Научная статья на тему 'MODEL OF KINETICS OF ADSORPTION PURIFICATION OF ATMOSPHERIC AIR BY ZEOLITE NAX GRANULES UNDER NON-ISOTHERMAL CONDITIONS'

MODEL OF KINETICS OF ADSORPTION PURIFICATION OF ATMOSPHERIC AIR BY ZEOLITE NAX GRANULES UNDER NON-ISOTHERMAL CONDITIONS Текст научной статьи по специальности «Физика»

CC BY
15
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MODEL / KINETICS / ADSORPTION / PURIFICATION / AIR / ZEOLITE / TEMPERATURE

Аннотация научной статьи по физике, автор научной работы — Filimonova Olga N., Vikulin Andrey S., Enyutina Marina V., Khorvat Olesya V.

Based on the generalized Langmuir theory, equivalent multicomponent isotherms of the main atmospheric air impurities (water vapor, carbon dioxide, and acetylene) are presented, using experimental data on their adsorption capacity in NaX zeolite granules and calculating the Henry constant from the boiling point at atmospheric pressure, for thermodynamic conditions in the block of complex cleaning of the TOPS-100V air separation unit. Intra-granular heat and mass transfer is considered in the linear Gluckauf approximation using the superposition principle of impurities behavior under the conditions of the diffusion mechanism of their absorption (molecular, Knudsenovsky, Folmerovsky). A model with lumped parameters is obtained in form of the Cauchy problem, and the identification of the kinetic coefficients is carried out from the solution of the diffusion problem in a ball under boundary conditions of the first kind. The impurities adsorption heats were found from the isosteric state from the two-dimensional equation van-der-Waals using the Van-Hoff ratio. The unsteady average volumetric granule temperature is calculated from the solution of the initial-boundary value problem for the equation of thermal conductivity of a sphere with a boundary condition of the first kind on its surface, under the assumption of thermal equilibrium of the phases, and a volumetric uniform heat source due to the adsorption heat. It was found that the limiting mechanism of impurity transfer in adsorbent granules is diffusion in micropores. Under the conditions of the proportional dependence of the Langmuir isotherm parameter on temperature, an estimate was made of the decrease in the adsorption capacity of the adsorbent with increasing temperature, which made it possible, using a computational experiment, to analyze the kinetics of absorption of the main atmospheric air impurities by granules of NaX zeolite.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MODEL OF KINETICS OF ADSORPTION PURIFICATION OF ATMOSPHERIC AIR BY ZEOLITE NAX GRANULES UNDER NON-ISOTHERMAL CONDITIONS»

DOI: 10.6060/ivkkt.20216412.6393 УДК: 544.723.23

МОДЕЛЬ КИНЕТИКИ АДСОРБЦИОННОЙ ОЧИСТКИ АТМОСФЕРНОГО ВОЗДУХА ГРАНУЛАМИ ЦЕОЛИТА NaX ПРИ НЕИЗОТЕРМИЧЕСКИХ УСЛОВИЯХ

О.Н. Филимонова, А.С. Викулин, М.В. Енютина, О.В. Хорват

Ольга Николаевна Филимонова *, Андрей Сергеевич Викулин, Марина Викторовна Енютина Научно-исследовательский центр, Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина», ул. Старых Большевиков, 54А, Воронеж, Российская Федерация, 394064

E-mail: olga270757@rambler.ru*, mmiler5472@yandex.ru, maryena63@mail.ru Олеся Владимировна Хорват

Кафедра иностранных языков, Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина», ул. Старых Большевиков, 54А, Воронеж, Российская Федерация, 394064 E-mail: olessja81@yandex.ru

На основе обобщенной теории Ленгмюра представлены эквивалентные многокомпонентные изотермы основных примесей атмосферного воздуха (водяной пар, диоксид углерода и ацетилен), с использованием экспериментальных данных их адсорбционной емкости в гранулах цеолита NaX и расчетом константы Генри по температуре кипения при атмосферном давлении, для термодинамических условий в блоке комплексной очистки воздухоразделительнойустановки ТКДС-100В. Внутригранулярный тепломассообмен рассмотрен в линейном приближении Глюкауфа с применением суперпозиционного принципа поведения примесей в условиях диффузионного механизма их поглощения (молекулярный, Кнудсеновский, Фольмеровский). Получена модель с сосредоточенными параметрами в виде задачи Коши, причем идентификация кинетических коэффициентов проведена из решения задачи диффузии в шаре при граничных условиях первого рода. Теплоты адсорбций примесей найдены по изостерическому состоянию из двумерного уравнения Ван-дер-Ваальса с использованием соотношения Вант-Гоффа. Нестационарная среднеобъ-емная температура гранулы вычислена из решения начально-краевой задачи для уравнения теплопроводности шара с граничным условием первого рода на его поверхности, в предположении теплового равновесия фаз, и объемным равномерным тепловым источником, обусловленным теплотой адсорбции. Установлено, что лимитирующим механизмом переноса примесей в гранулах адсорбента является диффузия в микропорах. В условиях пропорциональной зависимости параметра Ленгмюровской изотермы от температуры сделана оценка уменьшения адсорбционной емкости адсорбента с повышением температуры, что позволило с помощью вычислительного эксперимента проанализировать кинетику поглощения основных примесей атмосферного воздуха гранулами цеолита NaX.

Ключевые слова: модель, кинетика, адсорбция, очистка, воздух, цеолит, температура

Для цитирования:

Филимонова О.Н., Викулин А.С., Енютина М.В., Хорват О.В. Модель кинетики адсорбционной очистки атмосферного воздуха гранулами цеолита NaX при неизотермических условиях. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 12. С. 17-23 For citation:

Filimonova O.N., Vikulin A.S., Enyutina M.V., Khorvat О.У. Model of kinetics of adsorption purification of atmospheric air by zeolite NaX granules under non-isothermal conditions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 12. P. 17-23

MODEL OF KINETICS OF ADSORPTION PURIFICATION OF ATMOSPHERIC AIR BY ZEOLITE NaX GRANULES UNDER NON-ISOTHERMAL CONDITIONS

O.N. Filimonova, A.S. Vikulin, M.V. Enyutina, O.V. Khorvat

Olga N. Filimonova *, Andrey S. Vikulin, Marina V. Enyutina

Scientific Research Center, Military Educational and Scientific Center of the Air Force «N.E. Zhukovsky and Y.A. Gagarin Air Force Academy», Starykh Bolshevikov st., 54A, Voronezh, 394064, Russia E-mail: olga270757@rambler.ru *, mmiler5472@yandex.ru, maryena63@mail.ru

Olesya V. Khorvat

Department of Foreign Languages, Military Educational and Scientific Center of the Air Force «N.E. Zhukovsky and Y.A. Gagarin Air Force Academy», Starykh Bolshevikov st., 54A, Voronezh, 394064, Russia E-mail: olessja81@yandex.ru

Based on the generalized Langmuir theory, equivalent multicomponent isotherms of the main atmospheric air impurities (water vapor, carbon dioxide, and acetylene) are presented, using experimental data on their adsorption capacity in NaX zeolite granules and calculating the Henry constant from the boiling point at atmospheric pressure, for thermodynamic conditions in the block of complex cleaning of the TOPS-IOOV air separation unit. Intra-granular heat and mass transfer is considered in the linear Gluckauf approximation using the superposition principle of impurities behavior under the conditions of the diffusion mechanism of their absorption (molecular, Knud-senovsky, Folmerovsky). A model with lumped parameters is obtained in form of the Cauchy problem, and the identification of the kinetic coefficients is carried out from the solution of the diffusion problem in a ball under boundary conditions of the first kind. The impurities adsorption heats were found from the isosteric state from the two-dimensional equation van-der-Waals using the Van-Hoff ratio. The unsteady average volumetric granule temperature is calculated from the solution of the initial-boundary value problem for the equation of thermal conductivity of a sphere with a boundary condition of the first kind on its surface, under the assumption of thermal equilibrium of the phases, and a volumetric uniform heat source due to the adsorption heat. It was found that the limiting mechanism of impurity transfer in adsorbent granules is diffusion in micropores. Under the conditions of the proportional dependence of the Langmuir isotherm parameter on temperature, an estimate was made of the decrease in the adsorption capacity of the adsorbent with increasing temperature, which made it possible, using a computational experiment, to analyze the kinetics of absorption of the main atmospheric air impurities by granules of NaX zeolite.

Key words: model, kinetics, adsorption, purification, air, zeolite, temperature

INTRODUCTION

Granular synthetic zeolite NaX is the main component of a complex cleaning unit (CCU) of air separation units (ASU) for the oxygen and nitrogen separation from gaseous impurities (vaporous moisture (H2O), carbon dioxide (CO2), acetylene (C2H2)) of atmospheric air [1]. The exothermicity of the adsorption process reduces the adsorption capacity (static and dynamic) and reduces the efficiency of the adsorbers [2]; therefore, the heat and mass transfer processes accompanying adsorption are of a conjugate nature. In most cases, the presented nonisothermal models are limited to single-species adsorption [3], or the dependence of the governing parameters on temperature is neglected [4].

A common feature of solid-phase adsorbents, including zeolites, is their high specific absorption area due to the developed inner pore surface (for zeolites 200-600 m2/g [5], the average pore diameter is 2-10 A [6]), therefore, the adsorption process proceeds, according to the classical concepts [7], on the surface of the internal granules voids. This requires the transfer of molecules into the granules by the diffusion absorption mechanism with specific features depending on the pore size [8]. Diffusion in pores and molecular diffusion have the same driving force - the concentration gradient, however, their difference is that diffusion in pores occurs as a result of molecules collisions with walls, and molecular diffusion is initiated by collisions with other molecules in pores, and these two diffusions

types coincide when the pore diameter is large enough [9]. In the limiting case (the pore radius is less than the free path of molecules), pore diffusion becomes Knud-sen diffusion [10]:

Dk = 9700 • rp (t/^ )1/2, (1)

where rp is the average pore radius, cm; t is temperature, K; n is the molecular weight of the adsorbent, g/mol. To establish the relationship between diffusion in pores Dp and molecular diffusion, a semiempirical relation is used [8]

Dp = s pDM/lp, (2)

where Sp is the porosity of the adsorbent granules (0.05-0.5); lp is the pore tortuosity factor (for example, according to [11], it can reach values up to 100, but in most cases for zeolites it lies within 3.3-3.6); to calculate the molecular diffusion coefficient, the Chapman-Enskiy formula is applicable [12]

0.0018583 • t3/2 (1/^ A +1/^ B )1/2

Dm =-

pc22 Q(s /kt)

(3)

where цл, цв - molecular weights of gases A and B, g/mol; p- pressure, atm; 012 = (ол+ов)/2; ал, ав - diameters of molecules of gases A and B, A; Q(s/£i) is a di-mensionless function of temperature and intermolecular potential field for molecules A and B; s/k is the Len-nard-Johnson potential, K. If diffusion in pores and Knudsen diffusion occur simultaneously, then the joint diffusion coefficient is determined by the Bosanquit relation [12]

Dpk = D,1 + Dk\ (4)

Folmer diffusion characterizes the mass transfer of already adsorbed molecules over the inner pore surface [13]

lg Ds = 1.8 - 0.20AQ/(mRt),

(5)

Sc(r, t) Sq(r, т) + P p

p St

_L

r2 Sr

Dpkr

St

2 Sc(r,

P p

Dsr ■

Sq(r, t)

(6)

where t is time, s; rg - radius of the granule, m; r - current radius (0 < r < rg), m; c(r,x), q(r,x) - are the local

concentrations of the adsorbate in the pore medium and the adsorbed phase within the granule, kg/m3, wt. shares; pp is the density of the granule, kg/m3. The dependence of the diffusion coefficients (1)-(5) on temperature requires knowledge of the temperature fields inside the granules associated with the adsorption heat and the conditions at its outer boundary [15] using an equation of the thermal conductivity type, as well as the relationship between c(r,x)) and q(r,x), assuming that they are in equilibrium [16]

q=f W (7)

In addition to this, an appropriate set of initial and boundary conditions is required. If we take into account the adsorbate multicomponent, then it turns out that the problem can be solved only numerically, while there is no certainty about the existence and uniqueness of the result obtained [17]. The implementation of such an approach in a parametric search for the determination of effective modes of adsorbers operation is apparently justified, but when evaluating pre-design solutions for a reasonable choice of separation equipment, when it is necessary to carry out optimization procedures, a more flexible toolkit is needed in the form of models with lumped parameters, which integrally takes into account the adsorption process reference features. This study is devoted to the development of such a model.

MULTICOMPONENT IMPURITY ISOTHERMES

Let gaseous impurities in atmospheric air have the following subscript numbering: H2O - 1; CO2 - 2; C2H2 - 3. According to the generalized Langmuir theory [18], the equivalent expression for the 7-th (i = 1,3) adsorption component has the form

where AQ is the heat of adsorption, J/mol; R - universal gas constant, J/(mol K); m - surface index.

Due to the fact that the driving force of various diffusion mechanisms directly depends on the adsorbate concentration outside the granules, the heat and mass transfer inside them determines the adsorption processkinetics, it is necessary to consider together with the entire adsorbent layer [14]. In this case, the mixed kinetics of pore and surface mass transfer under the assumption of the diffusion mechanisms and monodisperse granules sphericity summation is described by the equation [8]

aiPi

1+

j=1

(8)

where p7 is the partial pressure of the 7-th component of the impurity, Pa; 07, b7 - are parameters determined from adsorption isotherms in a monovariant presence in atmospheric air, Pa-1, that is

0 aiPi q = 1+bp

(9)

The adsorption capacity of impurities in granules of zeolite NaX according to [19] is given in Table 1. For zeolites in [20] it was found that the Henry constant of the 7-th adsorbate K7 [mol/(g Pa)] can be determined by the empirical relation

lnK « 0.0623- tbj -18.12, (10)

where tb is the boiling point at atmospheric pressure

a

)

2

r

of the 7-th adsorbate, K (50 < tb < 350). It follows

ui

from the structure of the Langmuir equation that

ai = Mm, = Ki • (11)

Calculations of the values of a7 and b7 (see Table 1) are given for thermodynamic conditions at the entrance to the CCU ASU TOPS-IOOV [21] (po = 20 MPa, to = 288 K, density of granules pp = 1100 kg/m3 and their diameter dg = 4 mm), while the partial pressures of water vapor, carbon dioxide and acetylene are respectively equal [22]: pi* = 25.8 kPa; p2* = 0.608 kPa; p3* = 0.002 kPa.

Table 1

Isotherms parameters calculation

Parameter Adsorbate

H2O CO2 C2H2

qmi ' kg/m3 120.0 20.0 60.0

%, к 373.0 194.5 190.0

Цi, kg/mol I8.OIIO-3 44.010-3 26.04 10-3

üi, kg/(m3 Pa) 3308.0 0.069 0.054

bi, Pa-1 27.57 3.4510-3 9.05 10-4

From a comparative analysis of isotherms (Fig. 1) it follows that at the beginning the granules are saturated with water vapor, and then with carbon dioxide and acetylene (the same qualitative conclusion was made based on the results of pilot experiments in [19]).

Fig. 1. Isotherms of impurities: 1 - H2O; 2 - CO2; 3 - C2H2 (the

dotted line is the partial pressure of impurities) Рис. 1. Изотермы примесей: 1 - H2O; 2 - CO2; 3 - C2H2 (пунктирная линия - парциальные давления примесей)

INTRAGRANULAR MASS EXCHANGE

Regardless of which diffusion mechanism dominates during the transport of adsorbates into a granule, quantitative analysis requires the joint solution of equations (6) and (7) for each adsorbate with additional conditions. This problem is simplified using

the postulate of Gluckauf [23] that the rate of absorption of adsorbates by a granule is linearly proportional to the driving force of the process, which is defined as the difference between the concentration on the surface of the granule q and the superposition of the average

volumetric concentrations of adsorbed phases q; (t)

\dqi (T)-=kPi L - a;«! i=û

dx dq(r)

dx ^ dx

1=1

with initial conditions

q (0) = = const (13)

and limitation on adsorption capacity

q(x0) = q° = const, (14)

where q is the current concentration of the 7-th adsorbate in the adsorbent, kg/m3; q - total concentration

of adsorbates in the adsorbent granule, kg/m3; k - ki-

pi

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

netic coefficients, s-1, which are related to the geometrical dimensions of the granule, its physical characteristics and the diffusion mechanism; T0 - time to reach 99% of the adsorption capacity of the granule, s. The

identification k was carried out for the quasi-iso-

pi

steric adsorption mode (practically unchanged temperature and pressure). If, as in [8], we assume that in (6)

(s p / p p )dci (r, x)/ dx <<dqi (r, x)/ dx and fin (7) is

differentiable with respect to C7 (the Langmuir relation assumes this for c;- e [0,»), which is explicitly related to p7 through the equation of state for an ideal gas), that is dqt = f (c )dc, then from (6) it follows

d4i (7)

(12)

'i(r'T) - 11\D ¿Z2L - ..2 dr\De'r -

dx r2 dr \ ' dr where the effective diffusion coefficient is

D

Dei -

Pki

- + Dsj - const

(15)

(16)

f(ci )P p

Equation (15) is supplemented with the initial condition

q, (r,0) = 0, (17)

the condition for the concentration constancy of the 7-th adsorption phase at the outer boundary of the granule

q,i (rg, t) = am (18)

and the axisymmetry condition

dq, (0, T) dr

■ 0.

(19)

Solution of the initial-boundary value problem (15), (17) - (19) [24]

q,i(r, T) - qm +

2rgq

g4mt

(-1Г

2 ^ 2 n-1 n

4- z

( \ nnr

exp

( De п2к2т ^

(20)

3

2

r

r

g

g

к

у

It follows from (20) that

œ I

q (t) = 4mt + ^-2exP

( nen2K2^

n=1n

dT

(T) -qmiDei œ — =-Y^ ^exp

( Den2K2T ^

e

r g n=1

Substituting (21) and (22) into system (12),

and bearing in mind that for D n2n2x/r2 >> 1

ei s

œ 2

Z-rexp

n=1n

we get

( De n2n2T^ ei

g

Zexp

n=1

( De n2n2TÏ

e

g

^ 1,

= n2D / r2

p, = Щ1-

q,

-q,

-exp

q,

2acr qi

qm, -q, bc R,tqmi

27 R

8 ^i

I b = cri

Ltcribcri ' Cri' p™

Aß, = ß^ - Rit = 2^

dt(r, t)_ kp d

CpP p =T2 dr

>dt(r, t)'

dr

Aß P p s pTo

Table 2

(21) (22)

The adsorbates adsorption heat

Parameter Adsorbate

H2O CO2 C2H2

r, , J/(kgK) 461 189 320

t , K 647.3 304.1 309.0

pcn, pa 214.0105 71.5105 60.9105

acri 1755.4 194.95 677.1

bcr 1.743 10-3 1.005 10-3 2.029 10-3

Aß, J/mol 36272 17072 17368

Aß, J/kg 2.014106 0.388 106 0.667 106

"Pi n Det"g■ (23)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

IMPURITIES ADSORPTION HEAT

The isosteric adsorption heat of the 7-th adsorbate was determined from the theoretical adsorption isotherm based on the two-dimensional Van-der-Waals equation [25]

f o A

t(r,0) = t(rg,t) = to, dt(0,t)/dr = 0. (28)

Solution of the initial-boundary value problem (27) and (28) [26]

T (R,0) = W

1 2 œ (iV*

-(1 - R2) + — X^^ sin(nnR)exp(-n2n20)

n=1

(24)

where ^7 is the gas constant of the 7-th adsorbate,

J/(kg K); t - average volumetric granule temperature,

K; £ - thermodynamic constant, Pakg/J; n , h are

cri cri

critical parameters equal to

R tcr

where t (R, 0) = t(r, t) - to; 0 = iaq / rg2; aq = Äp /(ppCp ); R = r/rg; W = Aß*pprg /(t0spkp). Average pellet temperature

1 1 œ

T (0) = -W

(-l)n

- + — X^^ cos(nn)exp(-n2n20)

15 n n=1 n

COMPUTATIONAL EXPERIMENT

(29)

(25)

where t , p are the critical temperature and pres-

cri r cri

sure of the 7-th adsorbate, respectively K and Pa. According to the van-Hoff equation [12]

-2 -

Qst =Rit dlnpi /dt,

whence the value of the heat of adsorption follows (Table 2) at qj / qm ^ 1

Evaluation of kinetic coefficients k assumes

pi

knowledge of the limiting diffusion mechanism in the granule and the corresponding value of the diffusion coefficient, and a comparative analysis using relation (16) (Table 3) shows that De « D k

Table 3

Diffusion coefficients and kinetic parameters for t0 = 288 K and p0 = 20 MPa Таблица 3. Коэффициенты диффузии и кинетиче-

(26)

The local temperature of the adsorbate granule porous matrix, under the assumption of phases thermal equilibrium, is determined from the thermal conductivity of a sphere with a uniform volumetric heat source due to the heat of adsorption

Parameter Adsorbate

H2O CO2 C2H2

Dpkt , m2/s 9.653 10-8 5.760 10-8 7.01010-8

kp, , s-1 0.238 0.142 0.173

(27)

where Xp, Cp - thermal conductivity and heat capacity of the adsorbent matrix, respectively, W/(m K) and J/(kg K); AQ* - specific heat of adsorption per granule, J/kg,

The time to of filling the adsorbate granules with adsorbates was calculated as follows. It follows from (12) and (13) that

(qm - q0) exp(- t) (30)

Substitution of (30) into the second equation of system (12) and subsequent integration from 0 to to,

2

r

g

v

/

2

r

g

ч

/

œ

2

2

ч

/

ч

/

q

m

a„„ =

cr

r

taking into account (14), allows obtaining an expression for the total concentration of adsorbates in a granule

q(To) = = £ f - ¡0] exp(- kptt) (31)

o t=Л

\n view of the fact that q(x0) = 0.99qw ,

from (31), T0 = 4.4 s was calculated. Since cp = 870 J/(kgK), Ap = 0.14 W/(mK) [14], therefore 60 = Ta/rg2 = 0.16 and, according to (29), the increase in the temperature of the adsorbent granule due to adsorption absorption will be ~ 4 K. If in (11) we restrict ourselves to the linear approximation of the parameter of the Langmuir isotherm on the temperature bi ~ t, then qm = a,- K /1 the coefficients a for the thermody-

namic conditions at the entrance to the adsorber are calculated (Table 4).

Table 4

The adsorption capacity of zeolite for impurities at t = 292 K

Таблица 4. Адсорбционная емкость цеолита по примесям при t = 292 К

Parameter Adsorbate

H2O CO2 C2H2

ai 10.447 83.48 103 32.0104

qm 118.35 19.72 59.38

Integration results (12) with initial conditions

(13), when q0 - 0

q,(T) = qjl-exp(-kpi)] (32)

q(T) = X qjl - exp (- kpT)] (33)

i=1

Calculations using relations (32) and (33) in the presence of a restrictive condition on the adsorption capacity (14) show (Fig. 2) that the influence of the ad-

sorption heat during the purification of atmospheric air cannot be neglected, since this can lead to the appearance of a "breakthrough" concentration impurities before the development of the CCU. For example, in this case, with a six-hour adsorption cycle, a decrease in the adsorption capacity by «1% due to an increase in the temperature of the adsorbent granule by 4 K reduces the operating time by 0.5 h.

Fig. 2. Kinetics of intragranular adsorption of impurities at 288 K (solid curves) and 292 K (dotted curves): 1, 1' - the total concentration of impurities; 2, 2' - water vapor; 3, 3' - acetylene; 4, 4' - carbon dioxide

Рис. 2. Кинетика внутригранулярной адсорбции примесей при 288 К (сплошные кривые) и 292 К (пунктирные кривые): 1, 1' - суммарная концентрация примесей; 2, 2' - водяной пар;

3, 3' - ацетилен; 4, 4' - диоксид углерода

CONCLUSION

The presented tools for assessing the adsorption heat effect on the intragranular kinetics of adsorption absorption of the main gaseous impurities from the atmospheric air by the NaX zeolite makes it possible to evaluate the purification efficiency.

The authors declare the absence a conflict of interest warranting disclosure in this article.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ЛИТЕРАТУРА

1. KohlA. L., Nielsen R. Gas purification. Houston: Golf Professional Publ. 1997. 900 p.

2. Ray S., Das G. Process equipment and plant design. NY: Elsevier. 2020. 882 p.

3. Murathatunyaluk S., Srichanvichit K., Anantpinijwatna A., Kitchaiya P. Modeling of non-isothermal adsorption process in a silica gel desiccant packed bed. In: 28th European symposium on computer aided process engineering. Graz (Austria): Elsevier. 2018. P. 49-54. DOI: 10.1016/B978-0-444-64235-6.50011-5.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4. Montastruc L., Floquct P., Mayer V., Nikov I., Domenech S. Isothermal or non isothermal modelingin a pellet adsorbent: application to adsorption heat pumps. Comp. Aid. Chem. Eng. 2009. V. 27. P. 465-470. DOI: 10.1016/S1570-7946(09)70298-6.

5. Seader J.D., Henley J.E., Roper D.K. Separation process principles. Hobokon, NJ, USA: John Wiley & Sons. 2011. 821 p.

REFERENCES

1. KohlA. L., Nielsen R. Gas purification. Houston: Golf Professional Publ. 1997. 900 p.

2. Ray S., Das G. Process equipment and plant design. NY: Elsevier. 2020. 882 p.

3. Murathatunyaluk S., Srichanvichit K., Anantpinijwatna A., Kitchaiya P. Modeling of non-isothermal adsorption process in a silica gel desiccant packed bed. In: 28th European symposium on computer aided process engineering. Graz (Austria): Elsevier. 2018. P. 49-54. DOI: 10.1016/B978-0-444-64235-6.50011-5.

4. Montastruc L., Floquct P., Mayer V., Nikov L, Domenech S. Isothermal or non isothermal modelingin a pellet adsorbent: application to adsorption heat pumps. Comp. Aid. Chem. Eng. 2009. V. 27. P. 465-470. DOI: 10.1016/S1570-7946(09)70298-6.

5. Seader J.D., Henley J.E., Roper D.K. Separation process principles. Hobokon, NJ, USA: John Wiley & Sons. 2011. 821 p.

6. Wankat P.C. Separation processes engineering: Includes mass transfer analysis. NY: Prentice Hall. 2012. 955 p.

7. Толмачев А.М. Адсорбция газов, паров и растворов. М.: Изд. группа «Граница». 2012. 241 с.

8. Tien C. Adsorption calculations and modelling. Boston, USA: Butterworth-Heinemann. 1994. 244 p. DOI: 10.1016/B978-0-7506-9121-5.50013-6.

9. Gautam R.K., Chattopadhyaya M.C. Nanomaterials for wastewater remediation. NY: Butterworth-Heinemann.

2016. 366 p. DOI: 10.1201/9781315368108.

10. Li S., Xin F., Li L. Reaction NY: Butterworth-Heinemann.

2017. 676 p.

11. Zhao J.C. Methods for phase diagram determination. NY: Elsievier. Science. 2007. 520 p.

12. Suzuki M. Adsorption engineering. Tokyo: Kodansha Ltd. 1990. 278 p.

13. Cheng D., Peters E., Knipers J. Numerical modeling of flow and coupled mass and heat transfer in an adsorption process. Chem. Eng. Sci. 2016. V. 152. P. 413-425. DOI: 10.1016/j.ces.2016.06.036.

14. Karge H.G., Weitkamp J. Molecular sieves. Science and Technology. Adsorption and diffusion. V. 7. Berlin: Springer-Verlag Berlin Heidelberg. 2008. 400 p. DOI: 10.1007/978-3-540-73966-1.

15. Danilov V.A., Schepper P., Cousin-Saint-Remi J., De-nayer J.F.M. Concentration and temperature profiles in a fixed bed column based on an analytical solution of the axial dispersion model for binary and multicomponent non-isothermal adsorption process. Comp.Chem. Eng. 2019. V. 123. P. 76-86. DOI: 10.1016/j.compchemeng.2018.12.026.

16. Ruthven D.M. Principles of adsorption and adsorption processes. NY: Wiley. 1984. 464 p.

17. Solmus I., Rees D.A.S., Yamali C., Baker D., Kaftanoglu B. Numerical investigation of coupled head and mass transfer inside the adsorbent bed of an adsorption cooling unit. J. Refrigeration. 2012. V. 35. P. 652-662. DOI: 10.1016/j.ijrefrig.2011.12.006.

18. Wang J., Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemo-sphere. 2020. V. 258. Art. 127279. DOI: 10.1016/j.chemo-sphere.2020.127279.

19. Денисенко Г.Ф., Файнштейн В.И Техника безопасности при производстве кислорода. М.: Металлургия. 1968. 220 с.

20. Tien C. Introduction to adsorption. Basics, Analysis and Application. Amsterdam: Elsievier Inc. 2019. 205 p.

21. Филимонова О.Н., Викулин А.С., Енютина М.В., Иванов А.В. Влияние входной температуры на изотермическую очистку газа от монопримеси неподвижным слоем адсорбента. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 9. С. 88-92.

22. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 721 с.

23. Glueckauf E., Coates J.I. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J. Chem. Soc. 1947. P. 1315-1321. DOI: 10.103 9/jr9470001315.

24. Largitte L., Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Desing. 2016. V. 109. P. 495-504. DOI: 10.1016/j.cherd.2016.02.006.

25. Myers A.L., Prousnitz J.M. Prediction of the adsorption isotherm by principle of corresponding states. Chem. Eng. Sci. 1965. V. 20. P. 549-556. DOI: 10.1016/0009-2509(65)80022-7.

26. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука. 1964. 488 с.

6. Wankat P.C. Separation processes engineering: Includes mass transfer analysis. NY: Prentice Hall. 2012. 955 p.

7. Tolmachev A.M. Adsorption of gases, vapors and solutions. M.: Izd. grappa «Granitsa». 2012. 241 p. (in Russian).

8. Tien C. Adsorption calculations and modelling. Boston, USA: Butterworth-Heinemann. 1994. 244 p. DOI: 10.1016/B978-0-7506-9121-5.50013-6.

9. Gautam R.K., Chattopadhyaya M.C. Nanomaterials for wastewater remediation. NY: Butterworth-Heinemann.

2016. 366 p. DOI: 10.1201/9781315368108.

10. Li S., Xin F., Li L. Reaction NY: Butterworth-Heinemann.

2017. 676 p.

11. Zhao J.C. Methods for phase diagram determination. NY: Elsievier. Science. 2007. 520 p.

12. Suzuki M. Adsorption engineering. Tokyo: Kodansha Ltd. 1990. 278 p.

13. Cheng D., Peters E., Knipers J. Numerical modeling of flow and coupled mass and heat transfer in an adsorption process. Chem. Eng. Sci. 2016. V. 152. P. 413-425. DOI: 10.1016/j.ces.2016.06.036.

14. Karge H.G., Weitkamp J. Molecular sieves. Science and Technology. Adsorption and diffusion. V. 7. Berlin: Springer-Verlag Berlin Heidelberg. 2008. 400 p. DOI: 10.1007/978-3-540-73966-1.

15. Danilov V.A., Schepper P., Cousin-Saint-Remi J., De-nayer J.F.M. Concentration and temperature profiles in a fixed bed column based on an analytical solution of the axial dispersion model for binary and multicomponent non-isothermal adsorption process. Comp.Chem. Eng. 2019. V. 123. P. 76-86. DOI: 10.1016/j.compchemeng.2018.12.026.

16. Ruthven D.M. Principles of adsorption and adsorption processes. NY: Wiley. 1984. 464 p.

17. Solmus L, Rees D.A.S., Yamali C., Baker D., Kaftanoglu B. Numerical investigation of coupled head and mass transfer inside the adsorbent bed of an adsorption cooling unit. J. Refrigeration. 2012. V. 35. P. 652-662. DOI: 10.1016/j.ijrefrig.2011.12.006.

18. Wang J., Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemo-sphere. 2020. V. 258. Art. 127279. DOI: 10.1016/j.chemo-sphere.2020.127279.

19. Denisenko G.F., Fainshtein V.I. Oxygen production safety. M.: Metallurgiya. 1968. 220 p. (in Russian).

20. Tien C. Introduction to adsorption. Basics, Analysis and Application. Amsterdam: Elsievier Inc. 2019. 205 p.

21. Filimonova O.N., Vikulin A.S., Enyutina M.V., Ivanov A.V. Inlet temperature influence on isothermal gas cleaning from mono-impurities by fixed layer of adsorbent. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 9. P. 88-92. DOI: 10.6060/ivkkt.20206309.6247.

22. Vargaftik N.B. Handbook of thermophysical properties of gases and liquids. M.: Nauka. 1972. 721 p. (in Russian).

23. Glueckauf E., Coates J.I. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J. Chem. Soc. 1947. P. 1315-1321. DOI: 10.1039/jr9470001315.

24. Largitte L., Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Desing. 2016. V. 109. P. 495-504. DOI: 10.1016/j.cherd.2016.02.006.

25. Myers A.L., Prousnitz J.M. Prediction of the adsorption isotherm by principle of corresponding states. Chem. Eng. Sci. 1965. V. 20. P. 549-556. DOI: 10.1016/0009-2509(65)80022-7.

26. Carslaw H.S., Jaeger J.C. Conduction of head in solids. Oxford: Oxford University Press, USA. 1959. 510 p.

Поступила в редакцию (Received) 03.03.2021 Принята к опубликованию (Accepted) 21.10.2021

i Надоели баннеры? Вы всегда можете отключить рекламу.