Научная статья на тему 'Мезиальный височный склероз и его роль в развитии палеокортикальной височной эпилепсии (обзор литературы)'

Мезиальный височный склероз и его роль в развитии палеокортикальной височной эпилепсии (обзор литературы) Текст научной статьи по специальности «Клиническая медицина»

CC BY
4698
461
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭПИЛЕПСИЯ / EPILEPSY / МЕЗИАЛЬНЫЙ ВИСОЧНЫЙ СКЛЕРОЗ / MESIAL TEMPORAL SCLEROSIS / ЭТИОЛОГИЯ / ETIOLOGY / ПАТОГЕНЕЗ / PATHOGENESIS / АНАТОМИЯ / ANATOMY / ПАТОФИЗИОЛОГИЯ / PATHOPHISIOLOGY

Аннотация научной статьи по клинической медицине, автор научной работы — Гатауллина С. Х., Мухин К. Ю., Петрухин A. C.

Представлен обзор литературы, посвященный проблеме мезиального височного склероза. Склероз гиппокампа впервые был описан Bouchet и Cazauvieilh в 1825 году и в настоящее время рассматривается, как мультифакториальное, классическое эпилептогенное поражение головного мозга, лежащее в основе лимбической или медиобазальной палеокортикальной височной эпилепсии, проявляющейся резистентными эпилептическими приступами. В статье освещаются исторические аспекты изучения вопроса, вопросы анатомии и патофизиологии гиппокампального склероза, его роли в развитии палеокортикальной височной эпилепсии.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по клинической медицине , автор научной работы — Гатауллина С. Х., Мухин К. Ю., Петрухин A. C.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MESIAL TEMPORAL SCLEROSIS AND ITS ROLE IN DEVELOPMENT OF PALEOCORTICAL TEMPORAL LOBE EPILEPSY (A REVIEW)

The articles gives a review of works on mesial temporal sclerosis. Hippocampal sclerosis was first described by Bouchet and Cazauvieilh in 1825, and is presently classified as a multifactor, classical epileptogenic cerebral affection, underlying limbic or mediobasal paleocortical temporal lobe epilepsy manifested by resistant epileptic seizures. The article highlights historical issues of the subject, anatomy and pathophysiology of hippocampal sclerosis and its role in development of paleocortical temporal lobe epilepsy.

Текст научной работы на тему «Мезиальный височный склероз и его роль в развитии палеокортикальной височной эпилепсии (обзор литературы)»

ОБЗОРЫ

МЕЗИАЛЬНЫЙ ВИСОЧНЫЙ СКЛЕРОЗ И ЕГО РОЛЬ В РАЗВИТИИ ПАЛЕОКОРТИКАЛЬНОЙ ВИСОЧНОЙ ЭПИЛЕПСИИ (ОБЗОР ЛИТЕРАТУРЫ)

С.Х. Гатауллина, К.Ю. Мухин, А.С. Петрухин

MESIAL TEMPORAL SCLEROSIS AND ITS ROLE IN DEVELOPMENT OF PALEOCORTICAL TEMPORAL LOBE EPILEPSY (A REVIEW)

S.H. Gataullina, K.Yu. Mukhin, A.S. Petrukhin

Кафедра неврологии и нейрохирургии педиатрического факультета ГОУ ВПО РГМУ Росздрава, Москва

Представлен обзор литературы, посвященный проблеме мезиального височного склероза. Склероз гиппо-кампа впервые был описан Bouchet и Cazauvieilh в 1825 году и в настоящее время рассматривается, как мультифакториальное, классическое эпилептогенное поражение головного мозга, лежащее в основе лимби-ческой или медиобазальной палеокортикальной височной эпилепсии, проявляющейся резистентными эпилептическими приступами. В статье освещаются исторические аспекты изучения вопроса, вопросы анатомии и патофизиологии гиппокампального склероза, его роли в развитии палеокортикальной височной эпилепсии.

Ключевые слова: эпилепсия,мезиальный височный склероз, этиология, патогенез, анатомия, патофизиология.

The articles gives a review of works on mesial temporal sclerosis. Hippocampal sclerosis was first described by Bouchet and Cazauvieilh in 1825, and is presently classified as a multifactor, classical epileptogenic cerebral affection, underlying limbic or mediobasal paleocortical temporal lobe epilepsy manifested by resistant epileptic seizures. The article highlights historical issues of the subject, anatomy and pathophysiology of hippocampal sclerosis and its role in development of paleocortical temporal lobe epilepsy.

Key words: epilepsy, mesial temporal sclerosis, etiology, pathogenesis, anatomy, pathophisiology.

Определение

Мезиальный височный склероз (синонимы: гиппокампальный склероз, склероз аммонова рога, инцизу-ральный склероз, мезиальный темпоральный склероз) — мультифакториальное, классическое эпилептогенное поражение головного мозга, лежащее в основе лимби-ческой или медиобазальной палеокортикальной височной эпилепсии, проявляющейся резистентными эпилептическими приступами. Наиболее часто в литературе употребляется термин «мезиальный височный склероз» (МВС), хотя немецкие авторы считают более правильным понятие «склероз аммонова рога» [8, 37]. Распространенность и клиническая картина мезиального височного склероза у детей к настоящему времени изучены недостаточно.

История изучения

Итальянский анатом Giulio Cesare Aranzi в 1564 году впервые применил термин hippocampus для описания структуры головного мозга, наглядно похожего на морского коня. Изначально этот орган был известен только как центр обоняния. Позже нейрофизиолог В.М. Бехтерев, основываясь на обследованиях больных с тяжелыми нарушениями памяти, установил роль гиппокампа в поддержании функции памяти человека. Приступы психомоторного характера (сложные парциальные, аутомоторные), составляющие по современным представлениям «ядро» клинической картины амигдало-гиппокампальной височной эпилепсии, были описаны еще Гиппократом. Существует предание о том, что легендарный

© Коллектив авторов, 2008.

С.Х. Гатауллина, К.Ю. Мухин, А.С. Петрухин

Мезиальный височный склероз и его роль в развитии палеокортикальной височной эпилепсии (обзор литературы). Рус. жур. дет. невр.: т. III, вып. 3, 2008.

ТОМ III ВЫПУСК 3 2008

Геракл во время «приступа эпилептического безумия» убил свою жену и детей.

Склероз гиппокампа впервые был описан Bouchet и Cazauvieilh в 1825 году при анатомическом исследовании мозга больных, страдавших частыми эпилептическими приступами. Немного позже, в 1880 году, Sommer при микроскопии выявил наличие характерного гистологического паттерна в гиппокампе: гибель пирамидных нейронов в основании височного рога (сектор Зоммера или подполе CAI). Поскольку при микроскопии создавалось визуальное сходство со шлемом египетского фараона Аммона, состоявшего из столбиков золотых монет, данная патология была названа «склероз аммонова рога». Но в то время это открытие не вызвало большого интереса, возможно, потому, что эпилепсия считалась душевным (а не морфологически обусловленным) заболеванием. Только в конце XIX века Chaslin (1889) во Франции и Bratz (1889) в Германии высказали мнение, что выявленные изменения могут играть роль в генезе эпилепсии [9]. Чуть раньше, в 1880 году, великий английский невролог John Hughlings Jackson предположил, что нейроны в поврежденных участках мозга имеют аномально повышенную возбудимость. Это в дальнейшем определило концепцию «эпилептического фокуса ». Bratz в 1899 году, изучая материалы аутопсии, обнаружил, что эпилептические приступы в раннем возрасте могут быть одной из причин формирования склероза гиппокампа. Он же показал, что склероз сектора Зоммера гиппокампа может наблюдаться не только при эпилепсии, но и при других неврологических расстройствах. По мнению Bratz, выявляемые изменения в гиппокампе имели врожденный характер.

До настоящего времени склероз аммонова рога и его отношение к эпилепсии (причина или следствие?), вызывает горячие дискуссии [11, 34]. Морфологию и топографию изменений при склерозе гиппокампа подробно изучили Spielmayer (1927) и Scholz (1951,1954), которые отнесли обнаруженные изменения к последствию частых судорожных приступов [9]. Gastaut и Roger (1955), а также Norman (1956, 1957), выявили повышенную чувствительность к гипоксии различных отделов гиппокампа и амигдалы. По мнению Gastaut, повреждения медиобазальных

отделов височной доли являлись следствием отека мозга и последующей компрессии церебральных сосудов. Согласно Gastaut, Sano и Malamud (1953), важную роль в формировании склероза гиппокампа играл фебрильный эпилептический статус [9]. Margerson и Corselli (1966) также выдвинули гипотезу о значении эпилептических приступов в генезе склероза гиппокампа. В последующих публикациях Falconer (1970) и Oxbury (1987) путем клинико-патомофо-логических исследований подтвердили взаимосвязь длительных фебрильных судорог и склероз аммонова рога.

В 1822 году Prichard привел сообщение об эпилептических приступах, носящих характер амбулаторных автоматизмов. В историю височной эпилепсии большой вклад внес Jackson, который в 1889 году впервые описал обонятельные галлюцинации, как эпилептический феномен, и доказал их появление при раздражении крючка гиппокампа (uncus). До сих пор этот вид приступов сохранил свое историческое название «ункусные атаки Джексона» [3].

В 1937 году Gibbs F.A. и Gibbs E.L. совместно с Lennox W.G. предложили термин «психомоторные приступы». А 10 лет спустя Gibbs и Furster (1948) выявили, что при локализации эпилептического фокуса в передне-височной области, преимущественно наблюдаются приступы с автоматизмами. Поэтому для описания данного типа приступов они применили термин «автоматические», тем самым, отделяя их от других «психомоторных» приступов [9]. Gibbs F.A. и Gibbs E.L. в 1938 году представили описание специфических ЭЭГ-паттер-нов при височной эпилепсии, а позже, в 1951 году, совместно с Bailey вплотную подошли к решению вопроса хирургического лечения височной эпилепсии. Запись ЭЭГ при «психомоторных» приступах показала, что ритмичная медленная тета-активность быстро распространяется за пределы височной области на всю одноименную гемисферу с возможным захватом противоположной. Эта особенность побудила Gastaut в 1958 году обозначить этот тип приступов, как «парциальные приступы с диффузными ЭЭГ-паттер-нами». Другие авторы, отражая локализацию эпилептического очага, применяли термины «височно-лобные приступы», «ринэнцефалические приступы». Позже

исследования с применением видео-ЭЭГ мониторинга и специальных методов тестирования пациентов показали, что при височных приступах нередко наблюдается нарушение сознания. Поэтому был введен термин «сложные парциальные приступы», который все время подвергался ожесточенной критике и в итоге был изъят из Проекта Классификации Эпилептических приступов 2001 года [23].

Термин «височная эпилепсия» предложили в 1941 году канадские неврологи Penfíeld и Erickson для описания эпилептического синдрома, проявляющегося приступами с нарушением сознания и автоматизмами в сочетании с височными спайками на ЭЭГ. Впервые Roger &Roger (1954) заинтересовались электроклиническими особенностями височной эпилепсии у детей. Согласно их исследованиям, у детей наблюдались более простые автоматизмы в структуре приступа и преобладали выраженные вегетативные симптомы. Однако все работы того времени приравнивали сложные парциальные приступы к височным приступам, тогда как современные исследования установили, что часть их является лобными или теменно-затылоч-ными, при которых эпилептический разряд распространяется на медиобазальные отделы височной доли.

Несмотря на многочисленные продолжающиеся исследования в области височной эпилепсии, до сих пор пока нет однозначных ответов на вопросы: что является причиной склероза аммонова рога? Когда он формируется? Какова эволюция этой патологии?

Анатомо-гистологические особенности гиппокампа

В 1878 году Pierce Paul Broca описал область центральной нервной системы, расположенную в медиальной части обеих гемисфер большого мозга и назвал ее «лимбическая доля» (от лат. «lim-bus» — край). Позже эта структура была названа «ринэнцефалон», что указывало на ее важную роль в обонянии. В 1937 году James Papez предложил другой термин — «лимбическая система» — и подчеркнул ключевую роль данного анатомического субстрата в формировании памяти, эмоций и поведения (круг Пейпеца). В настоящее время термин «лимбическая система»

ОБЗОРЫ

указывает только на анатомическое единство образующих ее структур. Центральной структурой лимбической системы является гиппокамп (аммонов рог). Кроме

Рис. 1. Гиппокамп и мозолистое тело, вид сверху.

того, лимбическая система включает зубчатую и поясную извилины, энторинальную и септальную области, серую сорочку (indusium griseum), амигдалу (corpus amig-daloideum), таламус, сосцевидные тела (corpus mammillare). В гиппокампе различают головку, тело, хвост, край, ножку свода и основание (рис. 1, 2, 3). Гистологически в гиппокампе выделяют следующие слои (Боголепова, 1970; Villani и соавт., 2001):

1. Alveus, содержит эфферентные гиппо-кампальные и субикулярные аксоны.

2. Stratum oriens, содержит корзинчатые клетки.

3. Stratum piramidale, содержит пирамидные клетки, звездчатые клетки и вставочные нейроны.

4. Stratum radiatum, состоит из апикальных дендритов пирамидных клеток.

5. Stratum lacunosum, содержит перфорирующие волокна.

6. Stratum moleculare, включает небольшое количество вставочных нейронов и широкое разветвление апикальных дендритов пирамидных клеток.

Согласно Lorente de No (1934), в зависимости от локализации и формы пирамидных клеток, гиппокамп подразделяется на 4 подполя (subfíelds): CAI (сектор Зоммера) — нейроны треугольной формы, многослойные, разных размеров; СА2 — плотно расположенные, большие пирамидные клетки; САЗ — пирамидные клетки, распо-

РУССКИЙ ЖУРНАЛ ДЕТСКОЙ НЕВРОЛОГИИ

ТОМ III ВЫПУСК 3 2008

ложенные менее плотно и мшистые волокна (тонкие, немиелинизированные волокна, идущие от гранулярных клеток зубчатой извилины); СА4 — большие пирамид-

Рис. 2. Гиппокамп и мозолистое тело, вид сбоку.

ные клетки, треугольной формы, рассеянные между мшистыми волокнами (рис. 4).

В зубчатой извилине (dentate gyrus) различают 3 слоя: молекулярный слой (длинные дендриты), гранулярный слой (гранулярные клетки), полиморфный или субгранулярный слой, который содержит инги-биторные нейроны различных размеров [40; 39].

Патанатомия и патофизиология

Рис. 3. Интравентрикулярная часть гиппокампа: 1. тело гиппокампа, 2. головка гиппокампа, 3. хвост гиппокампа, 4. свободный край гиппокампа, 5. ножка свода гиппокампа, 6. основание гиппокампа (subiculum), 7. валик мозолистого тела (splenium), 8. птичья шпора (calcar avis), 9-коллатеральный треугольник, 10. коллатеральное возвышение, 11. крючковидный карман (recess) височного рога бокового желудочка.

Патогномоничным для гиппокам-пального склероза, по описанию многих авторов, является селективная гибель нейронов с вторичной астрог-лиальной пролиферацией в зонах CAI (сектор Зоммера), САЗ, СА4, гранулярных клеток зубчатой извилины и относительная сохранность пирамидных клеток зоны СА2 (Bruton, 1987; Gloor, 1991; Babb, 1997). Анатомическая манифестация клеточных повреждений заключается в гибели вставочных нейронов в воротах гиппокампа и пирамидных клеток в зоне Зоммера, с последующими процессами рубцевания и атрофии. Предполагается, что гибель нейронов в гиппокампе приводит к реорганизации синаптических связей между оставшимися нейронами и тем самым к дисфункции ингибиторной и возбуждающей нейромедиаторных систем гиппокампа [8]. Гибель нейронов, глиоз, аксональная и синаптическая реорганизация являются основными патологическими звеньями формирования МВС [36]. Участки глиоза при МВС, подобно нейронам, способны генерировать потенциалы действия в результате содержания патологически измененных астроцитов с высокой плотностью натриевых каналов [7]. Выраженность и распространенность гибели пирамидных клеток может варьировать от незначительных до глубоких, но подполе СА2 всегда остается интактным [8, 36]. Во многих случаях, даже при отсутствии явной гибели пирамидных клеток в эпилептогенном гиппокампе, можно наблюдать селективное поражение вставочных нейронов, содержащих сомато-статин, вещество Р и нейропептид Y [36].

Нередко патологические изменения в гиппокампе имеют билатеральный характер [8, 33]. В некоторых случаях повреждения нейронов распространяются и на другие структуры лимбической системы (амигдала, островок, сосцевидные тела, таламус), вовлекая иногда латеральную кору и полюс височной доли [13].

Известно, что состояние метаболизма таламуса находится в тесной зависимости от состояния нейронов гиппокампа в одноименном полушарии. Исследования путем спектроскопического измерения возбуждающих аминокислот в гиппокампе при частых повторных приступах показывают вовлечение в патологический процесс через нейронные сети контралате-

Choroid pUnut

Bulb of posterior cornu Calcar avia

Collateral eminence hippocampi

рального гиппокампа и обоих таламусов [22]. Повреждение функциональных связей гиппокампа, как следствие его склероза может влиять на процессы созревания

Рис. 4. Поля гиппокампа.

головного мозга у детей [7].

В процессе изучения гиппокампа у детей при резистентной височной эпилепсии были выявлены следующие особенности (Тих1югп и соавт., 1997):

1. В постнатальном периоде в гиппо-кампе продолжается рост числа гранулярных клеток, формирование нейронов и аксонов.

2. Эпилептические приступы, генерирующиеся за пределами гиппокампа (кортикальные дисплазии, постэнцефа-литические изменения и др.), могут способствовать уменьшению числа гранулярных клеток и нейронов аммонова рога.

3. Длительные эпилептические приступы у детей, в отличие от взрослых, не всегда приводят к тяжелым повреждениям нервных клеток.

Известно, что во время эпилептического приступа в синаптическую щель высвобождается избыточное количество возбуждающего нейромедиатора — глутамата. Гиппокамп является структурой, наиболее восприимчивой к глутамат-индуцирован-ным повреждениям, что обусловлено высокой плотностью глутаматных рецепторов, особенно в зоне Зоммера [8]. В гиппокампе, по сравнению с другими отделами мозга, относительно слабо развита система ГАМ-Кергического возвратного торможения, но максимально представлена система возвратного возбуждения пирамидных нейронов. Во время эпилептического приступа происходит значительный приток

ОБЗОРЫ

ионов кальция в постсинаптическую мембрану пирамидных нейронов. Увеличение внутриклеточного содержания ионов кальция запускает каскад реакций, вызывающих активацию протеаз, фосфолипаз и эндонуклеаз, что, в свою очередь, приводит к высвобождению активных и потенциально токсичных метаболитов [31, 35, 36]. Дефицит основного тормозного нейромедиатора — ГАМК — является одним из важнейших факторов, приводящих к цитоток-сичности [36].

Для лимбической системы характерен так называемый процесс «зажигания» ("kindling"), при котором нормальные структуры мозга постепенно становятся эпилептогенными [6, 35, 41]. В процессе «зажигания» мшистые волокна (эфферентные пути от гранулярных клеток зубчатой извилины) подвергаются аксональной и синаптической реорганизации — sprouting [7]. В результате этого, образуются возвратные возбуждающие связи, участвующие в прогрессирующем развитии гиперсинхронных разрядов. Такие синаптические реорганизации сопровождаются гибелью пирамидных клеток в гиппокампе [5, 36]. Одновременно с повреждением нейронов начинается рост аксонов к новым клеткам-мишеням. Так, наблюдается рост аксонов гранулярных клеток зубчатой извилины (мшистые волокна) по направлению внутреннего молекулярного слоя зубчатой извилины. Поскольку мшистые волокна содержат глутамат, нарушение условий образования синапсов может способствовать возникновению состояния гипервозбудимости, провоцирующего появление чрезмерных разрядов [30, 35]. Sloviter (1994) выявил, что наиболее чувствительными к возбуждению являются вставочные нейроны (мшистые волокна), которые образуют синапсы с ГАМК-содержащими корзинчатыми клетками. По мере гибели мшистых волокон, корзинчатые клетки становятся функционально неактивными («дремлющими»). Дефицит функциональной активности ингибиторной системы способствует гипервозбудимости и возникновению эпилептических приступов [35]. В норме мшистые волокна (синонимы — вставочные нейроны, эфферентные пути гранулярных клеток зубчатой изви-лины) выполняют функцию ограничения и предохранения от чрезмерной активации собственных мишеней — пирамидных клеток САЗ зоны гиппокампа. Обилие возврат-

ТОМ III ВЫПУСК 3 2008

ных возбуждающих синаптических связей у пирамидных клеток САЗ зоны гиппокам-па и способность отдельных пирамидных клеток САЗ зоны запускать активный потенциал по типу взрывного паттерна, объясняет их роль в эпилептогенезе [27,35]. Афференты САЗ пирамидных клеток — мшистые волокна, выполняют так называемую функцию «удерживания ворот» ("gatekeeper"), ограничивающую чрезмерную активацию САЗ пирамидных клеток и предотвращающую появление приступной активности. Методом ауторадиографии доказано, что гранулярные клетки зубчатой извилины, действительно, служат барьером, предохраняющим гиппокамп от чрезмерной активации. Нарушение барьерной функции гранулярных клеток приводит к чрезмерной активации САЗ пирамидных клеток и гипервозбудимости гиппокампа [35].

Несмотря, на большое количество работ, посвященных изучению и описанию патологических изменений при склерозе гиппокампа, этиология его остается до сих пор предметом дискуссий.

Этиология

В настоящее время МВС считается мультифакториальной патологией. Основными причинами развития склероза гиппокампа по современным представлениям являются: атипичные фебрильные судороги с высокой продолжительностью приступов, перинатальная ишемия (после 28-ой нед. гестации), интракраниальные инфекции [4, 13, 35]. Существует мнение, что в генезе склероза гиппокампа имеет значение генетическая предрасположенность, что показано на примере изучения семейных случаев мезиальной височной эпилепсии [24, 25]. Из этиологических факторов отдельно можно отметить воздействие различных метаболических нарушений (врожденный гиперинсулинизм, аномалии бета-окисления и др.), которые, вызывая энергетический дефицит в мозговой ткани, могут приводить к повреждению наиболее чувствительной к гипоксии структуры головного мозга — гиппокампа.

ВаЬЬ (1997) указывает, что эпилептический фокус формируется тогда, когда в гип-покампе образуются новые патологические возвратные, возбуждающие синапсы

взамен погибшим нормальным. Хотя эпи-лептогенный потенциал гиппокампально-го склероза достаточен для формирования эпилепсии, эпилепсия и гиппокампальный склероз могут являться разными симптомами одной и той же патологии, лежащей в их основе, соответственно развитие височной эпилепсии может не зависеть от клеточной гибели и пластичности гиппокампа [8].

Существуют, по меньшей мере, 2 типа МВС, подразумевающие в своей основе разные этиологические факторы. Первый тип включает всегда одностороннее поражение гиппокампа с преимущественным поражением зоны CAI, второй тип — двухсторонний, с распространением патологических изменений на поле САЗ и другие отделы височной доли [3].

Если раньше отношение МВС к мезиальной височной эпилепсии (причина или следствие?) вызывало большие споры, то сейчас современные исследования доказывают постприступную этиологию гиппо-кампального склероза. Считается, что продолжительные атипичные фебрильные судороги, эпилептический статус, и даже, единичный короткий генерализованный тонико-клонический приступ, могут приводить к формированию МВС [13]. Экспериментально спровоцированные длительные фебрильные судороги вызывают аксо-нальную реорганизацию в незрелом гип-покампе, что приводит к его гипервозбудимости [10]. Вероятно, частота приступов не играет существенной роли в формировании гиппокампального склероза. Так, у многих пациентов с очень высокой частотой приступов, требующих даже хирургического функционального разобщения полушарий, не выявляется склероз гиппокампа. С другой стороны, продолжительные приступы и эпилептический статус могут способствовать формированию структурных изменений, варьирующих от склероза гиппокампа до атрофии полушария. Однако, только большая продолжительность приступов недостаточна для формирования МВС. Так, доброкачественная затылочная эпилепсия с ранним дебютом нередко сопровождается продолжительными приступами («иктальные синкопы», «коматозноподобные приступы»), но без каких-либо структурных повреждений мозга. Очевидно, существуют другие факторы, способствующие формированию структурных изменений, которые пока еще

ОБЗОРЫ

полностью не идентифицированы [12].

Некоторые авторы выдвигают гипотезу о роли ангиогенеза в этиологии гиппокам-пального склероза [18, 26]. Согласно этой теории в гиппокампе имеет место процесс неоваскуляризации или ангиогенеза, который сопровождается нейронально-глиаль-ной реорганизацией эпилептогенного фокуса. Возможно, что ангиогенез стимулируется частыми повторными приступами. Пролиферирующие капилляры в эпи-лептогенном гиппокампе экспрессируют рецепторы эритропоэтина, которые высоко иммунореактивны. Ангиогенез максимально выражен в области наибольшей гибели нейронов и реактивного глиоза — в зонах CAI, САЗ и воротах (хилус) зубчатой извилины. Не исключено, что эритропоэ-тин проникает в мозг путем рецептор-опо-средованного эндоцитоза. Высокое содержание рецепторов эритропоэтина в гиппокампе при мезиальной височной эпилепсии предполагает возможную роль этого цитокина в эпилептогенезе [18, 26].

При медиобазальной височной эпилепсии с гиппокампальным склерозом установлена высокая частота неонатальных судорог и перинатальных поражений головного мозга в анамнезе. Предполагается, что, наиболее вероятно, длительные фебрильные судороги вызывают повреждение гиппокампа в мозге с уже имеющимися изменениями. Однако возможно, что фебрильным судорогам предшествуют генетически детерминированные структурные нарушения в гиппокампе, которые облегчают проявление фебрильных судорог и способствуют формированию склероза гиппокампа [36].

Нейровизуализация, реализованная в первые сутки после фебрильных судорог, выявляет отек гиппокампа, который уменьшается через несколько дней, а в некоторых случаях переходит в атрофию гиппокампа [32,33]. В то же время, не у всех детей с длительными атипичными фебрильны-ми судорогами в последующем развивается височная эпилепсия, что указывает на возможность совместного или изолированного влияния генетических, сосудистых, метаболических и иммунологических факторов [38].

Экспериментально показано, что у животных возможна индукция эпилепти-формной активности в гиппокампе подъ-

емом температуры, а также, что сами фебрильные судороги могут исходить из гиппокампа или амигдалы [21]. Фебрильные судороги, главным образом с большой продолжительностью приступов, вызывают гипоксически-ишемические, метаболические изменения в мозге и приводят к формированию МВС с последующим развитием височной эпилепсии [29]. Необходимо заметить, что в генезе МВС и формировании в последующем височной эпилепсии играют роль только продолжительные атипичные фебрильные судороги. Тогда как, эпилепсия, развивающаяся после типичных фебрильных судорог, чаще является идиопатической [38]. По данным разных авторов, атипичные фебрильные судороги в анамнезе наблюдаютсяу 20—38% пациентов с височной эпилепсией [38]. Необходим интервал времени в три года и более (в среднем 8—9 лет) от начала атипичных фебрильных судорог до формирования височной эпилепсии. Такой длительный латентный период пока не находит достаточных объяснений, но вероятнее всего, что этот промежуток времени необходим для «созревания» гиппокампального рубца и эпилептогенеза [37].

Ранее некоторыми авторами предлагалась перинатальная гипотеза возникновения МВС [2,17], которая до настоящего времени не нашла никакого подтверждения. Согласно этой теории, мезиальный височный склероз может являться следствием патологических родов с ущемлением меди-обазальных отделов височной доли в щели Биша. Также предполагалось, что гиппо-кампальный склероз возникает как следствие перенесенных нейроинфекций, хронических интоксикаций, закрытых черепно-мозговых травм, повреждений шейных позвонков в периоде новорожденное™. Перечисленные патологические состояния в остром периоде могли вызывать венозный стаз, тромбофлебиты, локальные диапедезные кровоизлияния с последующими деструктивными и рубцово-спаеч-ными процессами в мозговой ткани. Сосудистые нарушения могли способствовать хронической ишемии мозга, вызывая гипоксию, склероз, сморщивание и атрофию медиобазальных отделов височных долей.

Интересно отметить, что дети с МВС часто имеют «двойную патологию» («dual pathology») — сочетание склероза гиппокампа с другой интра- или экстрагиппока-

ТОМ III ВЫПУСК 3 2008

мапальной патологией, преимущественно кортикальной дисплазией или реже, ней-рональными гетеротопиями, микродисге-незиями, ганглиоглиомами, что позволяет предположить нарушение процессов антенатального развития мозга в этиологии МВС [13,19]. Возможно, что сопутствующее наличие дисгенезий мозга предрасполагает к более быстрому формированию МВС. Клинически МВС в структуре «двойной патологии» манифестирует раньше (до 6 лет), чем МВС в «чистом виде» (начало пубертатного периода), а эпилептические приступы более «злые» и резистентные к терапии [34].

Отмечено, что в течение первых 5 лет жизни продолжается рост числа гранулярных клеток в зубчатой извилине гиппокам-па [39]. Формирующиеся гранулярные клетки экспрессируют особую эмбриональную форму белка адгезии нейронов и число клеток, экспрессирующих этот белок, увеличивается в течение первых 5 лет жизни. Данный протеин указывает на незрелость гранулярных клеток и их постнатальное развитие, пролиферацию и миграцию. Поскольку в постнатальном периоде в гранулярных клетках гиппокам-па продолжается процесс митоза и миграции, возможно, что склероз аммонова рога есть результат нарушения нейрональной миграции. Такое утверждение подтверждается тем, что в исследованных группах пациентов с нейрональными гетеротопиями височной области и гиппокампальным склерозом изолированно, обнаруживаются идентичные паттерны клеточной гибели в гиппокампе. Животные с экспериментально вызванными нарушениями нейрональной миграции оказались более восприимчивыми к повреждению гиппокам-па [14].

В последние годы в литературе описана так называемая «разрушительная эпилептическая энцефалопатия у детей школьного возраста» («devastating epileptic encephalopathy in school-age children») или «псевдоэнцефалит». Данная патология дебютирует тяжелым длительным эпилептическим статусом, лихорадкой неизвестной этиологии и приводит к билатеральной гиппокампальной атрофии с развитием тяжелой фармакорезистентной эпилепсии с когнитивными нарушениями [28]. При таких эпилептических синдромах, как тяжелая миоклоническая эпилепсия младенчества и синдром гемиконвульсивных приступов, гемипареза и эпилепсии (ННЕ — синдром), проявляющихся продолжительными фебрильными приступами и статусом, также констатируется склероз аммонова рога (Nabbout и соавт., в печати).

Следует отметить любопытные наблюдения, согласно которым, в этиологии МВС может иметь значение персистирование герпетической инфекции (вирус герпеса 6-го типа) в медиобазальных отделах височной доли [16, 20]. При этом отмечается, что герпетический вирус в ткани мозга обнаруживается, даже при отсутствии воспалительных изменений. В отдельных случаях вирус герпеса вызывает энцефалит с характерным поражением височной доли и лим-бических структур. Вирус простого герпеса 1-го типа преимущественно лежит в основе герпетического энцефалита у детей старше 6 мес., тогда как вирус простого герпеса 2-го типа чаще является врожденной или перинатальной инфекцией [15]. Как известно, герпетический энцефалит встречается у детей нередко, и необходимо помнить о нем, как об одной из причин склероза гиппокампа.

РУССКИЙ ЖУРНАЛ ДЕТСКОЙ НЕВРОЛОГИИ

ОБЗОРЫ

Библиография

1. Боголепова И.Н. Строение и развитие гиппокампа в пренатальном онтогенезе // Журн невропатол и психиатр. — 1970. — Т. 70, вып.6. — С. 16—25.

2. Минасян О.З. Вертебрально-базилярная недостаточность кровообращения в генезе и лечении височной эпилепсии: Автореф. дис.... докт. мед. наук. — 1983.

3. Мухин К.Ю. Височная эпилепсия // Журн неврол и психиатр. — 2000. — Т. 100. — №9- — С. 48— 57.

4. Петрухин А.С., Мухин К.Ю., Благосклонова Н.К., Алиханов А.А. Эпилептология детского возраста. — М.: Медицина, 2000. — 623 с.

5. Arabadzisz D., Fritschy J.M. Reorganisation of the GABAergic system during epileptogenesis // Epilepsia - 2004. - Vol. 45, Suppl. 3- - P. 49-51.

6. Arzimanoglou A. Early brain pathology and development of temporal lobe epilepsy // Epilepsia. — 2004. - Vol. 45, Suppl. 3. - P.43-45.

7. Avanzini G. Functional organization of the limbic system. // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children. — Milan, John Libbey, 2001, — P. 21—29-

8. Babb T.L. Hippocampal sclerosis and dual pathology: experimental and clinical evidence for developmental lesions // In: I. Tuxhorn, H. Holthausen, H. E. Boenigk Paediatric Epilepsy syndromes and their surgical treatment / London, John Libbey, 1997. — P. 227—232.

9. Beaumanoir A., Roger J. Historical notes: from psychomotor to limbic seizures // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children, Milan, John Libbey, 2001, — P. 1—6.

10. Bender R.A., Dube C., Gonzalez-Vega R., Mina E.W., Baram T.Z. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures // Hippocampus. — 2003. — Vol. 13 (3). — P. 399—412.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

11. Bocti C., Robitaillic Y., Diadori P., Lortie A., Mercier C., Bouthillier A., Carmant L. The pathological basis of TLE in childhood // Neurology. - 2003- - V. 60 (2). - P. 162-163-

12. Camfield C., Camfield P. Les crises febriles// In: Roger J., Bureau M., Dravet Ch., Genton P., Tassinari C.A., Wolf P. Les syndromes epileptiques de Tenfant et de Г adolescent. — Montrouge, John Libbey, 2005. — P. 159-166.

13. Cendes F., Kanane P., Brodie M., Andermann F. Le syndrome depilepsie mesio-temporale// In: Roger J., Bureau M., Dravet Ch, Genton P., Tassinari C.A., Wolf P. Les syndromes epileptiques de Tenfant et de Tadolescent. — Montrouge, John Libbey, 2005. — P. 555—567

14. Chevassus-au-Louis N., Khazipov R. and Ben-Ari Y. Propogation of limbic seizures: experimental studies // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children. — Milan, John Libbey, 2001. — P. 33-40.

15 D'Incerti L. MRI in limbic structures in the epileptic and non-epileptic child // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children. — Milan, John Libbey, 2001. — P. 225—229-

16. Donati D., Akhyani N. et al. Detection of human herpesvirus-6 in mesial TLE surgical brain resections //Neurology. - 2003. -V. 61 (10) - P. 1405-1411.

17. Earle K.M., Baldwin M., Penfield W. Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation //Arch. Neurol. — 1953. — V.63. — P. 27 — 42.

18. Eid Т., Brines M.L., Cerami A., Spencer D.D., Kim J.N., Schweitzer J.H. et al. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis // J. Neuropathol. Exp. Neurol. — 2004. — V. 63(1). — P. 73—83-

19- Haas C. Role of migration defects in temporal lobe epilepsy // Epilepsia. — 2004. — Vol. 45, Suppl. 3- — P. 49-51-

20. Hall B.C., Long C.E. et al. Human Herpesvirus-6 Infection in Children. A Prospective Study of Complication and Reactivation // The New England Journal of Medicine. — 1994. — Vol. 331, N. 7. — P. 432-438.

21. Hamelin S., Pallud J., Haussler U., Vercueil L., Depaulis A. Modifications of hippocampal epileptogenesis by prolonged hyperthermic seizures in the immature mouse. // Epilepsia. — 2005. — Vol. 46, Suppl. 8. - P. 105-107.

22. Hetherington H., Kenneth P. Vives, Kuzniecky R. I., Spencer D., Pan J.W. Thalamic and hippocampal injury in TLE by NAA spectroscopic imaging // Epilepsia. — 2005. — Vol. 46, Suppl. 8. — P. 107—108.

23. ILAE report. Commission on terminology and classification // Epilepsia. — 2001. — V. 42. — N 6. — P. 796-803.

РУССКИЙ ЖУРНАЛ ДЕТСКОЙ НЕВРОЛОГИИ

ТОМ III ВЫПУСК 3 2008

24. Kobayashi E. et al. Seizure outcome and hippocampal atrophy in familial mesial temporal lobe epilepsy // Neurology. - 2001. - V. 56. - P. 166-172.

25. Kobayashi E. Magnetic resonance imaging evidence of hippocampal sclerosis in asymptomatic, first-degree relatives of patients with familial TLE // Arch. Neurology. — 2002. — V. 59 (12) — P. 1891 — 1894.

26. Lerner-Nationali M., Rigau V., Crespel A., Coubes P., Rousset M., Baldy-Moulinier M., Bockaert J. Neo-Vascularisation of the Hippocampus in Adult MTLE Patients: Evidens for Angiogenic Processes // Epilepsia. — 2005. Vol. 46, Suppl. 6. — P. 276—278.

27. Mathern G.W., Babb T.L., Leite J.P. et al. The pathogenic and progressive features of chronic human hippocampal epilepsy // Epilepsy Res. — 1996. — V. 26(1) — P. 151 — 161.

28. Mikaeloff Y., Jambaquй I., Hertz-Pannier L., Zamfirescu A., Adamsbaum C., Plouin P., Dulac O. and Chiron C. Devastating epileptic encephalopathy in scool-aged children (DESC): a pseudo encephalitis // Epilepsy Res. — 2006. — V. 69(1). — P. 67—79.

29. Muracami N., Ohno S., Oka E., Tanaka A. Mesial temporal lobe epilepsy in childhood // Epilepsia. — 1996. — Vol. 37, Suppl 3. — P. 52—56.

30. Pan J.W., Kuzniecky R.J., Kenneth P. Vives, Hetherington H., Spencer D. Hippocampal glutamate in human MTLE // Epilepsia. — 2005. — Vol. 46, Suppl. 8. — P. 11 — 14.

31. Petroff O.A, Errante L.D., Kim J.H., Spencer D.D. N-Acetil-aspartate, total creatinine, and myo-inosotol in the epileptogenic human hippocampus // Neurology. — 2003. — V. 60 (10). — P. 1645—1651.

32. Scott R.C., King M.D., Gadian D.G., Neville Brain G. R., Connelly A. Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. // Brain. — 2003. — Vol. 126, No. 11, November. — P. 2551 — 2555.

33. Scott R.C., Gadian D.G., Cross J.H., Wood S.J., Nevill B.G., Connelly A.: Quantative Magnetic Resonance characterization of Mesial Temporal Sclerosis in Childhood. // Neurology. — 2001. -V.56. — P. 1659— 1665.

34. Sloviter R.S. Is Progressive Hippocampal Damage a Cause of Drug Resistant TLE? // Epilepsia. — 2005. — Vol. 46, Suppl. 6. — P.7—9.

35. Sloviter R.S. The functional organisation of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy //Ann. Neurol. — 1994. — V. 35 (6) — P. 640—654.

36. Spencer S., Novothy E., de Lanerolle N., Kim J. Mesial temporal sclerosis: electroclinical and pathological correlations and applications to limbic epilepsy in childhood // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children — Milan, John Libbey, 2001. — P. 41—55.

37. Tuxhorn I., Holthausen H., Boenigk H. Hippocampal pathology in children with severe epilepsy // In: I. Tuxhorn, H. Holthausen, H.E. Boenigk Paediatric Epilepsy syndromes and their surgical treatment. — London, John Libbey, 1997. — P. 234—344.

38. Van Lierde A., Mira L. Aetiological role of febrile convulsive attacks in limbic epilepsy // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children. — Milan, John Libbey, 2001. — P. 159—163.

39. Villani F., Garbelli R., Cipelletti B., Spreafico R. The lymbic system: anatomical structures and embry-ologic development // In: Avanzini G., Beaumanor A., Mira L. Limbic Seizures in Children. — Milan, John Libbey, 2001. — P. 11—21.

40. Von Campe G., Spencer D.D., de Lanerolle N.C. Morphology of Dentate granule cells in the human epileptogenic hippocampus // Hippocampus. — 1997. — V. 7 (5) — P. 472—488.

41Yu-tze Ng, Amy L. McGregor et al. Childhood Mesial Temporal Sclerosis // Journal of Child Neurology. — 2006. — Vol. 21, Number 6. — P. 512—520.

i Надоели баннеры? Вы всегда можете отключить рекламу.