimetal joints welded by friction stir welding // Proc. Inst. Mech. Eng. B. J. Eng. Manuf. - 2018. -V. 232. - No. 12. - P. 2192-2200. - https://doi.org/10. 1177/0954405416688935

6. Murugan C.B.K. Process Parameter Effects in the Friction Surfacing of Monel over Mild Steel // Int. Conf. Int. Syst. Con., 2017. - P. 203-207.

7. Farzadi A., Haghshenas M.B. Optimization of operational parameters in friction stir welding of AA7075-T6 aluminum alloy using response surface method // Arab. J. Sci. Eng. - 2017. - V. 42. - P. 4905-4916. - https://doi. org/10.1007/s13369-017-2741-6

8. Nixon R.G.S., Mohanty B.S., Bhaskar G.B. Effect of process parameters on physical measurements of AISI316 stainless steel coating on EN24in friction surfacing Effect of process parameters on physical measurements of AISI316 stainless steel coating on EN24 in friction surfacing // Mater. Manuf. Proc. - 2017. - V. 33. - No. 7. -P. 778-785. - https://doi.org/10.1080/10426914.2017. 1388524

9. Singh A. et al. Probabilistic data structures for big data analytics: A comprehensive review // Knowledge-Based Syst. - 2020. - V. 188. - P. 104987. - https://doi.org/10. 1016/j.knosys.2019.104987

10. Galetsi P., Katsaliaki K. A review of the literature on big data analytics in healthcare // J. Oper. Res. Soc. - 2020. -V. 71. - No. 10. - P. 1511-1529. - https://doi.org/10. 1080/01605682.2019.1630328

11. Shafqat S. et al. Big data analytics enhanced healthcare systems: A review // J. Supercomput. - 2020. - V. 76. -No. 3. - P. 1754-1799. - https://doi.org/10.1007/s11227-017-2222-4

12. Chehbi-Gamoura S., Derrouiche R., Damand D., Barth M. Insights from big data analytics in supply chain management: An all-inclusive literature review using the SCOR model // Prod. Plan. Cont. - 2020. - V. 31. -No. 5. - P. 355-382. - https://doi.org/10.1080/09537287. 2019.1639839

13. Kamble S.S., Gunasekaran A. Big data-driven supply chain performance measurement system: A review and framework for implementation // Int. J. Prod. Res. -2020. - V. 58. - No. 1. - P. 65-86. - https://doi.org/10. 1080/00207543.2019.1630770

14. Cui Y., Kara S., Chan K.C. Manufacturing big data ecosystem: A systematic literature review // Robot. Comput. Integr. Manuf. - 2019. - V. 62. - P. 101861. - https://doi. org/10.1016/j.rcim.2019.101861

15. Gupta S., Modgil S., Gunasekaran A. Big data in lean six sigma: A review and further research directions // Int. J. Prod. Res. - 2020. - V. 58. - No. 3. - P. 947-969. -https://doi.org/10.1080/00207543.2019.1598599

16. Karwowski W., Trzcielinski S., Mrugalska B., Di Nicolan-tonio M., Rossi E. Advances in Manufacturing, Production Management and Process Control // Int. Conf. Adv. Prod. Man. Pro. Con., 2019.

17. Meng Q.N., Xu X. Price forecasting using an ACO-based support vector regression ensemble in cloud manufacturing // Comput. Ind. Eng. - 2018. - V. 125. - P. 171177. - https://doi.org/10.1016Zj.cie.2018.08.026

18. Ramsay J.O. Functional Data Analysis. - Springer, 2005.

19. Ramsay J.O., Silvermann B.W. Functional Data Analysis. - Springer, 1998.

20. Cardot H., Ferraty F., Sarda P. Functional linear model // Stat. Probab. Lett. - 1999. - V. 45. - No. 1. - P. 45252. -https://doi.org/10.1016/S0167-7152(99)00036-X

21. Fazlollahtabar H., Gholizadeh H. Fuzzy possibility regression integrated with fuzzy adaptive neural network for predicting and optimizing electrical discharge machining parameters // Comput. Ind. Eng. - 2018. - V. 140. -P. 106225. - https://doi.org/10.1016/j.cie.2019.106225

22. Bayer F.M., Tondolo C.M., Müller F.M. Beta regression control chart for monitoring fractions and proportions // Comput. Ind. Eng. - 2018. - V. 119. - P. 416-426. -https://doi.org/10.1016/j.cie.2018.04.006

23. Brown P.J., Fearn T., Vannucci M. Bayesian wavelet regression on curves with application to a spectroscopic calibration problem // J. Am. Stat. Assoc. - 2001. - V. 96. -No. 454. - P. 398-408. - https://doi.org/10.1198/0162145 01753168118

24. Frank I.E., Friedman J.H. American society for quality a statistical view of some chemometrics regression tools // Technometrics. - 1993. - V. 35. - No. 2. - P. 109-135. -http://www.jstor.org/stable/1269656%0Ahttp

25. Kuhnt S., Rehage A., Becker-Emden C., Tillmann W., Hussong B. Residual analysis in generalized function-on-scalar regression for an HVOF spraying process // Qual. Reliab. Eng. Int. - 2016. - V. 32. - No. 6. - P. 21392150. - https://doi.org/10.1002/qre.2018

26. Delaigle A., Hall P. Methodology and theory for partial least squares applied to functional data // Ann. Stat. -2012. - V. 40. - No. 1. - P. 322-352. - https://doi.org/10. 1214/11-AOS958

27. Goldsmith J., Crainiceanu C.M., Caffo B., Reich D. Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements // J. R. Stat. Soc. C. Appl. Stat. - 2012. - V. 61. - No. 3. - P. 453469. - https://doi.org/10.1111/j.1467-9876.2011.01031.x

28. Kumar A., Chinnam R.B., Tseng F. An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools // Comput. Ind. Eng. - 2019. - V. 128. - P. 1008-1014. - https:// doi.org/10.1016/j.cie.2018.05.017

29. James G.M. Generalized linear models with functional predictors // J. R. Stat. Soc. Ser. B Stat. Methodol. -2002. - V. 64. - No. 3. - P. 411-432. - https://doi.org/ 10.1111/1467-9868.00342

30. Marx B.D., Eilers P.H.C. Generalized linear regression on sampled signals and curves: A p-spline approach // Technometrics. - 1999. - V. 41. - No. 1. - P. 44939. -https://doi.org/10.1080/00401706.1999.10485591

31. Müller H.G., Stadtmüller U. Generalized functional linear models // Ann. Stat. - 2005. - V. 33. - No. 2. - P. 774805. - https://doi.org/10.1214/009053604000001156

32. Ramsay A.J.O., Dalzell C.J. Some Tools for Functional Data Analysis // J. R. Stat. Soc. B. - 1991. - V. 53. -No. 3. - P. 539-561. - https://doi.org/10.1007/b98888

33. Ratcliffe S.J., Heller G.Z., Leader L.R. Functional data analysis with application to periodically stimulated foetal heart rate data. II: Functional logistic regression // Stat. Med. - 2002. - V. 21. - No. 8. - P. 1115-1127. - https:// doi.org/10.1002/sim.1068

34. Reiss P.T., Ogden R.T. Functional principal component regression and functional partial least squares // J. Am. Stat. Assoc. - 2007. - V. 102. - No. 479. - P. 984-996. -https://doi.org/10.1198/016214507000000527

35. Scheipl F., Staicu A.M., Greven S. Functional additive mixed models // J. Comput. Graph. Stat. - 2015. -V. 24. - No. 2. - P. 477-501. - https://doi.org/10.1080/ 10618600.2014.901914

36. Yao F., Muller H.G., Wang J.L. Functional linear regression analysis for longitudinal data // Ann. Stat. - 2005. -V. 33. - No. 6. - P. 2873-2903. - https://doi.org/10.1214/ 009053605000000660

37. Peng J., Paul D. A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data // J. Comput. Graph. Stat. -2009. - V. 18. - No. 4. - P. 995-1015.

38. Wang W. Linear mixed function-on-function regression models // Biometrics. - 2014. - V. 70. - No. 4. - P. 794801. - https://doi.org/10.1111/biom.12207

39. Meyer M.J., Coull B.A., Versace F., Cinciripini P., Morris J.S. Bayesian function-on-function regression for multilevel functional data // Biometrics. - 2015. - V. 71. -No. 3. - P. 563-574. - https://doi.org/10.1111/biom. 12299.

40. Wu S., Müller H.G. Response-adaptive regression for longitudinal data // Biometrics. - 2011. - V. 67. - No. 3. -P. 852-860. - https://doi.org/10.1111/j.1541-0420.2010. 01518.x

41. Luo R., Qi X., Wang Y. Functional wavelet regression for linear function-on-function models // Electron. J. Stat. -2016. - V. 10. - No. 2. - P. 3179-3216. - https://doi.org/ 10.1214/16-EJS1204

42. Wang W. Linear mixed function-on-function regression models // Biometrics. - 2014. - V. 70. - No. 4. - P. 794801.

43. Ivanescu A.E., Staicu A., Scheipl F., Greven S. Penalized function-on-function regression // Comput. Stat. -2013. - V. 30. - P. 539-568.

44. Morris J.S., Carroll R.J. NIH Public Access Wavelet-based functional mixed models // J. R. Stat. Soc. - 2009. -V. 68. - No. 2. - P. 179-199.

45. Luo R., Qi X. Function-on-function linear regression by signal compression // J. Am. Stat. Assoc. - 2017. -V. 112. - No. 518. - P. 690-705. - https://doi.org/10. 1080/01621459.2016.1164053

46. Palumbo B., Centofanti F., Del Re F. Function-on-func-tion regression for assessing production quality in industrial manufacturing // Qual. Reliab. Eng. Int. - 2020. -V. 36. - No. 8. - P. 2738-2753. - https://doi.org/10.1002/ qre.2786

Received 01.02.2024, revised 19.04.2024, accepted 19.04.2024

This is an excerpt of the article "A Function-on-Function Regression Model for Monitoring the Manufacturing Process Performance with Application in Friction Stir Welding". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/S102995992404009X

Сведения об авторах

Farshad Ramezankhani, Iran University of Science and Technology, Iran, f.ramezankhani@ut.ac.ir

Rassoul Noorossana, Prof., Iran University of Science and Technology, Iran; University of Central Oklahoma, USA, rassoul@iust.ac.ir Mohammad Reza Mohammad Aliha, Prof., Iran University of Science and Technology, Iran, mrm_aliha@iust.ac.ir

i Надоели баннеры? Вы всегда можете отключить рекламу.