Научная статья на тему 'MINERALOGY OF THE INDIGOLITE MINE FROM THE GRIGORIEVSKY QUARRY (SHABROVSKOYE ORE FIELD, MIDDLE URALS)'

MINERALOGY OF THE INDIGOLITE MINE FROM THE GRIGORIEVSKY QUARRY (SHABROVSKOYE ORE FIELD, MIDDLE URALS) Текст научной статьи по специальности «Биологические науки»

CC BY
87
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TOURMALINE / DIASPORE / CORUNDUM / GRIGORIEVSKY QUARRY / SHABROVSKOYE ORE FIELD / MIDDLE URALS

Аннотация научной статьи по биологическим наукам, автор научной работы — Erokhin Yuriy Viktorovich, Ponomarev Vladimir Sergeevich, Baksheev Ivan Andreevich, Grigor'Ev Valeriy Vasil'Evich, Zakharov Anatoliy Vladimirovich

The relevance of the work is due to the need to study the mineralogy of aluminous (emery) occurrences of the Urals and the gemstone raw materials associated with these objects. The purpose of the work is to study the mineralogy of the recently discovered tourmaline (indigolite) mine in the vicinity of the village Shabrovsky on the southern outskirts of Ekaterinburg. Research methodology . Quantitative analysis of the chemical composition of minerals was performed on a CAMECA SX 100 electron probe microanalyzer. X-ray phase analysis of minerals was carried out using an X-ray diffractometer XRD-7000 (SHIMADZU). The external appearance of the crystals was studied using a JSM-6390LV scanning electron microscope (Jeol) with an INCA Energy 450 X-Max 80 energy-dispersive attachment (Oxford Instruments). Crystallographic studies of tourmaline, diaspore and apatite individuals were carried out on a Fedorov universal stage. Results and conclusions . The indicolite mine is embedded among antigorite serpentinites in a lenticular body of smoke-blue tourmalinite, which is bordered by dense green chloritolite. The following minerals have been identified and described here: clinochlore, dravite, diaspore, corundum, clinozoisite, margarite, muscovite, hydroxylapatite, and zircon. The main mineral of the mine is tourmaline, in tourmalinite it is represented by dravite with a high content of magnesio-lucchesiite component, and in diaspore rock and open cavities it is almost pure dravite. The faceting of dravite from large cavities in tourmalinite is quite complex. The cross section of the crystals is hexagonal, and the heads resemble sharpened pencils. They are represented by a combination of trigonal pyramids - r{1011}, e{0112}, ditrigonal pyramids - p{3141}, s{1231}, t{2131} with a monohedron - c{0001}. Crystal morphology is given for tourmaline, diaspore, and apatite individuals. The mineral association established by us in the tourmaline mine of the Grigorievsky quarry almost completely repeats the mineralogy of well-known but long-depleted Kler’s mine. A forecast was made that with depth, the processed tourmalinite will turn into dense corundum-emery.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MINERALOGY OF THE INDIGOLITE MINE FROM THE GRIGORIEVSKY QUARRY (SHABROVSKOYE ORE FIELD, MIDDLE URALS)»

УДК 549.612.1+549.521.42(470.5)

http://doi.org/10.21440/2307-2091-2022-2-16-25

Mineralogy of the indigolite mine from the Grigorievsky quarry (Shabrovskoye ore field, Middle Urals)

Yuriy Viktorovich EROKHIN1* Vladimir Sergeevich PONOMAREV1** Ivan Andreevich BAKSHEEV2*** Valeriy vasil'evich GRIGoR'Ev3**** Anatoliy vladimirovich ZAKHARov1*****

1The Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of RAS, Ekaterinburg, Russia 2Lomonosov Moscow State University, Moscow, Russia

3Ural Geological Museum of the Ural State Mining University, Ekaterinburg, Russia Abstract

The relevance of the work is due to the need to study the mineralogy of aluminous (emery) occurrences of the Urals and the gemstone raw materials associated with these objects.

The purpose of the work is to study the mineralogy of the recently discovered tourmaline (indigolite) mine in the vicinity of the village Shabrovsky on the southern outskirts of Ekaterinburg.

Research methodology. Quantitative analysis of the chemical composition of minerals was performed on a CAMECA SX 100 electron probe microanalyzer. X-ray phase analysis of minerals was carried out using an X-ray diffractometer XRD-7000 (SHIMADZU). The external appearance of the crystals was studied using a JSM-6390LV scanning electron microscope (Jeol) with an INCA Energy 450 X-Max 80 energy-dispersive attachment (Oxford Instruments). Crystallographic studies of tourmaline, diaspore and apatite individuals were carried out on a Fedorov universal stage.

Results and conclusions. The indicolite mine is embedded among antigorite serpentinites in a lenticular body of smoke-blue tourmalinite, which is bordered by dense green chloritolite. The following minerals have been identified and described here: clinochlore, dravite, diaspore, corundum, clinozoisite, margarite, muscovite, hydroxylapatite, and zircon. The main mineral of the mine is tourmaline, in tourmalinite it is represented by dravite with a high content of magnesio-lucchesiite component, and in diaspore rock and open cavities it is almost pure dravite. The faceting of dravite from large cavities in tourmalinite is quite complex. The cross section of the crystals is hexagonal, and the heads resemble sharpened pencils. They are represented by a combination of trigonal pyramids - r{1011}, e{0112}, ditrigonal pyramids - p{3141}, s{1231}, t{2131} with a monohedron - c{0001}. Crystal morphology is given for tourmaline, diaspore, and apatite individuals. The mineral association established by us in the tourmaline mine of the Grigorievsky quarry almost completely repeats the mineralogy of well-known but long-depleted Kler's mine. A forecast was made that with depth, the processed tourmalinite will turn into dense corundum-emery.

Keywords: tourmaline, diaspore, corundum, Grigorievsky quarry, Shabrovskoye ore field, Middle Urals.

Introduction

In September-October 2021, many collectors and just lovers of stone from the Sverdlovsk region were excited by the news about the discovery of a new tourmaline (indigolite) mine in the vicinity of the village Shabrovsky (southern border of Ekaterinburg). Tourmaline outcrops were found on the upper ledge of the southern part of the Grigoryevsky serpentine quarry (fig. 1), which is no longer active. Who first discovered the mine is still unclear, but it is actively developed by local and visiting stone lovers (the so-called "hita"). According to them, a cavity up to 0.5 m long was opened in the upper part

EDerokhin-yu@yandex.ru

https://orcid.org/0000-0002-0577-5898 "o123v@yandex.ru

https://orcid.org/0000-0002-1651 -1281 "*baksheev@geoi.msu.ru

https://orcid.Org/0000-0001-6920-427X **"vagrigoriev@yandex.ru

.....zakharov-zav@yandex.ru

https://orcid.org/0000-0001-8790-7892

of the body, filled with clay and transparent brown tourmaline crystals up to 15 cm long. In total, about 10 kg of tourmaline crystal raw materials were mined.

Samples from the tourmaline mine, handed over by the stone lover S. Karaulov for diagnostics, very much resembled the mineral association from famous Kler's mine, which is located in the southeastern part of the Shabrovskoye ore field. It was depleted at the beginning of the 20th century, and since then such rocks have not been found here. We were very interested in this fact, so we visited the mine and decided to present its description.

Figure 1. Location of the tourmaline mine in the Grigorievsky quarry. The mine is shown in red. The photo of the quarry is given by the searchandinformationcartographicservice Yandex.Maps

рисунок 1. расположениетурмалиновойкопи вГригорьевскомкарьере. копь показана красным цветом. Фото карьера дано по поисково-информационнойкартографической службе Яндекс.Карты

Geological position and structure of the mine. The geology and mineralogy of the Shabrovskoye ore field is described in detail in the works of B. P. Uralsky, S. A. Korenbaum, I. F. Romanovich, V. N. Ogorodnikov, I. A. Baksheev and many other researchers [1-7]. Within the ore field, relatively small bodies of serpentinized ultrabasic rocks conformally lying alongside the rocks of the Sysert metamorphic complex are penetrated by numerous gabbroid and granitoid dikes. The dikes are intensely boudinaged in places. The sizes of boudins vary over a wide range - from a few tens of centimeters to several tens of meters. Ultrabasic rocks, gabbroids and granitoids underwent hydrothermal processing and were transformed into talc-carbonate, quartz-chlorite-dolomite-epidote-albite-actinolite and quartz-muscovite-albite metasomatites, respectively. According to K-Ar dating of bulk samples and mica monofractions, the age of apogranite metasomatites is Early Permian [8]. The formation of talc-carbonate rocks of the Shabrovskoye ore field proceeded with the participation of fluids of igneous origin at a temperature of 285-350 °C and a pressure of 1.2-3 kbar at high oxygen fugacity, which probably decreased somewhat by the end of the process, but there was an increase in sulfur activity [1].

At the time of our visit to the mine, the working was a small ditch up to 3 m long, up to 1.5 m wide and up to 2 m deep (fig. 2). In geological terms, the described body is lenticular and dips to the southwest at an angle of 58°. The host rocks are antigorite serpentinites, occasionally transformed into talc-carbonate metasomatites. The body itself has a well-defined zonality: the outer zone is chloritolite, and the inner (central) zone is tourmalinite with clinochlore, diaspore, corundum, apatite, and margarite.

The outer zone, 40-50 cm thick, is composed of a dense fine-grain congeries of dark green chlorite. The rock contains rare prisms of colorless clinozoisite and black tourmaline. Large cavities up to 3 cm in size, imprints of dissolved carbonate crystals, are noted at the contact with host serpentinites in chloritolite. At the contact with the inner zone (tourmalinite), dense chloritolite is recrystallized into a light green, fine-grain to pennant congeries.

The inner zone is 70-80 cm in size and is composed of a dense or porous congeries of grayish-blue (smoke-blue) tourmaline with inclusions of chlorite, corundum, clino-zoisite, margarite, and hydroxylapatite. Numerous cavities ranging in size from 1 to 50 cm are found in the rock, mainly encrusted with brown and blue tourmaline crystals, less often with chlorite and hydroxylapatite. Small cavities are usually open, and large ones are made of brown clay. This is clearly seen in the photograph of the mine (fig. 2), where grayish-blue tourmaline material lies to the right of the working, and brownish clay from an open large cavity to the left.

In places where the central zone is pinched out, tourma-linite quite sharply transforms into corundum-chlorite-dias-pore rock, the blocks of which reach 20-30 cm. At the contact, tourmalinite has a porous appearance with traces of etching. Diaspore rock has a greenish or white color, depending on the predominance of chlorite or diaspore. In some places, it turns into emery, due to which it acquires a bluish color. The diaspore rock contains a large number of cavities, which are mainly encrusted with diaspore and chlorite crystals, less often with blue tourmaline and blue corundum (sapphire).

Figure 2. indigolite mine from the Grigorievsky quarry. Photo by A. V. Zakharov

Рисунок 2. Индиголитовая копь из Григорьевского карьера. Фото А. В. Захарова

'Hielentlcular body has been subjectedto tectonic impacts, which is clearly seen in t e tourmaline crystals, that are often curved and twisted with conductive fractures and regenerated surfaces.

Research methods

Quantitative analysis of the chemical composition of minerals was carried out on a CAMECA SX 100 electron probe microanalyzer (IGG Ural Branch of the Russian Academy of Sciences, Ekaterinburg, analyst V. A. Bulatov). Polished sections were made from rock fragments, then the specimens were sprayed with a thin layer of carbon. Measurement conditions: accelerating voltage 15 kV, current strength 250 nA, electron beam diameter 2 ^m. The pressure in the sample chamber is 2 • 10-4 Pa. The spectra were obtained on tilted wave spectrometers. Samples intended for silicate analysis were used as standards.

X-ray phase analysis of minerals was carried out using an X-ray diffractometer XRD-7000 (SHIMADZU) in the physical and chemical test laboratory of the IGG, Ural Branch of the Russian Academy of Sciences, analyst O. L. Galakhova. The shooting was carried out in the range of 2© angles from 3 to

70 degrees, the operating mode of the X-ray tube was 40 kV, 30 mA. Semi-quantitative assessment of the concentrations of the detected crystalline phases was carried out using the SIRO-QUANT calculation program (Sietronics, Australia).

The appearance of the crystals was studied using a JSM-6390LV scanning electron microscope (Jeol) with an INCA Energy 450 X-Max 80 energy-dispersive attachment (Oxford Instruments, IGG, Ural Branch of the Russian Academy of Sciences, analyst L. V. Leonova).

Crystallographic studies of tourmaline, diaspore, and apatite were carried out on a Fedorov universal stage (Yu. V Erokhin measured and delineated the crystals). The data on the measured individuals were transferred to the Wulff net, according to which the facial indices were subsequently calculated. As a result, the appearance of crystals was formed in the WSHAPE program (by Eric Dowty, 1994).

results and discussion

Based on the results of the study of the selected samples, we found the following minerals in the tourmaline mine: clinochlore, tourmaline (dravite), diaspore, corundum, clino-zoisite, margarite, muscovite, hydroxilapatite and zircon. Their description is given below. The hosting antigorite serpentinites around the lens contain talc, magnesite, and chromespinelides, but since these minerals do not belong to the associations of the tourmaline mine, we did not study them.

Chlorite composes not only the outer zone of the lens, but also forms accumulations in diaspore rock, less often in tourmalinite. In addition, it often encrusts cavities in the form of colorless or slightly greenish barrel-shaped pseudohexagonal crystals up to 5 mm in size. Occasionally, chlorite forms very spectacular disk-shaped (split) colorless crystals up to 1 cm in size. According to X-ray phase and microprobe analyzes, the mineral belongs to clinochlore (table 1). Chlorite is low-iron (f = 0.05), since it contains no more than 4% of the chamosite minal. At the same time, the mineral is more aluminous than standard clinochlore, an excess of aluminum is noted not only in tetrahedrons with silica, but also in the position of divalent cations, i.e., chlorite contains a significant amount of the hypothetical donbassite minal (up to 20%). Chlorite contains minor impurities of manganese and chromium.

Table 1. Chemical composition of chlorite from diaspore rock, wt. % Таблица 1. Химический состав хлорита из диаспоровой породы, мас.%

Number of_

analyzes so

Oxides

TiO,

NIO

FeO

MnO

MgO

CaO

Total

1 26,87 0,01 0,09 26,80 0,01 2,17 0,13 28,44 0,03 - 84,56

2 28,63 - 0,05 26,44 - 2,20 0,13 27,27 0,04 - 84,76

3 27,42 - 0,01 26,15 0,01 2,26 0,14 28,27 - - 84,26

4 28,09 0,01 0,06 26,38 - 2,38 0,15 28,18 0,01 0,01 85,27

5 27,37 0,02 - 25,43 - 2,35 0,15 Crystal chemical formulas per 10 cations 29,05 - - 84,37

1 (Mg4, 12AUFe0,18M%1)5,00(Al0, 99СГ0, 01>1. 00[(Si2,61Al 1,3À00O10KOH)8

2 (Mg3,97Al0,84Fe0,18Mn0,01)5,00Al1,00[(Si2,80Al1,20)4,00O10](OH)8

3 (Mg4, 11Al0,69Fe0, 19Mn0,01)5,00Al1,00[(Si2,68Al1,32)4, 00O1cKOH)8

4 (Mg4,06Al0,74Fe0, 19Mn 0,01)5,00(^0, 99СГ0, 01)1, 00[(Si2,72Al 1,28)4,00OJ(°H)8

5 (Mg4,21Al0, 59Fe0, 19Mn0, 01)5, 00Al1,00[(Si2,67Al1,33)4,00O10](OH)8

СГ2°3

Al2O3

Na2O

Tourmaline composes an almost monomineral central zone of the lens and forms clusters and individual crystals in the diaspore rock. Interestingly, among aluminum hydroxide, tourmaline crystals are blue and dark blue, but in bluish tourmalinite, borosilicate individuals in voids have a brown (smoky) color. In some cavities, regenerated individuals have a greenish marginal zone. The faceting of dravit from large cavities in tourmalinite is quite complex. The cross section of the crystals is hexagonal, and the heads resemble sharpened pencils. They are represented by a combination of trigonal pyramids - r{1011}, e{0112}, ditrigonal pyramids - p{3141},

Figure 3. Appearance of a brown dravite crystal. Facial indices are indicated in the text

Рисунок 3. Внешний вид коричневого кристалла дравита. Индексы граней указаны в тексте

s{1231}, t{2131} with a monohedron - c{0001} (fig. 3). At the same time, on small crystals, the face of the monohedron is not always marked. The horizontal ring of individuals is a hexagonal prism - a{1120}. The faces of the crystals are smooth and shiny; on the prism, striations due to oscillatory combinations are often noted along the elongation of individuals. In its morphology, the dravite from this mine strongly resembles tourmaline individuals from Kler's mine [9]. In addition, in the described mine there are more common in nature and primitive tourmaline crystals with heads cut by one pyramid - r{1011} or a combination of a pyramid - r{1011} with a monohedron -c{0001}. These individuals are usually smaller and grow on large dipyramidal crystals or regenerate the damaged tourmaline surface.

According to microprobe analysis, tourmalinite is composed of dravite with a high content of magnesio-lucchesiite component (high proportions of Ca and O2- in the X and W positions, respectively). Crystal chemical formula - (Na0646 Ca Vac ) (Me Al Fe Mn Ti V ) '

0,309 0,045' 1,000v &2,444 0,422 0,100 0,016 0,013 0,004'3,000 Al6,000[Si5,922Al0,078O18](BO3)3(OH)3(OH0,527O 0,437 F0,036), an. L

At the same time, tourmaline crystals in diaspore rock and in large cavities contain half as much calcium, and they also belong to dravite. The amount of fluorine and iron in tourmaline is low; in addition, there are small impurities of titanium, manganese, and vanadium (table 2, an. 1-5).

Clinozoisite composes single inclusions or accumulations in the tourmalinite congeries, as well as in the chloritolite zone. It forms bar-like colorless metacrystals up to 1 mm in length. According to microprobe analysis data (table 2, an. 6-8), the mineral is low in iron (Fe2O3 up to 0.9 wt. %).

Crystal chemical formula - (Ca2,00Sr0,01)2,01Al2,00(Al0,89Fe0,05

Mn0, 01)0,95[Si2, 02O7][Si1,02O4]0(OH), an. 6. In the mineral, impurities of strontium, manganese and titanium are noted.

Margarite composes accumulations in the leached tour-malinite congeries, as well as in the chlorite-diaspore rock. It forms white lamellar crystals up to 1 cm in size in cavities and in individuals of partially dissolved tourmaline. Mica has a distinction of being pearlescent along the cleavage planes and easily breaks under the pressure of a needle. According to microprobe analysis, the mineral has the following chemical composition, wt.%: SiO2 - 30.96; Cr2O3 - 0.05;

Table 2. Chemical composition of dravite and clinozoisite from tourmalinite, wt. % Таблица 2. Химический состав дравита и клиноцоизита из турмалинита, мас.%

Numbers of_Components

analyzes SiO2 Ti02 V203 Al203 MgO CaO MnO FeO Na20 F iota!

Dravite

1 36,63 0,11 0,03 34,11 10,14 1,78 0,12 0,74 2,06 0,07 85,79

2 36,7 0,07 - 33,57 10,24 1,60 0,10 0,68 2,14 0,04 85,14

3 36,77 - 0,01 33,49 10,19 1,59 0,07 0,68 2,11 0,02 84,93

4 35,89 0,17 0,05 34,15 9,77 1,57 0,16 0,67 2,09 0,07 84,59

5 35,95 0,06 0,04 33,14 10,29 1,64 0,10 0,70 2,09 0,06 84,07

Clinozoisite

6 40,09 - - 32,24 0,02 24,61 0,13 0,87 0,01 0,33* 98,31

7 39,78 0,04 - 32,73 0,04 24,81 0,05 0,35 - 0,27* 98,08

8 40,38 0,03 - 32,52 0,03 24,53 0,17 0,72 0,01 0,31* 98,70

Note: iron oxide is shown in bold italics; asterisk - SrO.

Примечание: полужирным курсивом показано окисное железо; звездочкой - SrO.

А12Оз

50.47; FeO - 0.07; MgO - 0.25; CaO - 8.94; Na2O - 2.81; F - 0.11; the total is 93.64. The crystal chemical formula is

(Ca„,63Na„,36)„,99(Al1,98Mgo, 03)2,0l[Al1,95Si2,05°J(°H1,98F0,02^

Mica contains a significant sodium irr purity (up to 36% of the volume of the calcium position).

Muscovite is rare in tourmalinite congeries and among chlorite-diaspore rocks. It forms c alorless lamellar crystals up to 5 mm in size. According :o microprobe analysis, mica belongs to muscovite, although with a slightly variable composition depending on the host rock. Thus, muscovite in diaspore rock has the following chemical composition, wt %: SiO2- 41.21; Al2O3 - 37.88; FeO - 0.30; MgO - 1.38; BaO - 1.88; Na2O - 0.22; K2O - 10.07; crystal chemical formula - (K0,84Na0,14)0,98(Al1,98Mg0,03Fe0,02)2, ,

Muscovite from tourmalinite has a slightly different composition, wt.%: SiO2- 44.63; Al2O3 - 38.32; FeO - 0.33; MgO - 0.31; BaO - 0.05; CaO - 0.06; Na2O - 1.11; K2O - 9.91; crystal chemical formula - (K0,84Na044)0,98(Al1,98Mg0,03Fe0,02)2,03

[(Al1,03Si2,97'4~10^~"'2'

m

7)4O10](OH)2

Diaspore is the main mineral in lens pinch-out zones. It usually composes fine- and medium-grained congeries together with chlorite, corundum, and dravite. Diaspore crystalsin cavities are often found and compose t least two generations. The first is board-shaped and flattened white individuals up to 2-3 cm in length and without faceted heads, as they stick into the walls of the cavities. The second generation is small and well-formed crystals up to 5 mm long, growing on individuals of the first generation. They are transparent and colored pinkish-brown or yellowish. These crystals form both flattened individuals along the [010] axis as well rs pseudotetragonal ones (fig. 4), very similar to natrolite or scolecite crystals. Diaspore cutting is represented by a combination of rhombic dipyramids - s{111}, x{211}, rhombic prisms - m {110}, y{120 }, e{210} with pinacoids - a{100}, b{010} (fig.4). The flatte^d individual species are characterized by a strong development of the second pinacoid faces, while the pseudotetragonal ones are characterized by the uniform development of b oth pinacoid s and the predominance of the s{111} faces. The horizontal ring of crystals contains striations due to oscillator y combin ations caused by the joint growth of pinacoids and rh ombic prisms.

m-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Figure 4. Appearance of diaspore crystals: a - flattened according to [010]; b - pseudotetragonal.Facialindices are indicatedinthetext Рисунок 4. Внешний вид кристаллов диаспора: а - уплощенный по [010]; б - псевдотетрагональный. Индексы граней указаны в тексте

Diaspore was diagnosed according to X-ray phase and microprobe analysis. It has a very pure chemical composition and contains a slight iron impurity (Fe2O3 up to 0.12 wt. %). The remaining impurities are fixed at the background sensitivity level (table 3, an. 1-5). In general, finds of such a large diaspore are not uncommon forthe southof the Sverdlovsk region; it was described in emery deposits at the mines of Kler, Kakovin, and others [10].

Corundum is one ofthe main minerals in the lenticular body. It occurs in the form ofinclusions in tourmalinite and is abundantly dispersed in diaspore rock, sometimes turning into a fine-grained congeries (emery). The color is mainly blue, dark blue, less often white and cornflower-blue. In some places in the diaspore congeries there are small, up to 0.5 cm in elongation, corundum crystals (opaqueand whitish) of a characteristic dipyramidal appearance. According to microprobe

Table 3. Chemical composition of diaspore and corundum from tourmalinemine, wt. % Таблица 3. Химический состав диаспора и корунда из турмалиновой копи, мас. %

а

b

Numbers of

Oxides

analyzes SiO2 TiÛ2 СГ2О3 Al2O3 Fe2O3 NiO MnO CaO " сумма

Diaspore

1 0,03 0,01 0,01 83,77 0,11 0,01 - 0,03 83,97

2 0,02 0,03 0,04 84,02 0,07 - - - 84,18

3 0,03 0,10 0,03 84,16 0,03 0,01 - 0,01 84,37

4 0,03 0,03 0,01 83,68 0,12 0,04 0,01 - 83,92

5 0,04 0,02 - 84,15 0,04 - - 0,01 84,26

Corundum

6 0,03 0,12 0,02 99,55 0,12 - - - 99,84

7 0,02 0,08 - 99,14 0,09 - - 0,02 99,35

8 0,03 0,04 0,09 100,11 0,04 - 0,05 - 100,36

9 0,04 - - 98,97 0,13 - - 0,01 99,15

10 0,03 0,18 0,04 99,21 0,06 0,02 - 0,01 99,55

analysis, corundum contains small impurities of iron (Fe2O3 up to 0.13 wt. %) and titanium (TiO2 up to 0.18 wt. %), and sometimes they are absent (table 3, an. 6-10). At the same time, corundum with a high content of impurities has a blue color, and without them - white.

Zircon is dispersed over the entire tourmalinite matrix, forming inclusions in dravite and growing in cavities in the form of crystals on tourmaline and apatite individuals (fig. 5). They are short and long prismatic with well-formed heads. The size of the crystals is not more than 50 microns in elongation. According to microprobe analysis, zircon is quite pure and out of all impurities it contains only hafnium (HfO2 up to 2.6 wt. %).

Hydroxylapatite occurs in all rocks of the lenticular body, forming clusters of crystals in voids in both diaspore rock and tourmalinite (fig. 6). The color of apatite is usually colorless, although greenish individuals are also found. Crystals are short-prismatic to isometric, up to 5 mm in size. Spherical individuals look especially impressive, in which almost all faces are developed evenly. Although they are small, they shine like more noble minerals. A drawing of short-prismatic and isometric (spherical) crystals is shown in fig. 7. The follow-

ing simple forms were found on individuals: basopinacoid -c{0001}, hexagonal prism - m{1010}, hexagonal dipyramids -e{1012}, x{1011}, y{2021}, s{1121}, q{2131 }, H{2241}. All faces are distinguished by a good sheen and the absence of striations due to oscillatory combinations. It is interesting that similar spherical apatite crystals were described in leaching voids in beresites of the Berezovsky gold deposit [11].

According to microprobe analysis, phosphate belongs to hydroxylapatite, as it contains some fluorine (F up to 0.58 wt. %) and traces of chlorine (Cl up to 0.05 wt. %). The crystal chemical formula is (Ca5,02Sr0,01)5,03 [P2,97O12](OH0,83F0,16Cl0,01) 1,00, L e-

the amount of fluorapatite minal does not exceed 16%, and chlorapatite - 1%. At the same time, hydroxylapatite is not uncommon for the Shabrovskoye ore field; it was previously found in talcites and veins of noble talc [12], as well as in apogranite metasomatites in association with dolomite, ferruginous dravite, monazite-(Ce) and rutile [13].

The mineral association established by us in the indigolite mine of the Grigorievsky quarry almost completely repeats the mineralogy of well-known but long-depleted Kler's mine, which is less commonly referred to as Shpankov-Kler's. Blue

20kV X850 20ЦП1 21 72 BES

m

jfm> w' _

20kV X550 20|jm 21 72 BES

Figure 5. Zircon crystals (light gray) on the surface of tourmaline and apatite individuals. BSE-photo, SEM JSM-6390LV Рисунок 5. Кристаллы циркона (светло-серые) на поверхности индивидов турмалина и апатита. BSE-фото, СЭМ JSM-6390LV

Figure 6. Apatite crystals on the surface of tourmaline individuals. BSE-photo, SEM JSM-6390LV Рисунок 6. Кристаллы апатита наповерхностииндивидовтурмалина. BSE-фото, СЭМJSM-6390LV

Figure 7. Appearance of apatite crystals: a - short prismatic, slightly flattened according to [0001]; b - isometric, spherical. Facial indices are indicated in the text

Рисунок 7. Внешний вид кристаллов апатита: а - короткопризматический, слабоуплощенный по [0001]; б - изометричный, шарообразный. Индексы граней указаны в тексте

tourmalinesandemery wereminedin Kler's mine[14, 15], along with diaspore, muscovite, margarite and clinochlore [9, 16]. Also,bothmines have asimilar geologicalstructure. These are boudinaged bodies (lenses) embedded in talcized antigorite serpentinites with similar strike and dip angles. The only difference is that the Grigorievsky quarry is located on the edge of the village Shabrovsky, and Kler's mine is not far from the village Kamenka, i. e., approximately at a distance of 10-11 km. It is interesting that at first Kler's mine was developed for tourmaline, and corundum was occasionally found in it, but it was of a blue color, and some sapphire crystals were even cut. All this completely repeats the situation with the modern mine in the Grigorievsky quarry, which is actively mined for tourmaline. Then the tourmaline at Kler's mine was practically over, below came a dense dark gray rock, which M. O. Kler de-

fined as corundum-emery. Apparently, the same fate awaits the indigolite mine, soon the borosilicate will run short, and below will comethickemerythatno oneneeds.

Conclusions

Thus, we have studied the mineralogy of the recently discovered tourmaline mine in the Grigorievsky quarry within the Shabrovskoye ore field (Middle Urals). The following minerals have been identified and described in the mine: clinochlore, dravite, diaspore, corundum, clinozoisite, margarite, muscovite, hydroxylapatite, and zircon. Crystal morphology is given for dravite, diaspore and apatite. The mineral association established by us in the tourmaline mine of the Grigorievsky quarry almost completely repeats the mineralogy of well-known, but long-depleted Kler's mine, which is less commonly referred to as Shpankov-Kler's.

Employees of the Institute of Geology and Geochemistry worked on the article as part of the state task of the IGG, Ural Branch of the Russian Academy of Sciences (registration no. АААА-А18-118052590032-6).

а

b

REFERENCES

1. Baksheev I. A., Sazonov V. N., Ustinov V. I., Erokhin Yu. V., Filimonov S.V., Prokofiev V.Yu., Raimbault L. 2006, Genesis of the Shabrovskoye deposit of soapstone (Middle Urals) according to the study of mineralogy, fluid inclusions and stable isotopes. Ural Mineralogical School-2006: Digest of articles. Ekaterinburg, pp. 14-32. (In Russ.)

2. Baksheev I. A., Erokhin Yu. V., Vigasina M. F., Bryzgalov I. A. 2012, Tourmaline of propylite formation by example of Shabrovskoye deposit, the Middle Urals. Zapiski RMO [Proceedings of the Russian mineralogical society], part 141, no. 3, pp. 68-83. (In Russ.)

3. Korenbaum S. A. 1967, Mineral parageneses of talc deposits. Moscow, 279 p. (In Russ.)

4. Ogorodnikov V. N., Sazonov V. P., Polenov Yu. A., Grigoriev V. V. Shabrovsky ore region (Middle Urals). 2000, Geological position, productive material complexes, mineralization. Ekaterinburg, 80 p. (In Russ.)

5. Ogorodnikov V. N., Sazonov V. P., Polenov Yu. A., Grigoriev V. V. 2000, Shabrovsky ore region (geological position, productive compositional complexes, metallization - mineralization). Guide of the geological excursion of the regional conference of geologists of the European territory of Russia and the Urals. Yekaterinburg. 16 p. (In Russ.)

6.Talc deposits of the USSR / G. N. Bezrukov [et al.]. M.: Nedra, 1973. 224 p. (In Russ.)

7. Uralsky B. P. 1938, Shabrovskoye deposit of talc-magnesite stone. Moscow, 78 p. (In Russ.)

8. Erokhin Yu. V., Pribavkin S. V., Ivanov K. S., Kaleganov B. A. 2003, On the age of metasomatites of the Shabrovskoye deposit of talc-magnesite stone, Middle Urals. IX Readings in memory of A. N. Zavaritsky: materials of scientific conference. Ekaterinburg, pp. 171-172. (In Russ.)

9. Kravchenko G. T. 1940, Tourmaline of quarter 269 of the Nizhne-Isetskaya dacha in the Urals. Trudy IGN AN SSSR [Proceedings of the IGN USSR Academy of Sciences], issue 9, 59 p. (In Russ.)

10 Kuznetsov E. A. 1926, Corundum deposits of the Polevskoy and Kyshtym districts. Mineral'noye syr'ye [Mineral raw materials], no. 2, pp. 111-118. (In Russ.)

11. Popov V. A. 1996, Rare forms of apatite crystals from Berezovsk and Murzinka. Ural Summer Mineralogical School-1996. Ekaterinburg,

pp. 143-144. (In Russ.)

12. 1997, Gumbeite formation of the Uralo. E. M. Spiridonov [et al.]. Moscow, 100 p. (In Russ.)

13. Erokhin Yu. V., Pribavkin S. V., Ivanov K. S., Shagalov E. S. 2005, Mineralogy and geochemistry of carbonate rocko from apogranite metaoomatiteo of the Shabrovokoye deposit of talc-magneoite otone (Middle Uralo). Vestnik UrO RMO [Bulletin of the Ural Branch of the Russian Mineralogical Society], no. 4, pp. 70-79. (In Russ.)

14. Kler M. 2. 1917, Corundum deposit in quarter 269 of the Nizhne-Ioetokaya dacha. Ural'skiy tekhnik[Ural Technician], no. 1-6. pp. 7-10. (In Russ.)

15. Kler M. 2. 1918, Corundum and emery in the Uralo (industrial note). Ekaterinburg, 22 p. (In Russ.)

16. Bakoheev I. A., Erokhin Yu. V., Ovcharenko E. I. 2019, Tourmaline from Kler'o mine, Sverdlovsk region, Ruooia. Mineral Diversity - Research

The article was received on January 14, 2022

УДК 549.612.1+549.521.42(470.5)

http://doi.org/10.21440/2307-2091-2022-2-16-25

Минералогия индиголитовой копи из Григорьевского карьера (Шабровское рудное поле, средний Урал)

Юрий Викторович ЕРОХИН1* Владимир Сергеевич ПОНОМАРЕВ1** Иван Андреевич БАКШЕЕВ2*** Валерий Васильевич ГРИГОРЬЕВ3**** Анатолий Владимирович ЗАХАРОВ1*****

1 Институт геологии и геохимии им. акад. А. Н. Заварицкого УрО РАН, Екатеринбург, Россия 2Московский государственный университет им. М. В. Ломоносова, Москва, Россия

3Уральский геологический музей Уральского государственного горного университета, Екатеринбург, Россия Аннотация

Актуальность работы обусловлена необходимостью изучения минералогии глиноземистых (наждаковых) проявлений Урала и связанного с этими объектами камнесамоцветного сырья.

Цель работы - изучить минералогию недавно открытой турмалиновой (индиголитовой) копи в окрестностях пос. Шабровский на южной окраине г. Екатеринбурга.

Методология исследования. Количественный анализ химического состава минералов выполнен на электронно-зондовом микроанализаторе CAMECA SX 100. Рентгенофазовый анализ минералов проведен с помощью рентгеновского дифрактометра XRD-7000 (SHIMADZU). Внешний облик кристаллов изучался с помощью сканирующего электронного микроскопа JSM-6390LV фирмы Jeol с энергодисперсионной приставкой INCA Energy 450 X-Max 80 фирмы Oxford Instruments. Кристаллографические исследования индивидов турмалина, диаспора и апатита проводились на прикладном столике Федорова. Результаты и выводы. Индиголитовая копь заложена среди антигоритовых серпентинитов в линзовидном теле сизого турмалинита, который окаймлен плотным зеленым хлоритолитом. Здесь установлены и описаны следующие минералы: клинохлор, дравит, диаспор, корунд, клиноцоизит, маргарит, мусковит, гидроксилапатит и циркон. Главный минерал копи - турмалин, в турмалините представлен дравитом с высоким содержанием магнезио-луккезиитового компонента, а в диаспоровой породе и открытых полостях - практически чистым дравитом. Для индивидов турмалина, диаспора и апатита приведена кристалломорфология. Огранка дравита из крупных полостей в турмалините достаточно сложная. Сечение кристаллов гексагональное, и головки напоминают отточенные карандаши. Они представлены комбинацией тригональных пирамид - r{1011}, e{0112}, дитригональных пирамид - p{3141}, s{1231}, t{2131} с моноэдром -c{0001}. Установленная нами минеральная ассоциация в турмалиновой копи Григорьевского карьера практически полностью повторяет минералогию известной, но давно отработанной копи Клера. Сделан прогноз, что с глубиной отрабатываемый турмалинит перейдет в плотный корунд-наждак.

Ключевые слова: турмалин, диаспор, корунд, Григорьевский карьер, Шабровское рудное поле, Средний Урал.

ЛИТЕРАТУРА

1. Бакшеев И. А., Сазонов В. Н., Устинов В. И., Ерохин Ю. В., Филимонов С. В., Прокофьев В. Ю., Raimbault L. Генезис Шабровского месторождения талькового камня (Средний Урал) по данным изучения минералогии, флюидных включений и стабильных изотопов // Уральская минералогическая школа-2006: сб.статей. Екатеринбург: УГГУ, 200б. С. 14-32.

2. Бакшеев И. А., Ерохин Ю. В., Вигасина М. Ф., Брызгалов И. А. Турмалин из пород пропилитовой формации (Шабровское месторождение, Средний Урал) // Записки РМО. 2012. Ч. 141. № 3. С. 68-83.

3. Коренбаум С. А. Минеральные парагенезисы тальковых месторождений. М.: Наука, 1967. 279 с.

4. Огородников В. Н., Сазонов В. П., Поленов Ю. А., Григорьев В. В. Шабровский рудный район (Средний Урал). Геологическая позиция, продуктивные вещественные комплексы, оруденение. Екатеринбург: УГГГА, 2000. 80 с.

5. Огородников В. Н., Сазонов В. П., Поленов Ю. А., Григорьев В. В. Шабровский рудный район (геологическая позиция, продуктивные вещественные комплексы, оруденение - минерализация) // Путеводитель геолог. экскурсии регион. конф. геологов Европейской территории России и Урала. Екатеринбург, 2000. 16 с.

EDerokhin-yu@yandex.ru

https://orcid.org/0000-0002-0577-5898 "o123v@yandex.ru

https://orcid.org/0000-0002-1651 -1281 "baksheev@geoi.msu.ru

https://orcid.Org/0000-0001-6920-427X ""vagrigoriev@yandex.ru

.....zakharov-zav@yandex.ru

https://orcid.org/0000-0001-8790-7892

6. Месторождения талька СССР / Г. Н. Безруков [и др.]. М.: Недра, 1973. 224 с.

7. Уральский Б. П. Шабровское месторождение талько-магнезитового камня. М.; Л.: ГОНТИ НКТП СССР, 1938. 78 с.

8. Ерохин Ю. В., Прибавкин С. В., Иванов К. С., Калеганов Б. А. О возрасте метасоматитов Шабровского месторождения тальк-магнезитового камня, Средний Урал // IX чтения памяти А. Н. Заварицкого: материалы науч. конф. Екатеринбург: ИГГ УрО РАН, 2003. С. 171-172.

9. Кравченко Г. Т. Турмалин 269 квартала Нижне-Исетской дачи на Урале // Труды ИГН АН СССР 1940. Вып. 9. 59 с.

10. Кузнецов Е. А. Корундовые месторождения Полевского и Кыштымского районов // Минеральное сырье. 1926. № 2. С. 111-118.

11. Попов В. А. Редкие формы кристаллов апатита из Березовска и Мурзинки // Уральская летняя минералогическая школа-1996. Екатеринбург: УГГГА, 1996. С. 143-144.

12. Гумбеитовая формация Урала / Э. М. Спиридонов [и др.]. М.: Изд-во МГУ, 1997. 100 с.

13. Ерохин Ю. В., Прибавкин С. В., Иванов К. С., Шагалов Е. С. Минералогия и геохимия карбонатных пород из апогранитных метасоматитов Шабровского месторождения тальк-магнезитового камня (Средний Урал) // Вестник УрО РМО. 2005. № 4. С. 70-79.

14. Клер М. О. Месторождение корунда в 269 квартале Нижне-Исетской дачи // Уральский техник. 1917. № 1-6. С. 7-10.

15. Клер М. О. Корунды и наждаки на Урале (промышленная заметка). Екатеринбург, 1918. 22 с.

16. Baksheev I. A., Erokhin Yu. V., Ovcharenko E. I. Tourmaline from Kler's mine, Sverdlovsk region, Russia // Mineral Diversity - Research and Preservation: X International Symposium (Sofia, Bulgaria, 14-16 Oct. 2019). Sofia: Earth and Man National Museum, 2019. P. 31-32.

Статья поступила в редакцию 14 января 2022 года

i Надоели баннеры? Вы всегда можете отключить рекламу.