Научная статья на тему 'MIXED LIGAND COORDINATION COMPOUNDS OF PALMITATE, OLEATE WITH CALCIUM ACETAMIDE CARBAMIDE AND THIOCARBAMIDE'

MIXED LIGAND COORDINATION COMPOUNDS OF PALMITATE, OLEATE WITH CALCIUM ACETAMIDE CARBAMIDE AND THIOCARBAMIDE Текст научной статьи по специальности «Химические науки»

CC BY
30
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MIXED COMPLEX COMPOUNDS / COORDINATION / CENTRAL ATOM / SYNTHESIS / METHODS OF COORDINATION / THERMAL BEHAVIOR / INDIVIDUALITY

Аннотация научной статьи по химическим наукам, автор научной работы — Ibadullaeva Tursunay, Ibragimova Mavluda, Azizov Taxir

Based on the data of IR spectroscopy, it was established that the molecules of formamide, acetamide, carbamide and thiocarbamide anions of fatty acids are coordinated through the oxygen atom. The thiocarbamide molecules are coordinated, respectively, through the sulfur atom of the thioamide group and the nitrogen heteroatom of the pyridine ring. Palmitate, oleate, stearate anions, depending on the composition of the geometric configuration of the coordination sites, exhibit mono- and bidentate-cyclic coordination. In the IR absorption spectrum of a free urea molecule, along with other frequencies, two bands are observed, which confirm the presence of a coordination bond between the central ion and oxygen atoms of the urea molecule.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MIXED LIGAND COORDINATION COMPOUNDS OF PALMITATE, OLEATE WITH CALCIUM ACETAMIDE CARBAMIDE AND THIOCARBAMIDE»

№ 3 (93)

март, 2022 г.

INORGANIC CHEMISTRY

MIXED LIGAND COORDINATION COMPOUNDS OF PALMITATE, OLEATE WITH CALCIUM ACETAMIDE CARBAMIDE AND THIOCARBAMIDE

Ibadullaeva Tursunay

Doctoral student Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan,

Uzbekistan, Tashkent

Mavluda Ibragimova

s.r., PhD

Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan,

Uzbekistan, Tashkent E-mail: mavluda@gmail.com

Taxir Azizov

Chief scientific researcher, Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan,

Uzbekistan, Tashkent

СМЕШАННОЛИГАНДНЫЕ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ПАЛЬМИТАТА, ОЛЕАТА КАЛЬЦИЯ С АЦЕТАМИДОМ, КАРБАМИДОМ, И ТИОКАРБАМИДОМ

Ибадуллаева Турсунай Абдуллаевна

докторант (PhD),

Институт общей и неорганической химии АН Республики Узбекистан,

Республика Узбекистан, г. Ташкент

Ибрагимова Мавлуда Рузметовна

ст. науч. сотр. PhD

Институт общей и неорганической химии АН Республики Узбекистан,

Республика Узбекистан, г. Ташкент E-mail: mavluda@gmaiL com

Азизов Тохир Азизович

гл. науч. сотр.,

Институт общей и неорганической химии АН Республики Узбекистан,

Республика Узбекистан, г. Ташкент

ABSTRACT

Based on the data of IR spectroscopy, it was established that the molecules of formamide, acetamide, carbamide and thiocarbamide anions of fatty acids are coordinated through the oxygen atom. The thiocarbamide molecules are coordinated, respectively, through the sulfur atom of the thioamide group and the nitrogen heteroatom of the pyridine ring. Palmitate, oleate, stearate anions, depending on the composition of the geometric configuration of the coordination sites, exhibit mono- and bidentate-cyclic coordination. In the IR absorption spectrum of a free urea molecule, along with other frequencies, two bands are observed, which confirm the presence of a coordination bond between the central ion and oxygen atoms of the urea molecule.

АННОТАЦИЯ

На основании данных ИК-спектроскопии установлено, что молекулы формамида, ацетамида, карбамида и тиокарбамида и анионов жирных кислот координированы через атом кислорода. Молекулы тиокарбамида и ни-

Библиографическое описание: Ibadullaeva T., Ibragimova M., Azizov T. MIXED LIGAND COORDINATION COMPOUNDS OF PALMITATE, OLEATE WITH CALCIUM ACETAMIDE CARBAMIDE AND THIOCARBAMIDE // Universum: химия и биология: электрон. научн. журн. 2022. 3(93). URL: https://7universum.com/ru/nature/archive/item/13142

№ 3 (93)_^ул химия и биология_март, 2022 г.

котинамида координированы соответственно через атом серы тиоамиднои группы и гетероатом азота пиридинового кольца. Пальмитатные, олеатные, стеаратные анионы в зависимости от состава геометрической конфигурации координационных центров проявляют моно- и бидентатно-циклическую координацию. В ИК-спектре поглощения свободной молекулы мочевины наряду с другими частотами наблюдаются две полосы, подтверждающие наличие координационной связи между центральным ионом и атомами кислорода молекулы мочевины.

Keywords: mixed complex compounds, coordination, central atom, synthesis, methods of coordination, thermal behavior, individuality.

Ключевые слова: смешанные комплексные соединения, координация, центральный атом, синтез, методы координации, термическое поведение, индивидуальность.

Introduction. Actual task of modern chemistry is the search new environmentally clean methods for the synthesis of chemical compounds and based on them materials. One of these methods is mechanochemical. Besides the fact that mechanochemical activation in the absence of solvents is at the synthesis stage, the generated mechanical energy leads to the breaking of bonds and the formation of certain intermediate products, which cannot be formed in the presence of a solution, therefore, often as a result of mechanochemical reactions, new compounds are formed, which cannot be obtained under the conditions of use of solvents [6, p. 35].

Substances containing donor atoms, for example, amides of aliphatic, carboxylic, pyridinecarboxylic acids, in particular acetamide and nicotinic acid contribute to the formation of coordination compounds with metal ions. Anions of Organic and Inorganic Acids (acetic, benzoic, stearic, oleic, palmitic, nicotine, nitrogen, etc.) depending on the synthesis conditions, the nature of metals and the composition of complexes exhibit diverse methods of coordination [9, p. 142; 11, p. 2963]. Numerous studies on the coordination compounds of p, d, and f metals with acid amides are devoted to complexes with homogeneous ligands [7 p. 820; 10 p. 535]. There are no data in the literature of monotype ligand coordination compounds of zinc nitrate with acetamide and nicotinic acid [8, p.181].The reasons for the competitive coordination of ligands, acid anions, and water molecules around the central atom are not shown [3, p. 765; 5, p. 680]. To solve these problems as complexing agentswe have chosen

zinc nitrate since by the change in the nature of organic ligands it is convenient to judge their ability to complex-ation. In connection with the above,the purpose of this work were the synthesis of monotype ligand complex compounds of zinc nitrate with acetamide and nicotinic acid and the establishment of the composition, personality methods for coordinating organic ligands and studying the thermal behavior of new compounds [4, p. 430; 14, p. 1950].

Methods and materials. For the synthesis of coordination compounds, we chose the most efficient mechanochemical method, since it does not require scarce organic solvents. The synthesis procedure was carried out according to [11,12].

A complex compound of composition Ca(C15H31COO)2 CH3CONH2 CS(NH2)2 2H2O mol) thi-ocarbamide in a ball mill 100 ml, at room temperature for 30 minutes. The product yield is 89.7%. A mixed-ligand complex compound of the composition Ca(C17H33COO)2 CH3CONH2 CO(NH2)2 H2O was synthesized by intensive stirring of 0.6120 g (0.001 mol) of calcium oleate hemihydrate with 0.0591 g (0.001 mol) of acetamide and 0.0601 g (0.001 mol) urea in a ball mill 100 ml, at room temperature for 30 minutes.The yield of the final product is 96.3%. Thermal analysis was carried out on a derivatograph of the Paulik-Paulik-Erdey system at a rate of 10 deg/min and a weight of 0.1 g. A platinum crucible 7 mm in diameter without a lid served as a holder. Al2O3 was used as a reference [13].

Results and discussion

Table 1.

Results of elemental analysis of mixed ligand palmitate, calcium oleate coordination compounds

Compound Ca,% S,% N,% C,% H,%

Find. Calc. Find. Calc. Find. Calc. Find. Calc. Find. Calc.

Ca(Ci5H3iCOO)2 CH3CONH •CS(NH2)2 2H2O 5,63 5,55 4,28 4,44 5,89 5,82 58,42 58,22 10,31 10,47

Ca(CivH33COO)2 CH3CONH2 •CO(NH2)2 H2O 5,37 5,42 - - 5,54 5,68 63,42 63,29 10,38 10,49

Д • 7universum.com

A UNIVERSUM:

№ 3 (93)_Д& химия и биология_март, 2022 г.

Table 2.

Interplanar distances and relative intensities of lines of free molecules of acetamide, thiocarbamide, carbamide, their complexes with palmitate and calcium oleate

Compound d, I,% d, I,% d, I,% d, I,% d, I,%

CH3CONH2 20,21 6 4,51 4 2,84 83 2,05 1 1,581 6

18,05 8 4,26 2 2,67 11 2,03 1 1,490 1

16,60 10 4,03 1 2,56 3 1,984 1 1,427 10

14,69 9 3,95 1 2,52 2 1,942 5 1,390 1

12,24 3 3,85 1 2,49 2 1,887 1 1,311 1

11,42 2 3,70 1 2,36 1 1,849 1 1,259 4

6,13 5 3,62 1 2,30 7 1,805 3 1,246 1

5,58 100 3,55 3 2,26 2 1,753 45

5,26 8 3,49 13 2,22 3 1,707 2

5,01 6 3,25 13 2,15 49 1,611 1

CS(NH2)2 4,78 5 3,14 4 2,10 1 1,591 2

4,76 1 3,00 37 2,27 5 1,835 8 1,602 8

4,44 6 2,88 13 2,17 2 1,799 15 1,546 6

4,30 100 2,78 14 2,12 8 1,773 8 1,486 3

4,13 17 2,69 9 2,07 3 1,745 11 1,411 2

3,70 54 2,48 8 2,00 2 1,725 6 1,357 3

3,39 59 2,42 33 1,894 2 1,665 2 1,316

3,06 52 2,35 15 1,884 4 1,623 5

CO(NH2)2 17,21 2 4,37 2 3,02 12 2,20 4 1,770 2

16,08 3 3,98 100 2,80 27 2,15 2 1,736 1

15,29 3 3,56 10 2,49 42 2,01 1 1,660 5

13,86 2 3,25 2 2,46 5 1,980 18 1,557 1

12,59 1 3,14 3 2,33 1 1,827 6

Ca(C i5H3iCOO)2 • CH3 CONH2 • CS(NH2)2 • 2Н2О 11,72 5 5,04 15 2,97 20 2,33 3 1,780 4

11,02 8 4,67 10 2,93 12 2,30 9 1,766 3

10,39 9 4,54 6 2,,90 7 2,25 28 1,741 4

10,34 9 4,43 6 2,86 3 2,23 4 1,718 3

9,75 54 4,32 6 2,83 5 2,20 6 1,711 4

9,71 88 4,12 7 2,79 54 2,15 6 1,681 6

8,61 10 3,93 7 2,75 20 2,13 9 1,665 6

8,41 6 3,86 9 2,72 3 2,09 30 1,643 4

8,02 15 3,78 69 2,65 15 2,03 4 1,606 2

7,65 26 3,75 54 2,57 16 2,00 10 1,581 2

6,79 25 3,69 52 2,55 4 1,977 4 1,575 2

6,56 51 3,55 40 2,52 2 1,954 4 1,556 2

6,20 4 3,44 9 2,49 9 1,936 5 1,547 3

5,90 4 3,31 100 2,46 3 1,918 4 1,528 2

5,70 4 3,18 6 2,43 2 1,884 6

5,52 4 3,14 6 2,42 2 1,833 4

5,35 6 3,05 36 2,37 4 1,793 7

15,73 100 4,81 27 2,88 13 2,09 18 1,567 17

14,89 21 4,59 29 2,84 21 2,08 14 1,561 16

13,77 20 4,56 67 2,70 10 2,05 17 1,537 12

13,35 21 4,43 58 2,64 23 2,02 22 1,520 14

12,59 21 4,34 44 2,56 21 2,00 21 1,412 14

11,72 21 4,27 42 2,52 15 1,918 21 1,449 13

10,55 21 4,13 58 2,47 17 1,881 17 1,442 12

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9,34 50 4,07 42 2,44 18 1,871 21 1,435 13

Ca(C i7H33COO)2 • CH3 CONH2 • CO(NH2)2 • H2O 7,79 21 3,99 38 2,41 25 1,854 17 1,427 11

7,16 21 3,88 40 2,38 25 1,835 17 1,408 17

6,79 17 3,61 32 2,36 26 1,779 22 1,398 10

6,31 21 3,51 21 2,32 25 1,754 21 1,382 12

5,98 25 3,41 71 2,29 13 1,693 22 1,375 10

5,77 21 3,33 25 2,27 13 1,621 21 1,361 8

5,55 21 3,28 33 2,22 13 1,665 18 1,350 12

5,20 25 3,07 21 2,18 23 1,604 23 1,344 13

5,01 33 2,92 25 2,13 19 1,586 23

А* 7universum.com

—-UNIVERSUM:

№ 3 (93)

химия и биология

март, 2022 г.

The heating curve of the compound Ca(Ci5H3iCOO)2 CH3CONH2 CS(NH2)2 2H2O is characterized by seven endothermic effects at 130, 212, 269, 328, 362, 404, 760 °C and five exothermic effects at 305, 343, 450, 510 , 587 °C. The nature of these thermal effects is related to the stepwise decomposition of the complex. In temperature ranges 80-132, 132-240, 240-300, 300-320, 320-335, 335-350, 350-380, 380-430, 430-480, 480-570, 570-650, 650-7900C the weight loss is 2.20; 5.39; 8.70; 1.74; 0.43; 1.74; 2.00; 6.96; 26.09; 30.36; 0.51; 3.04%.The total weight loss in the range of 80-790°C according to the TG curve is 93.16%. Fourteen endothermic effects were found on the heating curve of Ca(C17H33COO)2 CH3CONH2 CO(NH2)2 H2O at 70, 120, 158, 177, 200, 214, 360, 374, 382, 415, 422, 570, 600 740°C and eleven exothermic effects at 233,

263, 333, 350, 495, 662, 683, 710, 780, 795, 843°C. The first endoeffect corresponds to the removal of one water molecule. The appearance of subsequent thermal effects is due to the decomposition and combustion of the thermolysis products of the complex. In temperature ranges 60-110, 110-130, 130-165, 165-185, 185-208, 208220, 220-250, 250-290, 290-340, 340-355, 355-365, 365-378 , 378-390 390-418 418-440 440-560 560-580 580-640 640-670 670-700 700-730 730-760 760-790 790-820 -860oC weight loss, respectively, is 0; 2.20; 3.42 2.74; 2.73; 2.73; 4.11; 2.33; 4.38; 4.79; 2.05; 2.05; 1.37 2.05; 1.37; 2.05; 2.74; 4.79; 38.36; 4.11; 0.68; 2.74 2.74; 2.05; 1.64; 0.10; 0.00%. The total weight loss in the temperature range of60-860°C according to the ther-mogravimetry curve is 96.90%.

Table 3.

Results of thermogravimetric analysis

Compounds Temperature range of effect, 0C Peak effect, 0C Weight loss,% Total weight loss,% Nature effects The resulting compound

Са(С15Нз1СОО)2 CH3CONH2 CS(NH2)2-2H2Ü 80-132 130 2,20 2,20 Endothermic Ca(C15H31COO)2 CH3CONH2CS(NH2)2

132-240 212 5,39 7,59 Endothermic Thermolysis product

240-300 269 8,70 16,29 Endothermic Thermolysis product

300-320 305 1,74 18,03 Exothermic Thermolysis product

320-335 328 0,43 18,46 Endothermic Thermolysis product

335-350 343 1,74 20,20 Exothermic Thermolysis product

350-380 362 2,00 22,20 Endothermic Thermolysis product

380-430 404 6,96 29,16 Endothermic Thermolysis product

430-480 450 26,09 58,25 Exothermic Thermolysis product

480-570 510 30,36 88,61 Exothermic Thermolysis product

570-650 587 0,51 89,12 Exothermic Thermolysis product

650-790 760 3,04 93,16 Endothermic Thermolysis product

Са(С1тН33СОО)2- C^CONH •C0(NH2)2'H20 60-110 70 0 0 Endothermic Ca(CnH33COO)2-CH3CONH2CO(NH2)2

110-130 120 2.20 2.20 Endothermic Thermolys s product

130-165 158 3.42 5.62 Endothermic Thermolys s product

165-185 177 2.74 8.36 Endothermic Thermolys s product

185-208 200 2.73 11.09 Endothermic Thermolys s product

208-220 214 2.73 13.82 Endothermic Thermolys s product

220-250 233 4.11 17.93 Exothermic Thermolys s product

250-290 263 2.33 20.26 Exothermic Thermolys s product

290-340 333 4.38 24.64 Exothermic Thermolys s product

340-355 350 4.79 29.43 Exothermic Thermolys s product

355-365 360 2.05 31.48 Endothermic Thermolys s product

365-378 374 2.05 33.53 Endothermic Thermolys s product

378-390 382 1.37 34.90 Endothermic Thermolys s product

390-418 415 2.05 36.95 Endothermic Thermolys s product

418-440 422 2.74 39.69 Endothermic Thermolys s product

440-560 495 4.79 44.48 Exothermic Thermolys s product

560-580 570 38.36 82.84 Endothermic Thermolys s product

580-640 600 4.11 86.95 Endothermic Thermolys s product

640-670 662 0.68 87.63 Endothermic Thermolys s product

670-700 683 2.74 90.37 Endothermic Thermolys s product

700-730 710 2.074 93.11 Endothermic Thermolys s product

730-760 740 2.05 95.11 Endothermic Thermolys s product

760-790 780 1.64 96.80 Exothermic Thermolys s product

790-820 795 0.10 96.90 Exothermic Thermolys s product

№ 3 (93)

март, 2022 г.

Acetamide: 3377-V(nh2), 3191-25(nh2), 1674-V(c=o), 1612-6(nh2), V(co), 1394-V(cn), 1354-6(ch3), 1150-p(NH2), 1047-p(CH3), 1005-V(c-c), 872-V(c-c), 582-6(nco) и 465-6(ccn).

Urea: 3448-Vas(NH2), 3348-Vs(nh2), 3263-26(nh2), 1682-V(c=o), 5(nh2), 1623-6(nh2), V(co), 1450-V(cn), 1153, 1061-p(NH2), 1005-V(cn), 788-2S(nh2), 583-6(NCO)and 557-6(ncn).

Thiocarbamide: 3365-Vas(NH2), 3260-Vs(nh2), 3167-26(nh2), 1631-2S(nh2), Ô(hnc), 1431-V(cs), 1093-V(cn), 780-p(NH2), 739-V(cs), 640-V(cs), 6(ncs), 485-6 (ncn) и 459-6(ncs).

MIRacle10 (Dia/ZnSe) cm-1

Figure 1. IR absorption spectrum of the compound Ca(С15Н31СОО)2 CH3CONH2 CS(NH2)2 2H2O

The IR absorption spectrum of a free acetamide molecule is characterized by several frequencies. Of these, at 1674 and 1666 cm-1, bands are observed corresponding to the stretching vibrations of the C=O and C-N bonds. The first band decreases by 8 cm-1 when the acetamide molecule is coordinated through the oxygen atom of the carbonyl group. In this case, the value of the C-N bond frequency increases by 1394-1418 (7-8 cm-1).

Three characteristic frequencies are observed in the IR absorption spectrum of a free thiocarbamide molecule at 739-v(CS), 719-v(CS), and 640 -6(CS) cm-1. In complex compounds of thiocarbamide, it is not possible to observe a change in the frequency value 739 cm-1 -v(CS), since it is overlapped by a wide band v(COO) of palmitate, oleate groups. Upon transition to the coordinated state in the low-frequency region of the spectrum, the frequencies of the thiocarbamide molecules at 739-719 and 640-629 cm-1 decrease by 20 cm-1 and 11 cm-1, respectively. This is evidence of the coordination of the central atom through the sulfur atom. The thiocarbamide band decreases at 739 cm-1 by 719cm-1 when the thiocarbamide molecule is coordinated through the sulfur atom of the carbonyl group.

On the IR absorption spectrum of a free carbamide molecule, along with other frequencies, two bands are

observed corresponding to the stretching vibrations of the C=O and C-N bonds. The first band decreases by (16821668) 14 cm-1 when the urea molecule is coordinated through the oxygen atom of the carbonyl group. In this case, the value of the bond frequency (1450-1464) C-N increases by 14 cm-1.

Conclusion. Synthesis conditions were developed, and two mixed-amide coordination compounds of palmitate and calcium oleate with acetamide, thiocarbamide, and urea were isolated in the solid state. The composition, individuality, and thermal properties of the resulting coordination compounds have been established.

The thermal behavior of the synthesized compounds was established by the method of derivatographic analysis. The intermediate products of thermolysis were obtained and the composition of the compounds was established. Endothermic effects observed during heating can be caused by such physical phenomena as melting, evaporation, change in the crystal structure, or chemical reactions of dehydration, dissociation. Transformations that are accompanied by exothermic effects when heated are much less common: these are oxidation processes and some structural changes.

№ 3 (93)

UNIVERSUM:

химия и биология

• 7universum.com

март, 2022 г.

References:

1. Sulaimankulov K.S. Urea compounds with inorganic salts. - Frunze: Ilim, 1976. -223 p.

2. Mamytov T.A. Studies of the interaction of lactates and citrates Mg, Mn(II), Fe(II), Co(II) with carbamide, thiocar-bamide and nicotinamide.: Dis. - Candidate of Chemical Sciences. - Osh: 1999. - 150 p.

3. Interaction of thiourea and urea with mineral salts: Collection of articles Acad. Nauk Kirghiz. SSR. Institute of non-org-and physical. Chemistry - Frunze: Ilim. 1965. -96 p.

4. Imanakulov B.I. Interaction of acetamide with inorganic salts. Bishkek: Ilim, 1976. -204 p.

5. Khojaev O.F., Azizov T.A., Parpiev N.A. Studies of coordination compounds of divalent metals with acetamide \\ J. Sib. "Coordination chemistry", M., 1977. V.3. No. 10. S.1495-1502.

6. Meldebekova S.U., Azizov T.A. Pseudoamide complex compounds of nickel (II) acetate // Uzbek chemical journal. Tashkent, 2002, No. 5. pp. 23-28.

7. Direct synthesis of coordination compounds. Ed. acad. NAS of Ukraine Skopenko V.V. Kiev: Vent, 1997, -175 p.

8. Prishible P. Complexons in chemical analysis. M.: IL, 1960, S. 175-304.

9. Klimova V.A. Fundamentals of the micromethod for the analysis of organic compounds. Moscow: Chemistry, 1967. -19 p.

10. Zhebentyaev A.I., Zhernosek A.K., Talut I.E. Analytical chemistry. Chemical methods of analysis. -Minsk: New knowledge, 2011. -542 p.

11. Bazhenova L.N. Quantitative elemental analysis of organic compounds. - Yekaterinburg: 2008. 356 p.

12. Yakimov I.S., Dubinin P.S. Quantitative x-ray phase analysis. -K.: IPK SFU, 2008. -25 p.

13. Gabbott P. (ed.) Principles and Applications of Thermal Analysis. - Singapore: Wiley-Blackwell, 2008. -480 p.

i Надоели баннеры? Вы всегда можете отключить рекламу.