Научная статья на тему 'MILNE-TYPE INTEGRAL INEQUALITIES FOR MODIFIED (ℎ,𝑚)-CONVEX FUNCTIONS ON FRACTAL SETS'

MILNE-TYPE INTEGRAL INEQUALITIES FOR MODIFIED (ℎ,𝑚)-CONVEX FUNCTIONS ON FRACTAL SETS Текст научной статьи по специальности «Математика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Проблемы анализа
WOS
Scopus
ВАК
MathSciNet
Область наук
Ключевые слова
local fractional derivatives / local fractional integrals / fractal sets / Milne inequality / (ℎ / 𝑚)-convex modified functions of second type / Holder inequality / power mean inequality

Аннотация научной статьи по математике, автор научной работы — J. E. Napoles, P. M. Guzman, B. Bayraktar

In the article, new versions of integral inequalities of Milne type are derived for (ℎ,𝑚)-convex modified functions of the second type on fractal sets. Based on a new generalized local fractional weighted integral operator, an identity is established as the foundation for subsequently obtained inequalities. Throughout our study, we obtained certain results known in the literature, which include particular cases of our findings.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MILNE-TYPE INTEGRAL INEQUALITIES FOR MODIFIED (ℎ,𝑚)-CONVEX FUNCTIONS ON FRACTAL SETS»

DOI: 10.15393/j3.art.2024.15450

UDC 517.518.862, 517.218.244

J. E. Napoles, P. M. Guzman, B. Bayraktar

MILNE-TYPE INTEGRAL INEQUALITIES FOR MODIFIED (h, rn)-CONVEX FUNCTIONS ON FRACTAL SETS

Abstract. In the article, new versions of integral inequalities of Milne type are derived for (h, m)-convex modified functions of the second type on fractal sets. Based on a new generalized local fractional weighted integral operator, an identity is established as the foundation for subsequently obtained inequalities. Throughout our study, we obtained certain results known in the literature, which include particular cases of our findings.

Key words: local fractional derivatives, local fractional integrals, fractal sets, Milne inequality, (h,m)-convex modified functions of second type, Holder inequality, power mean inequality

2020 Mathematical Subject Classification: Primary 26A33;Secondary 26D10, 47A63

1. Introduction. A function ф: [p1,p2] ^ R is said to be convex if ф(ти + (1 — r)v) ^ тф(и) + (1 — г)ф(ь) holds for all u,v e [p1,p2] and

r e [0,1]. A function ф is said to be concave if —ф is convex.

Convex functions have been widely generalized, including the m-convex function, r-convex function, h-convex function, (h, m)-convex function, s-convex function, and many others. Readers interested in exploring these extensions and generalizations of the classical notion of convexity can refer to [26].

In literature, various integral inequalities, such as Simpson's, trapezoidal, midpoint, and others, are presented. Numerous studies are dedicated to extending and generalizing these integral inequalities. An example includes the derivation of several variations of these inequalities for different classes of functions, such as differentiable convex, bounded, and Lipschitz functions, see references [19], [16], [5], [20], [8] and the works cited therein.

© Petrozavodsk State University, 2024

In the works [27], [22], [9], [10] and the literature cited therein, the main attention is paid to fractional versions of trapezoid-type inequalities and midpoint-type inequalities.

Studies [8], [18], [25] and the references therein emphasize the establishment of Simpson-type inequalities.

Milne-type integral inequalities constitute a class of mathematical inequalities associated with integrals. These inequalities are named after Edward Arthur Milne, a distinguished mathematician recognized for his contributions to various areas of mathematics.

In general, a Milne-type integral inequality involves the integration of functions and establishes bounds or inequalities for these integrals based on specific conditions or assumptions regarding the integrands and the integration domain. These inequalities are frequently employed in mathematical analysis, particularly in integral calculus and related fields.

The classical Milne-type inequality in the literature is represented as follows ( [13], [14], [28], [15]):

P 2

P2 — Pi

(2Ф (pi) — ф(уР1 ' P2) + 2ф Ы) — Ф (x)

3 1 2

* ^^ |^>| ■

2) J — I Ф (x) dx

P1

Numerical integration methods, specifically Milne’s and Simpson’s formulas, demonstrate both similarities and distinctive features. Both of these methods employ a composite quadrature rule to approximate the definite integral of a function and require the use of a uniformly distributed grid of sampling points.

As can be seen from Milne’s inequality, the integrand function must be continuously differentiable up to the fourth order inclusive. Recently presented studies [13], [14], [28] provide an estimate for Milne’s formula for a continuously differentiable function using fractional integral operators.

These inequalities are useful for estimating the magnitude of integrals in terms of other integrals, facilitating the analysis of various mathematical problems.

Research on and development of local fractional functions within fractal sets, encompassing such aspects as local fractional calculus, function continuity, and monotonicity, is thoroughly examined in [30].

Following the above work, the real line number in the fractal set R5 has the following properties:

If rf, rf, and rf e R, 0 < 6 ф 1, then:

rf + rf e R, rf rf e R.

rf + rf = rf + rf = (r\ + r 2 )й = (г 2 + Г\У.

From this, we have the following conclusion.

Given the rf + rf = (ri + г2)й, —rf is such that rf + (—rf) = 0й (for example, (Iй — 2s) = 1s + (—2s) = (1 + (—2))s = (—1)5) and, since

rf + (—rf) = 0

1

• r

we s

have (—1)й = —1й, then 1й — 2s = —1й.

+ (g + гз) = (ri + r2) + гз.

f + (rf + rf

rf rf = rf rf = (rir2)d = (r2 r\) (rf rf )rf = rf (rf rf)

й Й <S ^

s

rf (rf + rf) = (rf rf) + (rf rf).

• r

+ 0й = 0й + rf = rf, and rf 1й = 1й rf =

3

r

1

Local fractional integral Holder inequality, which was established by Yang [31] and used, for example, in [17], is as follows: Let фуф e (/).

Then

ryri) <

I

(

Г(а + 1)

i

I0WIP^

1

Г(о + 1)

J ^

for p > 1, - + - = 1.

Definition 1. Let ф e L\[pi,p2]. Then the Riemann-Liouville fractional integrals of order a e C, Re(o) > 0 are defined by (right and left, respectively):

^+00*0

J — *)a VW ^

n

1

гм

V2

(t — ж)10(t) ht,

ж

Ж > pi,

Ж < P2.

Definition 2. A non-differentiable mapping ф: R ^ R5 is called local fractional continuous at x = x0, if for any £ > 0, there exists т > 0, satisfying

|ф(х) — ф(хo)| <

for \х — х0\ < т. If ф(х) is local continuous on some interval (p1,p2), we denote ф(х) e C$ (p1 ,p2).

Definition 3. The local fractional derivative of ф(х), where x e \_p1, p2\ of order 5 at x = x0 is given by

ф{6\хо)

d& ф Г(6 + Т)(ф(х) — ф{хо))

(xo) = iim

dX° x^xq (x — x0)°

Denote ф e Ds\p1,p2\, Г(-) is the Euler gamma function.

Definition 4. Let ф e Ds \p1,p2\. The local fractional integral of ф(х) of order 6 is given by

P 2

pi J%Ф(х) = Г(Д ^ JФ(х)Лх&.

pi

Here, ifp1 = p2, then P1 Jsp2ф(х) = 0, if p1 < p2, then P1 Jsp2ф(х) = —p2Jpiф(х). If P1 Jxф(х) exists for all x e \p1,p2\, then we say that ф(х) belongs to the class of fi-integrable functions in \a,b\, i.e., ф(х) e Jx\р1 ,рф\.

The following lemma establishes two fundamental properties for the operators defined above [30]:

Lemma 1. The following results are true:

(1) If фС] e Cs(P1,P2), then Pl Jsp2фрё')(х) = ф(р2) — ф(рф).

(2) (Integration by parts rule) Let u(x),v(x) e Ds\p1, p2\ and ups),vps) e Cs(p1,p2); then we have

P1 J&x (u(x)vp&) (x))

u(x)v(x)

P 2 Pi

Pi J&x ((U{&](x)v(x)).

Based on the previous definition, we present the integral operators that will be used in our work.

Definition 5. Let ф be a local fractional continuous on \p1, p2\ and let w(x) e Jx\p1,p2\. The right and left local fractional weighted integral of

ф of order 6 are given by

W

41 + Ф(р2)

P 2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Г(* + 1)

W

(<h

P2 - A P2 — Pi

P1

1

(j)(X)d\s,

and

w J&P2-Ф(рФ)

1

P 2

Г(* + 1)

w

G)

A - Pi

P2 — Pi

P1

(P(\)d\S.

Let I be a real interval and ф: I ^ R. If VA e I, ф(Х) ^ 0й, then ф is said to be non-negative function.

In this work, we will use the following notion of convexity on I = [0, +8) (which has as its starting point the definition of [1], [7] and [21]):

Definition 6. Let ф: I ^ R5 and h: [0,1] ^ (0,1]. If inequality

Ф (X + m(1 - а)я) ^ hs&(а)ф(ф) + ms(1 — hs&(а))ф(я) (1)

is fulfilled V£,q e I and a e [0,1], where s e (0,1] and m& e [0й, 1 ], then the function ф is a generalized (h, m)—convex of the first kind on I. Let us denote this class of functions by (I).

Definition 7. Let ф: I ^ R5 and h: [0,1] ^ (0,1]. If inequality

Ф № + M1 — rfs) ^ hS&(°)Ф(0 + m&(1 — h(v)Y&Ф(я) (2)

is fulfilled V£,q e I and a e [0,1], where s e (0,1] and m& e [0й, 1й], then the function ф is a generalized (h,m)-convex of second type on I. Let us denote this class of functions by (I).

Remark 1. Interested readers can easily verify that from Definition 7 we have many of the notions of convexity reported in the literature. For example, putting

• h(z) = z, s = 1, m = 1, and 5 = 1, we see that ф is a convex function on [0, +8) [12], [26];

• h(z) = z, s = 1, and 5 = 1, we have the m-convexity [29];

• h(z) = z, m = 1, and 5 = 1, then we obtain the s—convex function on [0, +8) [11];

• s = 1 and h(z) = z, then we get the Definition of generalized m—convex functions [21];

• m = s = 1 and h(z) = z: we have the generalized convex function [24];

• m = 1 and h(z) = z: we have the generalized s—convex function [23];

• h(z) = z we obtain the concept of generalized (s,m)-convex functions on a fractal space [1].

It is obvious that, under the consideration 5 = 1, other known definitions of convexity can be reproduced.

In this work, we obtain new variants of the classical Milne Inequality for generalized (h, m)-convex modified functions the second type, via local integral operators of the Definition 5.

2. Main Results. As the first result, we obtain an equality that will serve as the basis for subsequent results.

Lemma 2. Let ф: [0, <x>) ^ R and ф e Ds[pi,p2],and w(x) e P1 [pi,p2]. If ф^ e L1[p1,p2] with p1 ^ 0, then we have

Pi ' (K + iqp2 к ' 2

(3)

)+

= J ^

к'1 — X 1' X

Pi'

ZZ2T Pi' XV2p2

) — *w(

n ' 2Pi' n ' 2

1 ' X к' 1 — X Pi'

p^]dXs

0

Proof. Let us denote

]Ь(А)[<У>(

к ' 1 — X 1 ' X Pi'

ZTPi' y~21,2

)—ф(ф

n ' 2Pi' n ' 2

1 ' X к ' 1 — X Pi'

P2)] d\s

0

= h — h.

Integrating by parts fractionally in I1, we have:

h = \w

к ' 1 — A

к + 2

~Pi

1 ' ^ \ j\<S

' ZT2p'2)dx =

n + 2 \s

P2 — Pi

W

n + 1 — A 1 + A \ 1 Pi ' ““УP2

к + 2 \ P2 — Pi

к + 2

i

w

(S)

к + 2

к ' 1 — A к + 2

1 ' ^ \ , a

Pl ' Z+2PVdX

/ n + 2 \ V2 — Pi'

W

npi + 2p2 ' к + 2

)— )

к + 2 \ P2 — Pi

w

(S)

к ' 1 — A к + 2

1 ' ^ \ , a

Pi ' Z+2P2)AX ■

Making a change of variables in this last integral and taking into

,, i , P2 — Pi Kpi + 2P2 {k + 1qpi + P2 ,

count that ------— = ------------------------------, we obtain:

к + 2

к + 2

к + 2

z =

к ' 1 — A к + 2

-pi +

1 + A к + 2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

P2',

if A - 0, then * - (K + 1)p\+ P2; if A - 1, then z-Kpi ' 2p2

A =

к + 2

к + 2 (к + 1) pi + P2

к + 2

d\s =( K + 2 \ dzs \02 — Ол)

-z —

P2 — Pi

,„«(А) = w® z — (K ' 1)Pl + P2\

\ 02 — Ол 02 — Ол /

P2 — Pi

P2 — Pi'

4P2 — Pi

P2 — Pi

= w(S) / (k + 2)z — (K + 1qPl — P2 \ =

Z —

P 2 — Pi

(K+1)p1-p2

«+2

P2-P1

«+2

) ■ w(‘) (

z —

( K+I)pi+P2 «+2

«p! + 2p2 («+1)р1+р2

«'2 «'2

\-

w

( )

к ' 1 — A 1 ' A

к + 2

1 ' ^ \ ?>i

Pl + Z+2 P2) AX =

ac-

( n + 2 у

^p2 - Pi

KPl+2P2

n+2

w

(S)

/

(k+1)pi +P2 k+2

(n + l)p1+p2 n+2

Kp1 + 2p2 (K+i)p1+p2

k'2 k'2

'Sjф(z)d.

z

(k + 2)^ Г + !) w TS

(P2 — pi)

W 0

J KP1+2P2 '

( n + 2

(K + lqPi + P2 + к'2 ).

Thus we have

l

«’W(A)Ф K + 1 Лft + ft d\s —

К + 2 к + 2

к + 2

npi+2p2 '2

(f+h j *'(

( К -I— 1 Ы-1 -I- ^

(k+1)P!+P2

«+2

( ^ + iqPl+P2

t+2

Kp1±2p2 _ (^+l)p!+p2 k'2 k'2

)

ф (z) dz& —

(k + 2)6 r (5 + iq w s

(P2 — pi) So, for Il we obtain s

W

J npi+2p2 ( n + 2

)-ф(

(K + 1)Pi + P2

к + 2

).

h —

—) [m)h) - -(о)ф(

P2 — Pi К + 2

(K + 1)pi + P2'

Г (6 + 1) )“ J\„i+a> ф(

P2 — Pi ( к +2 )

к + 2

(K + 1)p i + P2

- (4)

+2 — Pi-In the same way, for I2 we get

к + 2

)■

12 =

(—i)' l^22 )V)*( — ®(0)h

4P2 — Pi -

2pi + K,p2 '

'Pi + (n + 1)p 2'

t 1\ ( K + 2 )2S w T( J, (2Pl + KP2\

{ ) Г (<s +4 рГ+i J(“+a11“)2 z+2

к + 2

'2Pl + Kp2 )

К

i

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

к + 2 &

P2 — Pi

TO(1)p 2pl + Kp) — т(00)ф(Pl + <K + 1)p2'

К

+ 1Г (5 + 1) ^±1)2Й- ) ф(

\P2 — Pi м+р + V

к + 2 Pi +_{++_1)P2_ n + 2

+

Subtracting (5) from (4) and rearranging, we have the desired equality. This ends the proof. □

г

z

Corollary 1. Under the assumptions of Lemma 2, if we take w(X) = (A" + I), then for к = 0, m = 1, and 8 = 1 with а > 0, we get the identity:

Pi + P2

{2 [ф {p2) + Ф (pi)] — Фу 2

f pi + P2 ) а л f Pi + P2 у

Ф — ' У+Ф —

(6)

2“-1Г(« + 1)

(P2 — PiY

та

JP2-

P2 — Pi 4

2

(A“+ 5) pi + vrp2)

' f 1 + A 1 — A

— Ф Pi + P2

d\.

Proof. Indeed, for the first expression from the right-hand side of (3), we have

к + 2 У

■-P2 — Pi

)'{“«К^ ' *( ^)

(0)[*f )+4^2^)]}

(7)

— w(

4

к + 2 'Pi + P2'

3 (p2 — Pi) W (p2) Ф{Р 2P )+ 2ф (Pi^ ’

and for generalized fractional operators, we get

f л±1 у г а +1) у ^ d(K+ ^ + ^2)

+

P2 — Pi

Mf Pi + (K + 1)P2

2P1+^P2 Y

k+2 )+ К + 2

2 )2

+ w J\\

P2 — Pi 2 )2 P2 — Pi

г (2) wУ-Фр-Цу2)' w J'

P 2

Pi +P2 2

f \ _ P1+P2 у

w' --ETE Ф(^+

УР2---2~ 7

P1+P2

2

+ I w'

pi

Pi +P2 \

i жж—)^мл

Pi +P2 „

~2 ~ — dl'

I ) ^x)dx' | w'( ^-p/)^(A)dA

£2

, Д_ £1+£2

Р1 + P2 2

P1+P2

2

P2-P1 2

. £1+£2 Д N

P1

P2-P1 2

Since w' (t) = ata 1, we have

'Д _ £1+£2

w — - = a

\ (*-^V"1 2-■« л Pl + m

J = “ ^y-) = („,-„, i“-1 h-T“)

P2-P1

2

a— 1

and

£^£2- Д £^ -Д

“ Sy = “ ЙЕН

a— 1

(P2 - PlY

2a—1a (p1 + p )a—1

T -Y

(ft-P1)a—^ 2

And, finally, the weighted operators become Riemann-Liouville fractional:

P2

2 - ( \ _ P1'P2 x

(y-71 «’'hsd w)<tt+

Р1 +P2 2

P1+P2

2

, £1+£2 \

' Ап Ф(Х)ЛХ

+

£1

P2—P1 2

P 2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(у-уГ“г<4Ш I (^

+

1

P1+P2

2

Г(а) J V 2

£1

2 ) a+1

r(«)

Р1 +P2 2

A + - A)a—1^(A)rfA

a+1 г Ta A (P1 ' P a P1 + P

p2-J r(a +iq Jn—Ф — + ]п,ф —

From the integrals in the right-hand side in (3), we get

1

' к ' 1 — A 1 ' A

w

s к + 1 - Л 1 + Л ^ 1+ A к + 1 - A

(л) K’(Tp1'7T22p -ф( —2 *' ~T>

d\ =

(9)

л“+0 И ^ *+^») - фт( ^ *+V»)

d\.

Taking into account (7)-(9), it is not difficult to obtain (6). The proof is complete. □

Remark 2. Identity (6) was obtained by Budak et al. (Lemma 1 in [14]).

Remark 3. In the case k = 0 and m = 1

a) If we take w(X) = ' i-pi~A ) + , we get Lemma 2.1 of [15] with 6 = 1;

b) If we take w(X) = (A + !), we have Lemma 2.1 of [6].

For convenience, we denote by L(5,n,w) the left-hand side of (3), so

к ' 2 \ ^ ! f Kpi ' 2 p2 \ if 2 pi ' k*P2 \

L{S'K'W) = ш(1) K^vrir) ' H

к

2

(10)

w( 0)

( К + 1)pi + p , Pi + (K + iqp2

к + 2

к + 2

)* г (*+1)

0 01

^2 — Pi

wjS _ X + !)Pi + P2\

^Pl+2P2 '

k+2 ) \ К ' 2

w тё if Pi + (/i + 1)P2

k+2 )+ к + 2

+

I w

' j 2Р1+кр2

Theorem 1. Letф: [0, да) ^ R andф e D& [pi, p2], and фр^ eLi[pi,p2], and w(x) e P1J^[pi, p2] with 0 ^ pi < p2. If ф e N^[0, да) and ™ e [PuP2]; then

\L(5,k,w)\ ^ (w(1) — т(0))ф(Х^2у^)

(11)

(yf)s r(sj1)\h,i wjt ^

'( к + 1)x + у

+ m2 s[ 1 — h( 1))*^

2 Ф:т)+ 2) J

к + 2 x + (к + 1)y \

\+

i

' к ' 1 — X \

h (2) !Ф(х)! wpsq(X)haS + 2 )d\s+

0

' ”Ф1 — К 2)f к Ш \ J> <A>(1 - "(датда)Г"

+

' h12) Кга)IJ “'<i)(A)h1 zra) '

0

^ I1 - 4 2 )Г К А )!Йа)(2 - 4^ )Г^

Proof. Putting A = 1, we have, from the second-type generalized (h, га) convexity of ф, the following:

Ф(^) < h-(1 )ф(р ,)+m^ (2 - h( 1 ))-ф ( £ ) .

2 J " ” \2JTxri' ' "" M "Л2 Putting pi = x + ^y and P2 = yfx + K+1—x

ф£¥ )^( ±м

' к + 1 — А

1 + А

к+2

т>

, we have

п -х '-------у +

к + 2 к + 2 1

Лл ,(1 V\^ , /1 + Ах к + 1 — А у V 42// \к + 2т к + 2 га

Multiplying this inequality by w(S)(X) and integrating between 0 and 1 with respect to A, we obtain

ит(А)ф (Xipy) dX‘ < h^2) ш<(,ф(

га ' 1 — A к + 2

-x +

1 + A к + 2

yj d Xs+

+ ra<5(1 — h(2)) J ^(<5)(А)ф(

0

From this, we have

1 + Ax к+1 — Ay

+ y

к + 2га

к + 2 га

) d Xs.

(w(1) — т(0))ф

(xir)«h-( 2) *+ra (j—h( 2))

sS

112)

2

Change of variables z = 12л x + I'y in h and z

in 2 leads us to the following result:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1+Л ^+1—Л у

«+2 m «+2 m

=

К ' 1 — A 1 + A

--------x '------у

к + 2 к + 2

' if A if A

0, then 1 , then

(к+1)ж+у ; k+2 ;

кх+2у, k+2 ;

(к + 2 )z (к + 1)x + у к + 2

/\ , QjA. QjZ

у — ^

nx'2y

к'2

У — х

У — х

and d\s — (^ \У — х/

dzs;

к ' 1 — Л 1 ' Л

------—х '----

к + 2 к + 2

1 ' ^ ) 7

+ ZT2УЙЛ "

W

G)

'(к + 2)z (к + 1)ж + уу ( к + 2V

( к + 1)ж + у к + 2

У — х

У — х

У — х

у <ь‘ —

'к + 2у чу — х,

пх + 2у с+2

w

G)

(

Z —

(к+1)х+у

к+2

( к + 1)ж + у п'2

кх+2у (к+1)х+у

к'2 к' 2

'К + 2 V5,

-у — X,

Analogously, for I2 we have

+ i>- ^ )_Ф(

z) dzs — (к + 1)x + У'

к + 2

0-

1 + X x к+1 — Ху z =--- — + У

к + 2 т к + 2 т

if Л — 0, then z — х+(к'2)у

5 т(к+2)

if Л — 1, then z — ;

5 т(к+2) 7

х + ку — т(к + 2)z т(к + 2)

/\ Z QjA. QjZ

у — х

у — х

iZ — {—у(т(к '2) у V — —Г(т(к + 2) у V

V у — х J Vy — x J

I2 — L«(A)di±2Z + V_W —

2 I ( )F\К + 2 m к + 2 m)

(S)(x + ку — т(к + 2)zV . (т(к + 2) V* ь

V у — x Г KZ)\ у — x ) aZ

2x' n у т(к + 2)

1

х + (к + 1)у ■т(к + 2)

( т(к + 2) у5 V у — х )

х + (к + 1)у т(к + 2)

( q

х+ку

т,(к+2)

— Z

2 ж + ^ у т(« + 2)

х+(к+1)у 2х+ку

т,(к+2) т,(к+2)

z) hz5 —

(

( rn(n + 2) У — x

s ,

Г(5 + 1)w J\x+Ky +

X + (к + 1)y ) га (к + 2) ’

Taking into account the last two results in (12), we can see the first inequality of (11).

To obtain the right-hand side member, using the generalized (h,m)-convexity of the second type of ф, we have, successively,

к ' 1 — A

x +

к ' 2

1 + A к + 2

к + 1 — к + 2

A

-x + 1

к + 1 — к + 2

->)

and

< ^ ^гат>)+га^ 1—“ чга)

к + 1 — A \sS

1 + Аж к+1 — Ху к + 2 га к + 2 га

l'A ^ + 1 — 1 + А у ^

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

к + 2 га к + 2 га

«h1 Чга)' га11 — h(

^))" *(£)•

Multiplying the first inequality by hsS (2) wpsq(X) and the second by m6 (1 — h(j))‘4 wps\X), after integrating between 0 and 1 we obtain

i

1

hsS ^ I I w 0

Ob

^ ' 1 — Л 1 ' Л

X +

к ' 2 к ' 2

y)dXs ^

h-s(2) [tfx) wpsq(\)h‘s(K ' 1 X)d\a +

+ m6 ф(у~

1—h/^r<*:

and

(13)

(■ -‘®п-'(«(Ш;га< ««

0

^(1—h/1 )г^(га rai (x)h‘s ( ^ )d xs+

' 1 - К£2)Г*

Making the change of variables z = -2xx + у in the integral of

the left-hand side of (13) and z = фф + к"2л ^ in the integral of the left-hand side of (14), the required inequality is obtained.

This ends the proof. □

Corollary 2. Under the assumptions of Theorem 1, if we take h(t) = t, then for к = 0, m = s = 1, we get the inequalities

^(1)Ф Ы — M°)0 (Pl' Pa) + w(iq0 )

(P2 - Pi)

2sГ (5 + 1) - (P2 - Pi f

'Pi + P‘2

2

w 6

'Pi + P2S

- JU-*{eL^)' * J)]}

(w(1) — w(0 ))ф

r(h + 1)

X + у

(У — xf

1s

26 w & X + У'

" 4—^^)+ i2i" т ■Khp)

1)1'1 ,Ф Ы| „<‘)(A)dA‘.

Remark 4. If we take w(X) = (A" + |) and 8 = 1 with а > 0 in Corollary 2, then we get the inequalities:

4

P2 — Pi

2"+ -Г(а + 1)

{2Ф (P2) — *(^) + 2Ф (pi)}

(P2 — Pi)

, ( X + у

Ф

"—1

■q—нЧ*) + ' *

1

У — x

2 2 У—Ф ) + ^ Ф (4*)

<

\ф(х)\ + \ф(у)\

Here Л"-ф and J"+ ф are Riemann-Liouville fractional integral operators. It should be noted that the last two inequalities are a variant of the Hermite-Hadamard inequality for fractional integration operators.

Remark 5. If we put h(X) = X, к = 0 and w(s')(X) = 1 in the above result, we obtain an extension of the Theorem 3.1 of [21].

By imposing more restrictive conditions on on the right-hand side of (3), we can obtain more refined inequalities.

So, we have this first result:

Theorem 2. Let ф: [0, да) ^ UR5 and e Li[pi,p2], and

w(x) e P1 [pi,p2] with 0 1 pi < p2. If e N^2m[0, да), with m e (0,1]

and ^ e [pbp2], then

\L(6,n,w)\ 1

i

1

w(X) Ц

0

к ' 1 — A к + 2

) + hi ш*

+

15)

+ m

*(S) © I -w( О—< ©)Г' (i—1©©)) 1"

П+ 1 - X WsS N

Proof. By using properties of the fractal integral, for the right-side of (3) we can write:

x) (к + 1 — A 1 + A n

ю(л) h( ~tt—tPi' ГТ22 1

' 1 ' А к ' 1 — A да + 2^1 к + 2

P‘2

dX&

1

16)

1

w(X) ф(1)( K ' 12 Л pi + © Л dx>+

К ' 2 к ' 2

+ «W©-1 M '

1 + A 1 — A

к + 2

~P2

dXs =

= H\ + H\ .

And using the (h, m)—convexity of ф(й) in both integrals leads us to

i

HI + HI 1 ^Hdi)1 Jw(X)hsS^ —^ '—— ^jdX+

0

+ m'

'P2 .m

1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

^1 - h( ^ )Г -+

+

|<Р>Ы| u.(X)h’s(1-^^,)dX+

+ m'

К’ (I)I “(A)(1 - Кгг!))"dA <

0

« rM[Mh- (44^)'h- (^ Ж ]

+

+ m'

0

P2'

m /

i - h(^ ))■*

w

+

1 + Л ws<5'

+ ,i - ))") ^

к + 2/

Which is the desired result. □

Corollary 3. Under the assumptions of Theorem 2, if we take h(t) = t, then, for к = 0, we get the inequalities

(P2 - P.)

2s Г (5 + 1)

- (P2 - Pi)S

ы(1)Ф (p2) -

P1 + P2

2

+ т(1)ф (p.)

(P1 + P2\ w T& j, (P. ' P2

• -ЖЖ) '"J;и(Ж)]}

Remark 6. If we take w(X) = (A" + |) and m = s = 5 = 1 with а > 0 in Corollary 3, then we get the inequality

\{2Ф Ы - ф(уР1 ' P2) + 2Ф Ы} -

2"-1 Г(а + 1) (P2 - Pi)"

j"„ -ф

P2-

Pi + P2

) ' J£(Ж)

P2 — Pi 12

^ (Pi) + ^ Ы

a + 1

Here Лф_ф and Тф+ф are Riemann-Liouville fractional integral operators. This inequality was obtained by Budak et al. (see Theorem 1 in [14]).

Theorem 3. Let ф: [0,8) ^ R and |ф(s')|q p Li[pi,p2], and

w(x) p P1 Jsx[pi,p2] with 0 ^ pi < p2. If \ф^6)\д p N^2m[0,8), with

m p (0,1] and ^ p[pi,p2], q > 1 I + i = 1, then

1 ( 1

\L(S,k,w)\^ (Jw”(X)dXs) ' |<У)Ы|" JK ' ' — ^ dXs + (17)

0 0

1 A 1

1—h (^ ))'<*

1

+

+ m

1 1 — i'l

k(i)<-)i5Jh ^ К' И % )Г i (i—h( ^))' -1.

00

0й ^

m,

Proof. Using the (h, m)-convexity of |0(й) |9 and the well-known Holder inequality from (16), we obtain:

i1

*2\ ^ ^ i w

0

+ m'

i

j/i\ + K2I « ( J w”(X)dXs) ' )|" Jhs(K ' 1— л)dXs+

* U

m

" '} — h(^))'-2'

+

+ m

+ (Ju.”(x)dxs) * |^(i)(A) Г J h (dX‘

00

1—h( ^ ))

+

m

1

Q

From the last inequality, taking into account (3), it obviously follows that (17). The proof is complete. □

Theorem 4. Under the assumptions of the previous theorem, if q ^ 1 and f 1 = 1, then we have the following inequality:

i

1

kS V

' к ' 1 — Л'

\L(5,k,w)\ ^ (J*w(X)dXs^1 *{ |0(5)(pi)T [w(X)hsS(K ' 1 — X^dXs+ 0

+ m

ф‘( Э1 w(X)(1—h(

K'1 — л)" dV11

к + 2

+

+ m

| Фт(Р1)|" | w(X)h‘s]D-2 j dX‘ +

0

1 sS

ФЧ%)|e “<A) 0— h(^))‘1'}■ (18)

Proof. The proof follows the same path as the previous one, only a different form of the Holder’s inequality is used: the power mean one. □

Remark 7. Under the conditions of Theorems 3 and 4, if we take w(X) = (Xa + D with a > 0 and h(t) = t, then for k = 0, and 5 = m = s = 1, we get the Theorem 1 and 2 from [14].

Remark 8. Other refinements can be obtained using other known inequalities, such as Young’s.

3. Conclusions. In this work, we present a generalized formulation of the fractal weighted integral, which contains, as a particular case, many of the integral operators reported in the literature. In this context, we present several integral inequalities that generalize several known results.

References

[1] Abdeljawad T., Rashid S., Hammouch Z., Chu Y. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Advances in Difference Equations, 2020, vol. 2020, paper 406. DOI: https://doi.org/10.1186/s13662-020-02865-w

[2] Agarwal P., Jleli M., Tomar M. Certain Hermite-Hadamard type inequalities via generalized k— fractional integrals. J. Inequal. Appl., 2017, paper 55. DOI: https://doi.org/10.1186/s13660-017-1318-y

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[3] Akdemir A. O., Deniz E., Yukse E. On Some Integral Inequalities via Conformable Fractional Integrals. Applied Mathematics and Nonlinear Sciences, 2021, vol. 6, no. 1, pp. 489-498.

DOI: https://doi.org/10.2478/amns.2020.2.00071

[4] Akkurt A., Yildirim M. E., Yildirim H. On some integral inequalities for (k,h)—Riemann-Liouville fractional integral. NTMSCI, 2016, vol. 4, no. 1, pp. 138-146. DOI: http://dx.doi.org/10.20852/ntmsci.2016217824

[5] Alomari M. W. A companion of the generalized trapezoid inequality and applications. J. Math. Appl., 2013, vol. 36, pp. 5-15.

DOI: https://doi .org/10.7862/rf.2013.1

[6] Al-Sa’di S., Bibi M., Seol Y., Muddassar M. Milne-Type Fractal Integral Inequalities For Generalized m—Convex Mapping. Fractals, 2023, vol. 31, no. 5 2350081. DOI: https://doi.org/10.1142/S0218348X23500810

[7] Bayraktar B., Napoles V. J. E. New Generalized Integral inequalities Via (h,m)-Convex Modified Functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, vol. 60, pp. 3-15. DOI: https://doi.org/10.35634/2226-3594-2022-60-01

[8] Bayraktar B., Napoles V. J. E., Rabossi F. On Generalizations Of Integral Inequalities. Probl. Anal. Issues Anal., 2022, vol. 11(29), no 2, pp. 3-23. DOI: https://doi.org/DOI:10.15393/j3.art.2022.11190

[9] Bayraktar B., Ozdemir M. E. Generalization Of Hadamard-Type Trapezoid Inequalities For Fractional Integral Operators. Ufa Mathematical Journal, 2021, vol. 13, no. 1, pp. 119-130.

DOI: https://doi.org/10.13108/2021-13-1-119

[10] Bayraktar B. Some New Generalizations Of Hadamard-Type Midpoint Inequalities Involving Fractional Integrals. Probl. Anal. Issues Anal., 2020, vol. 9(27), no. 3, pp. 66-82.

DOI: https://doi.org/10.15393/j3.art.2020.8270

[11] Breckner W. W. Stetigkeitsaussagen fur eine Klasse verallgemeinerter kon-vexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 1978, vol. 23, pp. 13-20.

[12] Bruckner A. M., Ostrow E. Some Function Classes Related To The Class Of Convex Functions. Pacific J. Math. 1962, vol. 12, pp. 1203-1215.

[13] Budak H., Hyder A. Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities. AIMS Mathematics, 2023, vol. 8, no. 12, pp. 30760-30776.

DOI: https://doi.org/DOI:10.3934/math.20231572

[14] Budak H., Kosem P., Kara H. On new Milne-type inequalities for fractional integrals. J. Inequal. Appl., 2023, vol. 2023, paper 10.

DOI: https://doi.org/10.1186/s13660-023-02921-5

[15] Celik B., Budak H., Set E. On Generalized Milne Type inequalities For New Conformable Fractional Integrals. Filomat, 2024, vol. 38, no. 5, pp. 1807-1823. DOI: https://doi.org/10.2298/FIL2405807C

[16] Cerone P., Dragomir S. S. Trapezoidal-type rules from an inequalities point of view. In: G. Anastassiou (Ed.), Handbook of analytic-computational methods in applied mathematics, New York: CRC Press, 2000.

[17] G.-S. Chen. Generalizations of Holder’s and Some Related Integral Inequalities on Fractal Space. Journal of Function Spaces, 2013, vol. 2013, paper 198405. DOI: https://doi.org/10.1155/2013/198405

[18] Chen J., Huang X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat, 2017, vol. 31, no. 15, pp. 4989-4997. DOI: https://doi.org/10.2298/FIL1715989C

[19] Dragomir S. S., Agarwal R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett., 1998, vol. 11, pp. 91-95.

DOI: https://doi.org/10.1016/S0893-9659(98)00086-X

[20] Dragomir S. S. On trapezoid quadrature formula and applications. Kragu-jevac. J. Math., 2001, vol. 23, pp. 25-36.

[21] Du T., Wang H., Adil Khan M., Zhang Y. Certain integral inequalities considering generalized m—convexity of fractals sets and their applications. Fractals, 2019, vol. 27, no. 7, pp. 1-17.

DOI: https://doi.org/10.1142/S0218348X19501172

[22] Kirmaci U. S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput., 2004, vol. 147, pp. 137-146.

DOI: https://doi.org/10.1016/S0096-3003(02)00657-4

[23] Mo H. X., Sui X. Generalized s—convex function on fractal sets. Abstr. Appl. Anal. 2014, vol. 2014, paper 254737.

DOI: https://doi .org/10.1155/2014/254737

[24] Mo H., Sui X., Yu D. Generalized Convex Functions on Fractal Sets and Two Related Inequalities. Abstract and Applied Analysis, 2014, vol. 2014, paper 636751. DOI: http://dx.doi.org/10.1155/2014/636751

[25] Napoles V. J. E., Quevedo Cubillos, M. N., Bayraktar B. Integral inequalities of Simpson type via weighted integrals. Probl. Anal. Issues Anal. 2023, vol. 12(30), no 2, pp. 68-86.

DOI: https://doi .org/10.15393/j3.art. 2023.13310

[26] Napoles J. E., Rabossi F., Samaniego A. D. Convex functions: Ariadne’s thread or Charlotte’s spiderweb? Advanced Mathematical Models & Applications, 2020, vol.5, no.2, pp.176-191.

[27] Sarikaya M. Z., Set E., Yaldiz H., Basak N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Com-put. Model., 2013, vol. 57, pp. 2403-2407.

DOI: https://doi.Org/10.1016/j.mcm.2011.12.048

[28] Siala I. B., Budak H., Alic M. A. Some Milne’s rule type inequalities in quantum calculus. Filomat, 2023, vol. 37, no. 27, pp. 9119-9134.

DOI: https://doi .org/10.2298/FIL2327119S

[29] Toader G. Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization. University Cluj-Napoca, 1985, pp. 329-338.

[30] Yang X.-J. Advanced Local Fractional Calculus and Its Applications. World Science Publisher: New York, NY, USA, 2012.

[31] Yang X. Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, 2011.

Received December 28, 2023.

In revised form, March 25, 2024.

Accepted March 26, 2024.

Published online April 20, 2024.

J. E. Napoles

UNNE, FaCENA, Ave. Libertad 5450, Corrientes 3400, Argentina E-mail: jnapoles@exa.unne.edu.ar

UTN-FRRE, French 414, Resistencia, Chaco 3500, Argentina E-mail: jnapoles@exa.unne.edu.ar

P. M. Guzmaan

UNNE, Facultad de Ciencias Agrarias Sargento Cabral 2131,

Corrientes, Argentina

UNNE, FaCENA, Av. Libertad 5450, Corrientes, Argentina E-mail: paulo.guzman@comunidad.unne.edu.ar

B. Bayraktar

Bursa Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey.

E-mail: bbayraktar@uludag.edu.tr

i Надоели баннеры? Вы всегда можете отключить рекламу.