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Abstract

In this article, minimax estimation of the scale parameter λ of the inverse Rayleigh distribution is
performed under symmetric (QLF) and asymmetric (SLELF and GELF) loss functions by applying the
Lehmann’s theorem (1950). An extended Jeffrey’s prior and gamma prior are assumed to derive the
minimax estimators under each of the considered loss functions. An extensive simulation study is carried
out to compare the performance of the minimax estimators with the maximum likelihood (MLE), which is
traditionally used as a classical estimator, on the basis of biases and mean squared errors (MSE). The
obtained results suggest that under the assumption of extended Jeffrey’s prior, minimax estimators with
positive c values are superior as compared to the MLE. Moreover, it is found that in most of the cases,
minimax estimator under quadratic loss function (QLF) performs satisfactory on the assumption of
gamma prior.

Keywords: Minimax estimator, squared log error loss function, quadratic loss function, general
entropy loss function, extended Jeffrey’s prior, risk function

1. Introduction

Minimax estimation is a Bayesian estimation approach in statistical inference, which was intro-
duced by Wald [1] relating to the concept of Game theory. It brings different dimensions to
statistical estimation and improves the point estimation process. In recent years, a vast amount
of research works have been devoted to study the minimax estimators of some well known
distributions. Roy et al. [4] developed the minimax estimation of the scale parameter of the
Weibull distribution using Quadratic and MLINEX loss functions. The minimax estimator of
the scale parameter of Rayleigh distribution under Quadratic loss function was investigated in
[5]. Li [3] discussed the Minimax estimation of the parameter of Maxwell distribution under
different loss functions considering non-informative quasi-prior density. The problem of finding
the minimax estimator of the scale parameter in a class of lifetime distributions under different
loss functions are discussed in [2].

The fundamental differences between the classical and minimax estimation approach is that in
classical estimation the parameter is assumed to be a fixed point, whereas in minimax estimation
the parameter of interest is considered to be a random variable. The most important element in
the minimax approach is the specification of a distribution function on the parameter space, which
is called prior distribution. In addition to the prior distribution the assumed loss functions also
have a significant impact on the minimax estimator for a given model. Recently, in literature the
inverted version of a standard probability distribution got a lot of attention by many researchers
including [6], [7], [8]. In this study, our concern is to derive the minimax estimator of the unknown
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scale parameter λ of the inverse Rayleigh distribution having the following probability density
function

f (x; λ) =
2λ

x3 exp
[
−
(

λ

x2

)]
; x > 0, λ > 0. (1)

For modeling lifetime data, inverse Rayleigh (IR) distribution, which is a special case of inverse
Weibull (IW) distribution has many applications in reliability studies. Voda [9] discussed some
statistical properties of IR distribution like maximum likelihood estimator, confidence intervals
etc. Bayes estimators for the parameter of inverse Rayleigh distribution under squared error and
zero one loss functions based on lower record values are studied by Soliman et al. [10]. Bayesian
estimation of the parameter and reliability function of an inverse Rayleigh distribution under
symmetric and asymmetric linear exponential loss functions using a non-informative prior has
been done in [11].

The aim of this article is to make a comparison between the maximum likelihood estimator
(MLE) and minimax estimators of the scale parameter of inverse Rayleigh distribution under
three different loss functions. These are quadratic loss function, which is symmetric in nature
and another two are asymmetric loss functions, namely, squared log error and general entropy
loss functions. As a prior knowledge of the unknown scale parameter λ, we consider both non-
informative and informative prior. In case of non-informative prior, our choice is the extended
Jeffrey’s prior which is also a generalization of the Jeffrey’s prior and for informative prior, gamma
prior is chosen which is also conjugate in structure. The Bayes estimates of λ as well as the risk
functions are derived under the mentioned loss functions and further by applying Lehmann’s
theorem, it is shown that the obtained estimators are also the minimax estimators.

The rest of the article is structured in following manner. In section 2, maximum likelihood
estimator for the scale parameter λ is derived. In section 3, we discuss about the prior and
posterior distributions of λ by considering both the non informative and informative prior
respectively. Bayes estimators under quadratic loss (QLF), squared log error loss (SLELF) and
general entropy loss (GELF) functions for the scale parameter of the inverse Rayleigh distribution
are developed in section 4. In section 5, minimax estimators under different loss functions are
discussed. Extensive simulation study for different parameter choices are performed and results
are presented in section 6. Finally in section 7, the conclusion of the paper is provided.

2. Maximum Likelihood Estimation

Several desirable properties for a good estimator such as consistency, asymptotic efficiency,
invariance property etc. are satisfied by the Maximum likelihood estimator. This makes the MLE
one of the most frequently used techniques for parameter estimation. Let x1, x2, · · · , xn be a
random sample of size n from the density function (1). Then the likelihood function is given by

L (xi; λ) = (2λ)n
n

∏
i=1

1
x3

i
e
−λ ∑n

i=1
1

x2
i . (2)

Taking logarithm, the log-likelihood function becomes

ln L (xi; λ) = n ln 2 + n ln λ +
n

∑
i=1

ln

(
1
x3

i

)
− λ

n

∑
i=1

1
x2

i
.

Now, by differentiating the above equation with respect to λ and equating it with zero, we
obtain the MLE of λ as,

λ̂MLE =
n

∑n
i=1

1
x2

i

. (3)

3. Prior and Posterior density function of Scale parameter λ

Specification of a prior distribution over the parameter space is a substantial part for deriving
the posterior probability distribution under the Bayesian paradigm. The posterior distribution is
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defined as proportional to the likelihood function for the data multiplied by the prior information
for the parameter(s), which is useful for future inferences and prediction. In literature, there is
no specification about the choice of prior from which one can conclude the superiority of one
prior over the others. Generally, selection of prior(s) is based on ones subjective knowledge and
beliefs. However, it is preferable to use informative prior when sufficient information about the
parameter(s) of interest is available, otherwise it is better to use non-informative prior [12]. Here
we consider both type of prior distributions for estimating the unknown scale parameter λ.

3.1. Posterior distribution under the assumption of extended Jeffrey’s prior

The extended Jeffrey’s prior was proposed by Al-Kutobi [13] and given as

Π(λ) ∝ [I(λ)]c ; c ∈ R+

where, I(λ) = −nE
(

∂2ln f (x;λ)
∂λ2

)
is the Fisher’s information matrix. From the probability model

(1) we found I(λ) = n
λ2 and therefore, the extended Jeffrey’s prior becomes

Π1(λ) ∝
( n

λ2

)c
. (4)

The prior distribution (4) and the likelihood function (2) are combined to get the posterior
distribution of λ and it is given by

Π1 (λ|X¯
) =

(
∑n

i=1
1
x2

i

)n−2c+1

Γ(n − 2c + 1)
λn−2ce

−λ ∑n
i=1

1
x2

i .

Therefore, the distribution of λ|X
¯

can be written as G
(

n − 2c + 1, ∑n
i=1

1
x2

i

)
.

Remark 1. Extended Jeffrey’s prior is the generalized version of many non informative priors.
We get Jeffrey’s prior if we replace c with 1

2 . Also it reduces to Hartigan’s prior when c = 3
2 .

3.2. Posterior distribution under the assumption of Gamma prior

The gamma distribution with known hyperparameters α and p, is considered here as an informa-
tive prior for the parameter λ. For the inverse Rayleigh distribution, gamma prior also becomes
the conjugate prior as the posterior distribution belongs to the gamma family.

For, λ ∼ Gamma(α, p) the prior density becomes

Π2(λ) =
pα

Γα
λα−1e−pλ; λ > 0, α > 0, p > 0. (5)

Now, combining the prior distribution (5) and the likelihood function (2) the posterior distribution
of λ takes the form

Π2 (λ|X¯
) =

λn+α−1e
−λ

[
∑n

i=1
1

x2
i
+p
]

∫ ∞
0 λn+α−1e

−λ[∑n
i=1

1
x2

i
+p]

dλ

=

(
∑n

i=1
1
x2

i
+ p

)n+α

Γ(n + α)
λn+α−1e

−λ

[
∑n

i=1
1

x2
i
+p
]
.

Therefore, the distribution of λ|X
¯

can be written as G
(

n + α, ∑n
i=1

1
x2

i
+ p

)
.
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4. Bayes Estimation of Scale parameter λ under different Loss functions

The selection of an appropriate loss function L(λ, λ̂) in Bayesian Inference is a major aspect
for the estimation of unknown parameter. Most of the research works on point estimation and
prediction considered the underlying loss function as squared error due to its elegant statistical
properties and mathematical simplicity. The reason being that it is symmetric in nature and
assigns equal importance to the overestimation and underestimation of the parameter. In many
practical situations when the loss is not symmetric, use of squared error loss function (SELF)
is inappropriate. Basu and Ebrahimi [14] pointed out that overestimation and underestimation
have different consequences. Thus, in order to make the statistical inference more practical and
applicable we often use asymmetric loss function. In this present study, we consider both the
symmetric and asymmetric loss functions to derive the Bayes estimate of λ.

4.1. Estimation under Quadratic loss function

Here we consider the quadratic loss function (QLF) for obtaining the Bayes estimate under the
assumption of both non informative and informative prior simultaneously. It is well known that,
SELF is useful for estimation of location parameter but in case of scale parameter a modified
form of this loss, known as QLF is preferable and it is defined as follows [15]

L1(λ, λ̂) =

(
λ̂ − λ

λ

)2

,

which is a non-negative, symmetric and continuous loss function.
The risk function under QLF is denoted by RQLF

(
λ, λ̂

)
and is defined as

RQLF
(
λ, λ̂

)
= E

[
L1(λ, λ̂)

]
= 1 − 2λ̂E

(
λ−1|X

¯

)
+ λ̂2E

(
λ−2|X

¯

)
. (6)

By differentiating the above risk function with respect to λ̂ and equating it to zero, we will get
the Bayes estimate for which the risk would be minimized. Hence under QLF the Bayes estimate
of λ takes the form as

λ̂QLF =
E
(
λ−1|X

¯

)
E (λ−2|X

¯
)

. (7)

Now, based on the extended Jeffrey’s prior we have

E
(

λ−1|X
¯

)
=

1
n − 2c

(
n

∑
i=1

1
x2

i

)
and

E
(

λ−2|X
¯

)
=

Γ (n − 2c − 1)
Γ (n − 2c + 1)

(
n

∑
i=1

1
x2

i

)2

.

Therefore, by putting these values in (7), we obtain the Bayes estimate of λ under QLF based on
Extended Jeffrey’s prior as

λ̂QLF1 =
(n − 2c) Γ (n − 2c)

(n − 2c) Γ (n − 2c − 1)
1(

∑n
i=1

1
x2

i

) =
Γ (n − 2c)

Γ (n − 2c − 1)
1(

∑n
i=1

1
x2

i

) . (8)

Similarly, based on the assumption of gamma prior we have

E
(

λ−1|X
¯

)
=

Γ (n + α − 1)
Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)
and
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E
(

λ−2|X
¯

)
=

Γ (n + α − 2)
Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)2

.

After putting these values in (7), we find the Bayes estimate of λ under QLF based on gamma
prior as

λ̂QLF2 =
Γ (n + α − 2 + 1)

Γ (n + α − 2)
1(

∑n
i=1

1
x2

i
+ p

) =
(n + α − 2)(
∑n

i=1
1
x2

i
+ p

) . (9)

4.2. Estimation under Squared log error loss function

In order to obtain the Bayes estimate of λ, we consider the squared log error loss function (SLELF)
which is proposed by Brown [16] and defined as

L2
(
λ, λ̂

)
=
(
lnλ̂ − lnλ

)2
=

(
ln

λ̂

λ

)2

,

where both λ̂ and λ are positive. This is a balanced loss function with lim L2
(
λ, λ̂

)
→ ∞ as

λ̂ → 0 or ∞. A balanced loss function considers both estimation error and goodness of fit, while
an unbalanced loss function only considers estimation error [18]. This loss is asymmetric and
convex [17]. It is convex when λ̂

λ ≤ e, and concave otherwise, but its risk function is minimum
with respect to λ̂SLELF.

The risk function under SLELF is denoted by RSLELF
(
λ, λ̂

)
and expressed as

RSLELF
(
λ, λ̂

)
= E

[
L2
(
λ, λ̂

)]
=
(
lnλ̂
)2 − 2lnλ̂E [lnλ|X

¯
] + E

[
(lnλ)2 |X

¯

]
. (10)

Now, by differentiating the risk function with respect to λ̂ and equating it to zero, we will be able
to find the Bayes estimate for which the above risk is minimized. Hence under SLELF, we obtain
the Bayes estimate of λ which have the following expression

λ̂SLELF = exp [E (lnλ|X
¯
)] . (11)

So, we calculate [E (lnλ|X
¯
)] by using the posterior density derived under both the extended

Jeffrey’s prior and gamma prior respectively.
Hence, under the assumption of the extended Jeffrey’s prior

E (lnλ|X
¯
) = Ψ (n − 2c + 1)− ln

(
n

∑
i=1

1
x2

i

)
, (12)

E
(
(lnλ)2|X

¯

)
=

Γ′′ (n − 2c + 1)
Γ (n − 2c + 1)

− 2Ψ (n − 2c + 1) ln

(
n

∑
i=1

1
x2

i

)
+

{
ln

(
n

∑
i=1

1
x2

i

)}2

(13)

where, Ψ (n − 2c + 1) = Γ′(n−2c+1)
Γ(n−2c+1) , is a digamma function.

Similarly, under the gamma prior, expressions are

E (lnλ|X
¯
) = Ψ (n + α)− ln

(
n

∑
i=1

1
x2

i
+ p

)
, (14)

E
(
(lnλ)2|X

¯

)
=

Γ′′ (n + α)

Γ (n + α)
− 2Ψ (n + α) ln

(
n

∑
i=1

1
x2

i
+ p

)
+

{
ln

(
n

∑
i=1

1
x2

i
+ p

)}2

(15)
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where, Ψ (n + α) =
Γ′(n+α)
Γ(n+α)

, is a digamma function.

Therefore, to obtain the Bayes estimate of the parameter λ under SLELF based on both prior
assumptions, we substitute the expressions (12) and (14) respectively in (11). After simplification,
we get,

λ̂SLELF1 =
eΨ(n−2c+1)

∑n
i=1

1
x2

i

and (16)

λ̂SLELF2 =
eΨ(n+α)

∑n
i=1

1
x2

i
+ p

. (17)

4.3. Estimation under General entropy loss function

Another well known asymmetric loss function is general entropy loss function (GELF) proposed
by Calabria and Pulcini [19]. Many authors like [20], [21] referred this loss as the modified linear
exponential (MLINEX) loss function and defined as

L3
(
λ, λ̂

)
= ω

[(
λ̂

λ

)γ

− γ ln

(
λ̂

λ

)
− 1

]
; ω > 0, γ ̸= 0.

The constant γ, involved in the loss function is the shape parameter and indicates the deviation
from symmetry. It is clear that if the value of the shape parameter γ = 1, this loss reduces
to the entropy loss function which is also used by several authors like [22], [23] etc. Dey [11]

mentioned that if we replace
(
λ̂ − λ

)
in place of ln

(
λ̂
λ

)
i.e. lnλ̂ − lnλ, linear exponential (LINEX)

loss function has been obtained, which is proposed by Zellner [24].
Now by considering GELF, the expression of the risk function denoted as RGELF

(
λ, λ̂

)
is given

below

RGELF
(
λ, λ̂

)
= E

[
L3
(
λ, λ̂

)]
= ωλ̂γE

(
λ−γ|X

¯

)
− ω γ lnλ̂ + ω γ E (lnλ|X

¯
)− ω. (18)

So, for minimizing the risk function we differentiate the above equation with respect to λ̂ and
equate it to zero. After simplification, we have

λ̂GELF =
[
E
(
λ−γ|X

¯

)]− 1
γ . (19)

Now, we solve the above expression by considering extended Jeffrey’s prior and gamma prior
simultaneously. Therefore, under the extended Jeffrey’s prior

E
(
λ−γ|X

¯

)
=

Γ (n − 2c − γ + 1)
Γ (n − 2c + 1)

(
n

∑
i=1

1
x2

i

)γ

and under the gamma prior

E
(
λ−γ|X

¯

)
=

Γ (n + α − γ)

Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)γ

.

After substituting the values of E (λ−γ|X
¯
) in (19), we have the following Bayes estimators under

both non-informative and informative prior respectively,

λ̂GELF1 =

[
Γ(n − 2c − γ + 1)

Γ(n − 2c + 1)

]− 1
γ

 1

∑n
i=1

1
x2

i

 , (20)
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λ̂GELF2 =

[
Γ(n + α − γ)

Γ (n + α)

]− 1
γ

 1(
∑n

i=1
1
x2

i
+ p

)
 . (21)

5. Minimax Estimators

In this section, we derive the minimax estimators of the scale parameter λ under symmetric (QLF)
and asymmetric (SLELF and GELF) loss functions. Bayes estimators are derived primarily and
then minimax etimators are obtained by applying the Lehmann’s theorem, which can be described
as follows.

Theorem 1. Suppose, τ = {Fθ ; θ ∈ Θ} be a family of distribution functions and D is a class
of estimators of θ. Let, d∗ ∈ D is a Bayes estimator against a prior distribution ξ∗(θ) on the
parameter space Θ and the risk function R (d∗, θ) = constant on Θ; then d∗ is a minimax estimator
of θ.

The motivation behind this study is to check whether the risk functions developed in 4 are
constant or not for the corresponding Bayes estimators. If the risk functions are constant then
according to the Lehmann’s theorem, the respective Bayes estimators are minimax estimators.

First of all, to verify the above Lehmann’s theorem we consider the quadratic loss function.
The risk function (6) is derived after considering the Bayes estimators (8) and (9) for both the
non-informative and informative prior respectively. So, the risk function RQLF

(
λ, λ̂

)
for the

estimators λ̂QLF1 and λ̂QLF2 becomes

RQLF
(
λ, λ̂QLF1

)
=1 − 2λ̂QLF1 E

(
λ−1|X

¯

)
+ λ̂2

QLF1
E
(

λ−2|X
¯

)
= 1 − 2

 Γ (n − 2c)
Γ (n − 2c − 1)

1

∑n
i=1

1
x2

i

1
n − 2c

n

∑
i=1

1
x2

i

+

(
Γ (n − 2c)

Γ (n − 2c − 1)

)2 1(
∑n

i=1
1
x2

i

)2
Γ (n − 2c − 1)
Γ (n − 2c + 1)

(
n

∑
i=1

1
x2

i

)2

=1 − 2
(

n − 2c − 1
n − 2c

)
+

n − 2c − 1
n − 2c

=
1

n − 2c
; which is a constant and

RQLF
(
λ, λ̂QLF2

)
=1 − 2λ̂QLF2 E

(
λ−1|X

¯

)
+ λ̂2

QLF2
E
(

λ−2|X
¯

)

= 1 − 2


n + α − 2(

∑n
i=1

1
x2

i
+ p

) Γ (n + α − 1)
Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)+
(n + α − 2)2(
∑n

i=1
1
x2

i
+ p

)2
Γ (n + α − 2)

Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)2

=1 − 2
(

n + α − 2
n + α − 1

)
+

n + α − 2
n + α − 1

=
1

n + α − 1
; which is also constant.

Therefore, as per the Lehmann’s theorem, λ̂QLF1 and λ̂QLF2 are the minimax estimators of the
scale parameter λ under the quadratic loss function for extended Jeffrey’s prior and gamma prior
respectively.
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Next for SLELF, we use the Bayes estimators (16) and (17) in (10) to obtain the risk functions
corresponding to the Bayes estimators λ̂SLELF1 and λ̂SLELF2 under the non-informative and
informative priors respectively.

RSLELF
(
λ, λ̂SLELF1

)
=
(
ln λ̂SLELF1

)2 − 2 ln λ̂SLELF1 E [lnλ|X
¯
] + E

[
(lnλ)2 |X

¯

]
=

(
Ψ(n − 2c + 1)− ln

n

∑
1=1

1
x2

i

)2

− 2

(
Ψ(n − 2c + 1)− ln

n

∑
i=1

1
x2

i

)(
Ψ(n − 2c + 1)− ln

n

∑
i=1

1
x2

i

)

+
Γ′′ (n − 2c + 1)
Γ (n − 2c + 1)

− 2Ψ (n − 2c + 1) ln

(
n

∑
i=1

1
x2

i

)
+

(
ln

n

∑
i=1

1
x2

i

)2

=
Γ′′ (n − 2c + 1)
Γ (n − 2c + 1)

− (Ψ (n − 2c + 1))2 ; which is a constant and

RSLELF
(
λ, λ̂SLELF2

)
=
(
ln λ̂SLELF2

)2 − 2 ln λ̂SLELF2 E [lnλ|X
¯
] + E

[
(lnλ)2 |X

¯

]
=−

(
Γ′(n + α)

Γ(n + α)

)2

+ 2Ψ (n + α) ln

(
n

∑
i=1

1
x2

i
+ p

)
−
[

ln

(
n

∑
i=1

1
x2

i
+ p

)]2

+
Γ′′ (n + α)

Γ (n + α)

− 2Ψ(n + α)ln

(
n

∑
i=1

1
x2

i
+ p

)
+

[
ln

(
n

∑
i=1

1
x2

i
+ p

)]2

=
Γ′′ (n + α)

Γ (n + α)
− (Ψ(n + α))2 ; which is also constant.

Therefore, according to the Lehmann’s theorem the Bayes estimators λ̂SLELF1 and λ̂SLELF2 are
the minimax estimators under SLELF.

Finally, we calculate the risk functions RGELF
(
λ, λ̂

)
for the Bayes estimators λ̂GELF1 and λ̂GELF2

respectively, as

RGELF
(
λ, λ̂GELF1

)
=ωλ̂

γ
GELF1

E
(
λ−γ|X

¯

)
− ω γ lnλ̂GELF1 + ω γ E (lnλ|X

¯
)− ω

=ω
Γ (n − 2c + 1)

Γ (n − 2c − γ + 1)
(

∑n
i=1

1
x2

i

)γ

Γ (n − 2c − γ + 1)
(

∑n
i=1

1
x2

i

)γ

Γ (n − 2c + 1)
− ωγ

[
− 1

γ
ln

Γ (n − 2c − γ + 1)
Γ (n − 2c + 1)

−ln

(
n

∑
i=1

1
x2

i

)]
+ ωγ

[
Ψ(n − 2c + 1)− ln

(
n

∑
i=1

1
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i

)]
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=ω ln
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+ ω γΨ (n − 2c + 1) ; which is a constant and
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=ω − ωγ

[
− 1

γ
ln

Γ (n + α − γ)

Γ (n + α)
− ln

(
n

∑
i=1

1
x2

i
+ p

)]
+ ωγ

[
Ψ(n + α)− ln

(
n

∑
i=1

1
x2

i
+ p

)]
− ω

=ω ln
Γ(n + α − γ)

Γ(n + α)
+ ωγΨ(n + α); which is also constant.

Therefore, according to the Lehmann’s theorem, both the Bayes estimators λ̂GELF1 and λ̂GELF2

are the minimax estimators of λ under the extended Jeffrey’s prior and gamma prior respectively.
So, the minimax estimators under various loss functions are derived and we compare their
performances numerically in the next section.

6. Simulation Study

In this section, the numerical comparisons between the minimax estimators and the maximum
likelihood estimator have been conducted through an extensive Monte Carlo simulation study.
The performance of the estimators is evaluated on the basis of biases and mean squared errors
(MSE) criteria. The initial choices of the scale parameter are taken as λ = 0.75 and 1. We generate
random samples of sizes n = 10, 25, 50, 75, 100 from (1) by using inverse transformation method
and replicate the process for K = 10, 000 times. Based on these replicated samples, the bias and
MSE of the estimators will be calculated by using the following formula,

Table 1: Estimated values, Bias and MSE of different estimators under extended Jeffrey’s when λ = 0.75.

sample c=-1 c=0.5 c=1 c=1.5
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 0.833 0.916 1.042 1.000 0.667 0.792 0.75 0.583 0.709 0.667 0.500 0.625 0.583
10 Bias 0.083 0.166 0.292 0.250 -0.083 0.042 0.00 -0.167 -0.041 -0.083 -0.250 -0.125 -0.167

MSE 0.093 0.132 0.220 0.187 0.062 0.080 0.07 0.070 0.064 0.062 0.094 0.064 0.070

Estimate 0.779 0.810 0.857 0.841 0.717 0.764 0.748 0.686 0.732 0.717 0.654 0.701 0.686
25 Bias 0.029 0.060 0.107 0.091 -0.033 0.014 -0.002 -0.064 -0.018 -0.033 -0.096 -0.049 -0.064

MSE 0.027 0.032 0.043 0.039 0.023 0.025 0.024 0.024 0.023 0.023 0.027 0.023 0.024

Estimate 0.763 0.778 0.801 0.794 0.733 0.756 0.748 0.717 0.740 0.733 0.702 0.725 0.717
50 Bias 0.013 0.028 0.051 0.044 -0.017 0.006 -0.002 -0.033 -0.010 -0.017 -0.048 -0.025 -0.033

MSE 0.012 0.013 0.016 0.015 0.011 0.012 0.012 0.012 0.011 0.011 0.013 0.012 0.012

Estimate 0.758 0.768 0.783 0.778 0.738 0.753 0.748 0.727 0.743 0.738 0.717 0.733 0.727
75 Bias 0.008 0.018 0.033 0.028 -0.012 0.003 -0.002 -0.023 -0.007 -0.012 -0.033 -0.017 -0.023

MSE 0.008 0.008 0.010 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Estimate 0.756 0.764 0.775 0.771 0.741 0.752 0.748 0.733 0.745 0.741 0.726 0.737 0.733
100 Bias 0.006 0.014 0.025 0.021 -0.009 0.002 -0.002 -0.017 -0.005 -0.009 -0.024 -0.013 -0.017

MSE 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Bias (λ̂) = 1
K ∑K

i=1
(
λ̂i − λ

)
and MSE (λ̂) = 1

K ∑K
i=1
(
λ̂i − λ

)2
.

In case of classical estimation, λ̂MLE can be easily obtained for K times from the expression (3)
for each of the chosen λ with different sample sizes. In Bayesian setup, to obtain the minimax
estimators of λ, we consider three different loss functions QLF, SLELF and GELF respectively. For
GELF, the value of the shape parameter is fixed at γ = 1. Now, under the assumption of extended
Jeffrey’s prior, we choose different values of c, such as, c = ±1, 0.5, 1.5. It is to be noted that, when
c = 0.5, then the extended Jeffrey’s prior is simplified as Jeffrey’s prior and for c = 1.5, it reduces
to Hartigan’s prior. Also, in this empirical study, the choices of hyper parameters are taken as
(α, p) = (0.5, 0.5), (0.5, 5.0), (1.0, 0.25) and (5.0, 5.0) under the assumption of gamma prior. For
every combinations of (α, p), we calculate the minimax estimators of λ under the three various
loss functions. Finally, the average minimax and MLE estimators with their corresponding biases
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Figure 1: MSEs of MLE and minimax estimators under extended Jeffrey’s prior with different values of c when
λ = 0.75

and MSE values are summarized in Tables 1 - 2 and 3 - 4 under the extended Jefferey’s prior and
gamma prior respectively.

In certain cases, a graphical representation of data is a superior representation of information.
The aim is to graphically display comparable findings in order to provide a comprehensive
evaluation of the estimators based on their biases and MSEs obtained in subsequent tables. The
MSE values are plotted in vertical axis against the increasing order of sample sizes in horizontal
axis. Here, for instances we only provide the graph for λ = 0.75 under different conditions
both for the extended Jeffrey’s and gamma prior. The observations obtained from the simulation
results are listed below.

1. When c = −1, then it is clearly seen that the MLE is appeared to be better than all the
minimax estimators under three loss functions.
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Figure 2: MSEs of MLE and minimax estimators under gamma prior with different values of hyperparameters when
λ = 0.75

2. Under Jeffrey’s prior (c = 0.5), minimax estimator under QLF has the smallest MSE value.

3. When c = 1, minimax estimator under GELF performs better than the other estimators.

4. Under Hartigan’s prior (c = 1.5), minimax estimator under the SLELF has the smallest MSE
compared to the others estimators. Also, both the MSE of MLE and the minimax estimator
under QLF are coincided.

5. It is found from Tables 1 and 2 that Hartigan’s prior and Jeffrey’s prior are identical when
sample size n > 50.

6. Under gamma prior, it is observe that in most of the cases the minimax estimator under
QLF performs better than the other estimators.
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Table 2: Estimated values, Bias and MSE of different estimators under extended Jeffrey’s prior when λ = 1.

sample c=-1 c=0.5 c=1 c=1.5
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 1.111 1.222 1.389 1.333 0.889 1.056 1.000 0.778 0.945 0.889 0.667 0.834 0.778
10 Bias 0.111 0.222 0.389 0.333 -0.111 0.056 0.000 -0.222 -0.055 -0.111 -0.333 -0.166 -0.222

MSE 0.166 0.236 0.392 0.333 0.111 0.142 0.125 0.125 0.114 0.111 0.167 0.114 0.125

Estimate 1.039 1.080 1.143 1.122 0.956 1.018 0.997 0.914 0.977 0.956 0.873 0.935 0.914
25 Bias 0.039 0.080 0.143 0.122 -0.044 0.018 -0.003 -0.086 -0.023 -0.044 -0.127 -0.065 -0.086

MSE 0.048 0.056 0.076 0.069 0.041 0.045 0.042 0.043 0.041 0.041 0.049 0.042 0.043

Estimate 1.018 1.038 1.068 1.058 0.977 1.007 0.997 0.956 0.987 0.977 0.936 0.967 0.956
50 Bias 0.018 0.038 0.068 0.058 -0.023 0.007 -0.003 -0.044 -0.013 -0.023 -0.064 -0.033 -0.044

MSE 0.022 0.024 0.028 0.027 0.020 0.021 0.021 0.021 0.020 0.020 0.022 0.021 0.021

Estimate 1.010 1.024 1.044 1.037 0.983 1.004 0.997 0.970 0.990 0.983 0.956 0.977 0.970
75 Bias 0.010 0.024 0.044 0.037 -0.017 0.004 -0.003 -0.030 -0.010 -0.017 -0.044 -0.023 -0.030

MSE 0.014 0.015 0.017 0.016 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.014 0.014

Estimate 1.008 1.018 1.033 1.028 0.988 1.003 0.998 0.978 0.993 0.988 0.968 0.983 0.978
100 Bias 0.008 0.018 0.033 0.028 -0.012 0.003 -0.002 -0.022 -0.007 -0.012 -0.032 -0.017 -0.022

MSE 0.010 0.011 0.012 0.012 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.010

Table 3: Estimated values, Bias and MSE of different estimators under gamma prior when λ = 0.75.

sample (0.5, 0.5) (0.5, 5.0) (1.0, 0.25) (5.0, 5.0)
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 0.833 0.677 0.796 0.756 0.488 0.575 0.546 0.733 0.855 0.814 0.747 0.833 0.804
10 Bias 0.083 -0.073 0.046 0.006 -0.262 -0.175 -0.204 -0.017 0.105 0.064 -0.003 0.083 0.054

MSE 0.093 0.056 0.073 0.064 0.081 0.049 0.058 0.064 0.097 0.082 0.030 0.044 0.038

Estimate 0.779 0.721 0.767 0.751 0.631 0.671 0.657 0.742 0.788 0.773 0.751 0.792 0.778
25 Bias 0.029 -0.029 0.017 0.001 -0.119 -0.079 -0.093 -0.008 0.038 0.023 0.001 0.042 0.028

MSE 0.027 0.022 0.025 0.023 0.027 0.020 0.022 0.023 0.028 0.026 0.018 0.021 0.020

Estimate 0.763 0.735 0.757 0.750 0.687 0.708 0.701 0.745 0.768 0.760 0.751 0.772 0.765
50 Bias 0.013 -0.015 0.007 0.000 -0.063 -0.042 -0.049 -0.005 0.018 0.010 0.001 0.022 0.015

MSE 0.012 0.011 0.012 0.012 0.012 0.011 0.011 0.011 0.012 0.012 0.010 0.011 0.011

Estimate 0.758 0.739 0.754 0.749 0.706 0.721 0.716 0.746 0.761 0.756 0.750 0.764 0.759
75 Bias 0.008 -0.011 0.004 -0.001 -0.044 -0.029 -0.034 -0.004 0.011 0.006 0.000 0.014 0.009

MSE 0.008 0.008 0.008 0.008 0.008 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.007

Estimate 0.756 0.742 0.753 0.749 0.717 0.728 0.725 0.747 0.758 0.755 0.750 0.761 0.757
100 Bias 0.006 -0.008 0.003 -0.001 -0.033 -0.022 -0.025 -0.003 0.008 0.005 0.000 0.011 0.007

MSE 0.006 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.006 0.006 0.005 0.006 0.005

7. The minimax estimator under gamma prior has less MSE value as compared with the
extended Jeffrey’s prior.

8. Bias of λ̂ decreases with an increasing sample sizes for all the estimators.

9. Bias and MSE of all the estimators of λ increases with the value of true scale parameter
increases.

10. In all the cases MSE of the estimators reduced with the increase in sample size which verifies
the consistency of all the estimators. Further, for large size of sample, they all converge to
an almost same MSE value.
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Table 4: Estimated values, Bias and MSE of different estimators under gamma prior when λ = 1.

sample (0.5, 0.5) (0.5, 5.0) (1.0, 0.25) (5.0, 5.0)
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 1.111 0.889 1.046 0.994 0.592 0.696 0.661 0.97 1.132 1.077 0.905 1.010 0.975
10 Bias 0.111 -0.111 0.046 -0.006 -0.408 -0.304 -0.339 -0.03 0.132 0.077 -0.095 0.010 -0.025

MSE 0.166 0.097 0.120 0.106 0.182 0.114 0.134 0.110 0.165 0.140 0.045 0.045 0.043

Estimate 1.039 0.956 1.017 0.996 0.804 0.855 0.838 0.987 1.048 1.028 0.958 1.009 0.992
25 Bias 0.039 -0.044 0.017 -0.004 -0.196 -0.145 -0.162 -0.013 0.048 0.028 -0.042 0.009 -0.008

MSE 0.048 0.039 0.042 0.041 0.057 0.042 0.046 0.041 0.048 0.045 0.028 0.029 0.028

Estimate 1.018 0.977 1.007 0.997 0.894 0.922 0.913 0.992 1.022 1.012 0.977 1.005 0.996
50 Bias 0.018 -0.023 0.007 -0.003 -0.106 -0.078 -0.087 -0.008 0.022 0.012 -0.023 0.005 -0.004

MSE 0.022 0.020 0.021 0.020 0.025 0.020 0.022 0.020 0.022 0.021 0.017 0.017 0.017

Estimate 1.010 0.983 1.004 0.997 0.927 0.946 0.940 0.993 1.014 1.007 7 0.984 1.003 0.996
75 Bias 0.010 -0.017 0.004 -0.003 -0.073 -0.054 -0.060 -0.007 0.014 0.007 -0.016 0.003 -0.004

MSE 0.014 0.013 0.014 0.014 0.016 0.014 0.014 0.014 0.014 0.014 0.012 0.012 0.012

Estimate 1.008 0.988 1.003 0.998 0.945 0.959 0.954 0.995 1.010 1.005 0.988 1.002 0.998
100 Bias 0.008 -0.012 0.003 -0.002 -0.055 -0.041 -0.046 -0.005 0.010 0.005 -0.012 0.002 -0.002

MSE 0.010 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009

7. Conclusion

In this article, an attempt has been made towards a comparison between the minimax estimators
and the maximum likelihood estimator of the scale parameter λ of the inverse Rayleigh distri-
bution. In order to obtain the minimax estimator of λ, we consider extended Jeffrey’s prior and
gamma prior under the symmetric (QLF) and asymmetric (SLELF and GELF) loss functions. An
extensive simulation process is performed to investigate the performance of the MLE as well
as minimax estimators in terms of bias and MSE values. From the simulation results it can
be observed that in large sample cases the MLE and minimax estimators under different loss
functions have approximately same MSE values.

In case of extended Jeffrey’s prior, when the value of c is negative (i.e. c = −1), the maximum
likelihood estimator (MLE) appears to be better than minimax estimators under all the considered
loss functions. However, when c has positive values, then the minimax estimators are more
efficient than the classical estimator MLE.

While comparing the MLE with the minimax estimators under gamma prior, it has been ob-
serve that the minimax estimators are appeared to be better for all the choices of hyperparameters.
It is also remarked that the minimax estimators under gamma prior have less MSE as compared
to the extended Jeffrey’s prior. Therefore, choosing an informative prior is always superior to that
of the non-informative prior. Finally, an increasing order of sample size results in a noticeable
decrease in MSEs for all choices of parameter values which established that all the estimators are
consistent.
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