Научная статья на тему 'MİNERAL COMPOSİTİON OF CALLİGONUM APHYLLUM 'S ROOTS COLLECTED İN ATYRAU REGİON, KAZAKHSTAN'

MİNERAL COMPOSİTİON OF CALLİGONUM APHYLLUM 'S ROOTS COLLECTED İN ATYRAU REGİON, KAZAKHSTAN Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
96
20
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Sciences of Europe
Ключевые слова
CALLIGONUM APHYLLUM / МИНЕРАЛЬНЫЙ СОСТАВ / ТЯЖЕЛЫЕ МЕТАЛЛЫ / АТОМНО-ЭМИССИОННАЯ СПЕКТРОМЕТРИЯ / MINERAL COMPOSITION / HEAVY METALS / ATOMIC EMISSION SPECTROMETRY

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Orazova N., Rakhmadieva S., Ashirbekova A., Imekova G.

The object of the study was plant raw materials - the roots of the Calligonum aphyllum (Pall.) Gürke plant, which collected on the territory of the Atyrau region, Kurmangazi district on July 7, 2019. The study of quality compliance was carried out in accordance with the requirements of the State Pharmacopoeia of the Republic of Kazakhstan. Plant material according to the obtained indicators of good quality corresponds to quality. The metal content in solid plant materials was studied using inductively coupled plasma atomic emission spectrometry Leeman Lab Profile Plus, and preliminary gelation of the sample was carried out in the laboratory of Azimut Geology LLP in Karaganda. Concluded that the roots of Calligonum aphyllum plant have a rich mineral composition, all vital elements are present, such as phosphorus, iron, cobalt, manganese, zinc, chromium, cobalt. Analysing the content of heavy metals in plant materials, we note that the presence of elements corresponds to the MPC values, with the exception of copper, whose content is 17.2 times more than the MPC, and zinc with a content of 3.5 times more than the MPC.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MİNERAL COMPOSİTİON OF CALLİGONUM APHYLLUM 'S ROOTS COLLECTED İN ATYRAU REGİON, KAZAKHSTAN»

Отже, на 0CH0Bi проведених експерименталь-них та розрахункових дослщжень можна ствер-джувати, що наступи квантово-хiмiчнi параметри, а саме, Ehomo, Elumo, I, А, х, корелюють з ефек-тивнютю експериментального гальмування.

Лiтература

1. Хайдарова Г.Р. Ингибиторы коррозии для защиты нефтепромыслового оборудования // Современные проблемы науки и образования. 2014, N° 6. Режим доступа: https://www.science-education.ru/pdf/2014/6/1460.pdf.

2. Т.Г. Василенко, Т.В. Дрышлюк. Ингибиро-вание коррозии стали гетероциклическими органическими соединениями. Режим доступа: http://www.zgia.zp.ua/gazeta/METALURG_25_27.pd f

3. D. Wang, S. Li, Y. Ying, M. Wang, H. Xiao and Z. Chen. Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives // Corrosion Science, Vol. 41, No. 10, 1999, pp. 1911-1919. http://dx.doi.org/10.1016/S0010-938X (99)00027-X.

4. P. Udhayakala, T.V. Rajendiran and S. Gun-asekaran. Theoretical Approach to the Corrosion Inhibition Efficiency of Some Pyrimidine Derivatives Using DFT Method // Journal of Computational Methods in Molecular Design, Vol. 2, No. 1, 2012, pp. 1-15.

5. R.G. Pearson. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry // Inorganic Chemistry, Vol. 27, No. 4, 1988, pp. 734-740. http://dx.doi.org/10.1021/ic00277a030.

6. R.G. Parr and R.G. Pearson. Absolute Hardness: Companion Parameter to Absolute Electronegativity // Journal of the American Chemical Society, Vol. 105, No. 26, 1983, pp. 7512-7516. http://dx.doi.org/10.1021/ja00364a005.

7. R.G. Parr, L.V. Szentpaly and S. Liu. Electro-philicity Index // Journal of the American Chemical Society, Vol. 121, No. 9, 1999, pp. 1922-1924. http://dx.doi.org/10.1021/ja983494x.

8. E.S.H. El Ashry, A. El Nemr, S.A. Esawy and S. Ragab Corrosion Inhibitors: Part II: Quantum Chemical Studies on the Corrosion Inhibitions of Steel in Acidic Medium by Some Triazole, Oxadiazole and Thi-adiazole Derivatives // Electrochimica Acta, 2006, V. 51, N. 19, P. 3957-3968. http://dx.doi.org/10.1016/j.electacta.2005.11.010

9. R.M. Issa, M.K. Awad and F.M. Atlam. Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils // Applied Surface Science, 2008, V. 255, N. 5, P. 2433-2441. http://dx.doi.org/10.1016Zj.apsusc.2008.07.155

10. K.R. Sandip, N. Islam and D.G. Ghosh. Modeling of the Chemico-Physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors // Journal of Quantum Information Science, 2011,V. 1, P. 87-95. D0I:10.4236/jqis.2011.12012

11. P. Geerlings and F.D. Proft. Chemical Reactivity as Described by Quantum Chemical Methods // International Journal of Molecular Sciences, 2002, V. 3, N. 4, P. 276-309. http://dx.doi.org/10.3390/i3040276

12. N O. Obi-Egbedi, I.B. Obot, M.I. El-khaiary,

5.A. Umoren and E.E. Ebenso. Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface // International Journal of Electrochemical Science, Vol. 6, No. 11, 2011, p. 5649.

13. E.E. Ebenso, D.A. Isabirye and N.O. Eddy. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium // International Journal of Molecular Sciences, 2010, V. 11, N.

6, P. 2473-2498. http://dx.doi.org/10.3390/ijms11062473

14. I. Lukovits, E. Kalman and F. Zucchi. Corrosion Inhibitors - Correlation between Electronic Structure and Efficiency // Corrosion, 2001, V.57, N. 1, P. 38. http://dx.doi.org/10.5006/L3290328

МИНЕРАЛЬНЫЙ СОСТАВ КОРНЕЙ CALЫGONUMЛРШЬШМ, СОБРАННЫХ В АТЫРАУСКОЙ ОБЛАСТИ В КАЗАХСТАНЕ

Оразова Н.К.

Студент, специальность «Химия» 5В060600 Евразийский национальный университет им. Л.Н.Гумилева

Нур-Султан, Казахстан Рахмадиева С.Б. Доктор химических наук, профессор Евразийский национальный университет им. Л.Н.Гумилева Факультет естественных наук, кафедра химии Нур-Султан, Казахстан Аширбекова А.

Докторант, специальность «Химия» 6Б060600 Евразийский национальный университет им. Л.Н.Гумилева

Нур-Султан, Казахстан Имекова Г.

Магистрант, специальность «Химия» 6М060600 Евразийский национальный университет им. Л.Н.Гумилева

Нур-Султан, Казахстан

MiNERAL COMPOSiTiON OF CALLiGONUMAPHYLLUMS ROOTS COLLECTED iN ATYRAU

REGiON, KAZAKHSTAN

Orazova N.

Student

Eurasian National University named after L.N. Gumilyova

Nur -Sultan, Kazakhstan Rakhmadieva S. Doctor of Chemical Sciences, Professor Eurasian National University named after L.N. Gumilyova Faculty of Natural Sciences, Department of Chemistry

Nur -Sultan, Kazakhstan Ashirbekova A.

Eurasian National University named after L.N. Gumilyova

Nur -Sultan, Kazakhstan

Imekova G.

Eurasian National University named after L.N. Gumilyova

Nur -Sultan, Kazakhstan

АННОТАЦИЯ

Объектом исследования являлось растительное сырье - корни растения Calligonum aphyllum (Pall.) Gurke, которые были собраны на территории Атырауской области Курмангазинского района 7 июля 2019 года. Исследование соответствия качества проводилось в соответствии требованиям Государственной Фармакопеи Республики Казахстан. Растительный материал по полученным показателям соответствует качеству. Содержание металлов в твердых растительных материалах изучали с помощью атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой Leeman Lab Profile Plus, а предварительное геле-образование образца проводили в лаборатории Azimut Geology. ТОО в Караганде. Сделан вывод о том, что корни растения Calligonum aphyllum имеют богатый минеральный состав, присутствуют все жизненно важные элементы, такие как фосфор, железо, кобальт, марганец, цинк, хром, кобальт. Анализируя содержание тяжелых металлов в растительных материалах, отметим, что наличие элементов соответствует значениям ПДК, за исключением меди, содержание которой в 17,2 раза больше, чем ПДК, и цинка с содержанием в 3,5 раза больше, чем MPC.

ABSTRACT

The object of the study was plant raw materials - the roots of the Calligonum aphyllum (Pall.) Gurke plant, which collected on the territory of the Atyrau region, Kurmangazi district on July 7, 2019. The study of quality compliance was carried out in accordance with the requirements of the State Pharmacopoeia of the Republic of Kazakhstan. Plant material according to the obtained indicators of good quality corresponds to quality.The metal content in solid plant materials was studied using inductively coupled plasma atomic emission spectrometry Lee-man Lab Profile Plus, and preliminary gelation of the sample was carried out in the laboratory of Azimut Geology LLP in Karaganda. Concluded that the roots of Calligonum aphyllum plant have a rich mineral composition, all vital elements are present, such as phosphorus, iron, cobalt, manganese, zinc, chromium, cobalt. Analysing the content of heavy metals in plant materials, we note that the presence of elements corresponds to the MPC values, with the exception of copper, whose content is 17.2 times more than the MPC, and zinc with a content of 3.5 times more than the MPC.

Ключевые слова: Calligonum aphyllum, минеральный состав, тяжелые металлы, атомно-эмиссионная спектрометрия.

Keywords: Calligonum aphyllum, mineral composition, heavy metals, atomic emission spectrometry.

Introduction

Medicinal plant material is widely used in medicine for various medicines: infusions and decoctions, tinctures, extracts, total preparations, etc. Recently, the release of new types of products from LRS (briquettes, filter bags, powders, tablets, etc.) has increased. Currently, Russia uses drugs that are derived from substances of synthetic, plant, animal, mineral origin. About one third of all medicinal products approved for medical use are obtained from herbal raw materials [1].

The use of herbal remedies is primarily due to their high biological activity, complex effects on the patient's body and safety in the treatment of various chronic diseases or for prevention [1].

Calligonum (Zhuzgun, or Dzhuzgun, or Kandym) - a genus of perennial branched shrubs belonging to the family Polygonaceae [2]. This species of plants grows in a typical sandy desert on fine-hilly, semi-fixed and fixed sands, at the foot of dunes and sand ridges (see figure 1).

The use and economic value of this plant is its use as a plant aroma, as a phytomeliorant [2]. In addition, wood is used as fuel. Camels and sheep eat green shoots and apple-flavored fruits. It is also a very valuable plant for fixing moving sands, making them resistant. The growth on the old trunk is used to grind spoons, tubes, etc. [3].

Fig. 1. Calligonum aphyllum 's roots

Calligonum aphyllum is distributed in the European part of the former USSR, the Lower Volga region, in the Caucasus, in Western Siberia, in Central Asia [4]. In Kazakhstan, it is found in the Caspian lowland, the Emba plateau, the Turgai, Zaysan, Aral, Kyzylorda regions, in the Betpak-Dala desert, Moyun-Kum, in the Balkhash-Alakol lowland, in the Kyzyl-Kum desert (see figure 2) [5].

( «n#e*pn^rt>w AL 1 \ \ V ^ A* :

\ / ) -J> /' %

i Mtf* A. t i

.~r> f : M .

m A^y u

W\ i> m-

•j >■' / / "W/Vl

' s V IV U

' i f: i w. J y \

CZI -..... »imm

" HL?

Fig. 2. Natural distribution area of Calligonum aphyllum (Pall.) Gurke in the Republic of Kazakhstan [6]

Medicinal plants have immense importance in healthcare worldwide for the prevention and treatment of various acute and chronic ailments. The standardization and quality control of herbal drugs are crucial for the production, evaluation, regulation, and safety surveillance of plant-made pharmaceuticals [1].

The influence of environmental pollution can cause the accumulation of ecotoxicants in the raw materials of medicinal plants [7]. Mineral elements contained in plant materials come into it from the soil. The study of the content of toxic elements and minerals in the raw materials of this region is relevant [8]. Essential oil plants are widely distributed and used in pharmaceutical practice in different countries, which necessitates comparative studies of medicinal plant materials of certain regions.

Materials and methods

The object of the study was plant raw materials -the roots of the Calligonum aphyllum (Pall.) Gurke plant, which were collected on the territory of the Atyrau region, Kurmangazi district on July 7, 2019. Using a laboratory mill LZM-M1, vegetable raw materials were crushed to sizes passing through a sieve of 0.5-3 mm in size. Weighings were performed on an Ohaus AR2140 analytical balance. To determine the humidity, a Binder oven was used.

The study of quality compliance was carried out in accordance with the requirements of the State Pharmacopoeia of the Republic of Kazakhstan [9]. Determination of humidity, total ash, ash insoluble in 10% HCl, sulfate ash and the content of extractives carried out according to the methods given in the State Pharmacopoeia of the Republic of Kazakhstan [9].

The metal content in solid objects of plant raw materials was determined by the method of atomic emission spectrometry with inductively coupled plasma Leeman Lab Profile Plus, and preliminary gelation of the sample was carried out in the laboratory of Azimut Geology LLP in Karaganda [10].

Results and discussion

Before starting to analyze herbal ingredients, their quality values were calculated in accordance with recognized standards established by the State Pharmacopoeia of the Republic of Kazakhstan.

The following parameters were studied to determine the good quality of the raw materials of the Calligonum aphyllum (Pall.) Gurke plant: moisture content; extractive substances; total ash content: sulphate ash content; ash insoluble in 10% HCl (see table 1).

The results obtained after determining the loss during drying amounted to 5.2988 ± 0.61, which showed that the samples were properly dried in air and contained less moisture. Extractive values were determined using solvents of alcohol, water, hexane and ethyl acetate, which were 4.5254 ± 0.58% for alcohol-soluble extractive substances, 7.4374 ± 0.87% for water-soluble extractive substances, 9.7239 ± 0.42 % for hexano-soluble extractive substances and 0.7771 ± 0.69% for ethyl acetate-soluble extractive substances. However, the pharmacopoeial limit for alcohol-soluble and water-soluble extractive substances is not <15% and 18%, respectively.

The total ash content for Calligonum aphyllum samples was 1.9740 ± 0.21%, which was again in the limit (no more than 15%). The value of the ash insoluble in hydrochloric acid was 0.0064 ± 0.10%, and the sulfate ash was 1.2805 ± 0.24%, which is less than 5% and, thus, passes the test.

Thus, this plant material according to the obtained indicators of good quality corresponds to quality.

Table 1

The results of determining the mineral composition of the extract of the roots of Calligonum aphyllum

Plant Moisture Total ash Insoluble in 10% Sulphate ash Extractives, %

organ content, % content, % HCl ash content, % content, %

Extraction in 4,5254

water

Extraction in hexane 9,7239

Roots 5.2988 1.9740 0.0064 1.2805

Extraction in 7,4374

70% ethanol

Extraction in 0,7771

ethyl acetate

The mineral composition was determined using analysis was carried out under the following mass spectrometry with inductively coupled plasma. conditions: at a temperature of 23.50 ° C, pressure 717 The measurement results are shown in table 2. The mm Hg (see table 2).

Table 2

The results of determining the mineral composition of the extract of the roots of

_Calligonum aphyllum (Pall.) Gurke_

Determined elements Composition, mg/kg Composition, %

1 Silver Ag <0.1 <0,1*10-4

2 Aluminum Al 1264 1264*10-4

3 Arsenic As <0.1 <0,1*10-4

4 Boron B <1 <1*10-4

5 barium Ba 595 595*10-4

6 Beryllium Be <0.05 <0,05*10-4

7 Bismuth Bi <0.1 <0,1*10-4

8 Cadmium Cd <0.05 <0,05*10-4

9 Cerium Ce 71.38 71,38*10-4

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

10 Cobalt Co <0.1 <0,1*10-4

11 Chromium Cr 2.6 2,6*10-4

12 Copper Cu 52.2 52,2*10-4

13 Iron Fe 1551 1551*10-4

14 Gallium Ga <0.1 <0,1*10"4

15 Germanium Ge <0.1 <0,1*10"4

16 Hafnium Hf <0.1 <0,1*10"4

17 Indium In <0.1 <0,1*10"4

18 Lantanum La <0.05 0,05*10-4

19 Lithium Li <0.1 <0,1*10"4

20 Manganese Mn 51.1 51,1* 10-4

21 Molybdenium Mo <0.1 <0,1*10-4

22 Niobium Nb <0.1 <0,1*10-4

23 Nickel Ni <0.1 <0,1*10-4

24 Phosphorus P 293 293*10-4

25 Lead Pb 3.8 3,8*10-4

26 Selenium Se <0.1 <0,1*10-4

27 Antimony Sb <0.1 <0,1*10-4

28 Scandium Sc <0.1 <0,1*10-4

29 Tin Sn 0.2 0,2

30 Strontium Sr 299.2 299,2

31 Tellurium Te <0.1 0,1

32 Thorium Th 0.20 0,2

33 Titanium Ti 15 15

34 Thallium Tl <0.1 0,1

35 Uranus U <0.05 0,05

36 Vanadium V <0.1 0,1

37 Tungsten W 0.2 0,2

38 Yttrium Y <0.1 0,1

39 Ytterbium Yb <0.1 0,1

40 Zinc Zn 35 35

41 Zirconium Zr <0.1 0,1

The results of the analysis show that the roots of plant materials are rich in micro- and macroelements. This analysis proves the presence of all 41 elements. Of these, trace elements, the content of which is high, are aluminum (1264 mg / kg), barium (595 mg / kg), cerium (71.38 mg / kg), copper (52.2 mg / kg), iron (151 mg / kg), manganese (51.1 mg / kg), phosphorus (293 mg / kg), strontium (299.2 mg / kg), titanium (15 mg / kg), zinc (35 mg / kg). The concentration limits were determined for elements whose content was not more than 0.1 mg / kg. They are silver, arsenic, beryllium, bismuth, cadmium, cobalt, gallium, germanium, hafnium, indium, lanthanum, lithium, molybdenum,

The accumulation of heavy metals in soils occurs mainly through technogenic emissions of dust, smoke, and aerosols into the atmosphere. The plants accumulate heavy metals (copper, zinc, cobalt, lead, cadmium) [11].

Soil pollution with heavy metals occurs due to the irrational use of natural resources, including during oil and gas production. The main sources of pollution of the biosphere during oil production are the construction of oil and gas wells (wastewater and sludge, well emissions, fuels and lubricants, etc.), the collection and transportation of oil through pipelines; oil preparation for refining; oilfield refining and storage, cream and liquid operations [12].

Conclusion

The results of the analysis show that plant material according to the obtained indicators of good quality corresponds to quality. The roots of plant materials are rich in micro- (silver, arsenic, beryllium, nickel, selenium, antimony, scandium and etc.) and macroelements (aluminum (1264 mg / kg), barium (595 mg / kg), cerium (71.38 mg / kg), copper (52.2 mg / kg), iron (151 mg / kg), manganese (51.1 mg / kg), phosphorus (293 mg / kg) and etc.). Roots of Calligonum aphyllum plant have a rich mineral composition, all vital 41 elements are present, such as phosphorus, iron, cobalt, manganese, zinc, chromium, cobalt. Analyzing the content of heavy metals in plant materials, we note that the presence of elements corresponds to the MPC values, with the exception of copper, whose content is 17.2 times more than the MPC, and zinc with a content of 3.5 times more than the MPC.

References

1. Gravchenko L.A., Geller L.N. The history of pharmacy. Teaching Aid: - Irkutsk, IGMU, 2014. - P. 111.

2. Soskov Y.D. Genus Zhuzgun - Calligonum L. (systematics, geography, evolution, introduction) // RIC SibNSHB. - Novosibirsk, 2011. - P. 37-40.

niobium, nickel, selenium, antimony, scandium, tellurium, thallium, uranium, vanadium, yttrium, ytterbium, zirconium. Based on the results in table 2, we can conclude that the roots of Calligonum aphyllum plant have a rich mineral composition, all vital elements are present, such as phosphorus, iron, cobalt, manganese, zinc, chromium, cobalt.

Analyzing the content of heavy metals in plant materials, we note that the presence of elements corresponds to the MPC values, with the exception of copper, whose content is 17.2 more than the MPC, and zinc with a content of 3.5 times more than the MPC (see table 3).

3. Cherepanov S. K. Trees and shrubs of the USSR. - 1951. - V. 2. - P. 108.

4. Komarov V.A. Flora of the USSR // USSR publishing house. - Moscow, Leningrad, 1936. - V. 5. - P.538-539.

5. Pavlov, N.V. Flora of Kazakhstan // publishing house of sciences of the kazakh ssr. - V.3. - Alma-Ata, 1960. - P.125.

6. Rakhmadiyeva S., Khalelova D., Kushnare-vich D., Ichshanova I., Mineral composition of Calligonum aphyllum (Pall.) Gurke // Proc. of the Intl. Conf. on Advances in Applied science and Environmental Technology. - 2015. - P. 93-97.

7. Paul B. Tchounwou, Clement G. Yedjou, Anita K. Patlolla, and Dwayne J. Sutton. Heavy Metals Toxicity and the Environment // PubMed Central. -2014. - №101. - P. 133-164.

8. Granovsky E.I. Problems of sustainable development of the Atyrau city and of the Atyrau region. Analytical review // The Kazakh State Research Institute for Scientific and Technical Information. - Almaty, 2013.

9. State Pharmacopoeia of the Republic of Kazakhstan // Zhibek zholy. - Almaty, 2008. - P. 592.

10. Methods for measuring the metal content in solid objects using inductively coupled plasma spec-trometr]. - M., 1998. - P.13-16.

11. Ishchanova N.Y., Dyusenov B. Heavy metals in soil and plants of the Tengiz oil and gas field in the Atyrau region // Academician Satpayev and his role in the development of science, education and industry in Kazakhstan: Traditional International Symposium, dedicated to the 100th anniversary of birth. K.I. Satpaev. - Almaty: KazNTU, 1999. - P.1. - P.288-290.

12. Ishchanova N.Ye., Bigaliyev A.A., Study of the content of heavy metals in soil samples of the Tengiz oil and gas field in the Atyrau region // Vestnik Kazgu. Ser. Ekologicheskaya. - 2001. - P. 83 - 85.

Table 3

Comparison of maximum permissible concentrations (MPC) in the roots of a plant

№ Element Content in roots, mg/kg MPC

1 Pb 3.8 10

2 As <0.1 2

3 V <0.1 15

4 Cd <0.05 8

5 Co <0.1 23

6 Cu 52.2 35

7 Zn 35 10

i Надоели баннеры? Вы всегда можете отключить рекламу.