Научная статья на тему 'Методы определения априорных параметров для текстурной сегментации изображений на основе марковских случайных полей'

Методы определения априорных параметров для текстурной сегментации изображений на основе марковских случайных полей Текст научной статьи по специальности «Математика»

CC BY
120
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РАСПОЗНАВАНИЕ ОБРАЗОВ / КОРРЕЛЯЦИИ / СЕГМЕНТАЦИИ / АНАЛИЗ ИЗОБРАЖЕНИЙ / МОДЕЛИРОВАНИЕ ИЗОБРАЖЕНИЙ

Аннотация научной статьи по математике, автор научной работы — Патана Елена Игоревна

Рассмотрены новые способы вычисления основных априорных параметров для авторегрессионной модели Марковских случайных полей. Приложением методов является сегментация текстурных изображений

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The new calculation techniques of main a priori parameters for auto-regression model of Markov Random Fields are considered in this paper. Techniques application: texture segmentation of images

Текст научной работы на тему «Методы определения априорных параметров для текстурной сегментации изображений на основе марковских случайных полей»



возможность анализа узких мест и доминирующих ограничений в системе, оценки эффективности проведения ремонтных работ, переключений и изменения режима работы системы, в том числе и с позиций обеспечения устойчивости функционирования в условиях неопределенности.

Технология выполнения расчетов в условиях неопределенности позволяет:

вести контроль погрешности исходных данных, коэффициентов моделей и результатов расчета на всех этапах принятия решений;

интегрировать разнородную информацию о нефтегазопромысловых объектах — точечные замеры и значения параметров, допустимые интервалы их изменения, статистические законы распределения для отдельных величин, нечеткие критерии и ограничения, полученную от специалистов-экспертов и т. д.;

повышать устойчивость расчетов, возможность их проведения при неполной и неточной информации:

учитывать иерархическую структуру моделей сложного объекта и переходить от работы со всей моделью к работе с отдельными фрагментами;

включать условия существования отдельных моделей в общей многоуровневой системе моделей;

учитывать вложенность моделей и результатов последовательного решения задач.

Рассматриваемый подход позволяет адекватно учесть разнородную информацию, имеющиеся модели и представления, свести воедино решения по разным моделям и всю имеющуюся неоднородную исходную информацию: детерминированную, статистическую, экспертную и интервальную.

Представленная последовательность моделирования сложных объектов не исключает существующие методы, а позволяет объединить их в систему на единой методологической основе, что дает возможность показать место каждого метода и его значимость с системных позиций.

Системный подход позволяет объединить эту разнородную информацию, упорядочить ее и преобразовать так, чтобы она стала адекватной принимаемому решению для каждого уровня описания.

СПИСОК ЛИТЕРАТУРЫ

1. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб.: В H V-Санкт-Петербург, 432 с.

2. Мациевский C.B. Нечеткие множества: Учеб. пособие. Калининград: Изд-во КГУ. 2004. 176 с.

3. Алтунин А.Е., Семухин М.В. Модели и алгоритмы принятия решений в нечетких условиях. Тюмень: Изд-во ТГУ, 2002. 352 с.

УДК 004.932.1

Е.И. Патана

МЕТОДЫ ОПРЕДЕЛЕНИЯ АПРИОРНЫХ ПАРАМЕТРОВ ДЛЯ ТЕКСТУРНОЙ СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ НА ОСНОВЕ МАРКОВСКИХ СЛУЧАЙНЫХ ПОЛЕЙ

Марковские случайные поля (МСП) широко применяются в текстурном анализе изображений. Одна из наиболее важных задач данной области — текстурная сегмен-

тация, которая позволяет провести интерпретацию и анализ сцены. Среди актуальных приложений сегментации можно выделить несколько наиболее перспективных:

изучение ландшафта местности с целью геологической разведки; выделение береговых линий; определение границ типа море—лед, а также мониторинг движения морских льдов для обеспечения безопасности движения морских кораблей; детекция нефтяных пятен на водной поверхности с целью оптимизации проведения мероприятий, связанных с экологической безопасностью [1].

Цель исследований — корректная оценка параметров выбранной модели случайного поля. Под параметрами понимаются размер окрестности пикселей, необходимых для построения модели МСП, и коэффициенты взаимосвязи смежных пикселей. Как правило, при построении модели текстуры взаимосвязь между пикселями окрестности предполагается линейной. Ставится задача исследования различных уравнений взаимосвязи, которые возможно более точно могут описывать зависимость пикселей, а также определения количества текстур, присутствующих на изображении. Определение указанных параметров необходимо для разработки автоматизированной системы текстурной сегментации.

Оценка коэффициентов взаимосвязи пикселей. Для решения этой задачи существует большое количество специальных проблемно-ориентированных методов |2|.

В методах анализа, основанных на МСП, изображение рассматривается как реализация случайного процесса. Введем определения, которые используются, в частности, при сегментации текстур. Пусть S — некоторое конечное множество позиций или множество узлов; для каждого узла s е S через Xs обозначим некоторое конечное пространство состояний xs. Декартово произведение X = Г| X назовем простран-А 1 seS

ством конечных конфигураций х = (xs)seS. Рассмотрим вероятностную меру (распределение) Р на X. т. е. вектор Р — (Р(х))хеХ

такой, что Р(х) > 0 и = Строго

ve.V

положительную вероятностную меру Р на X (Р{х) > 0 для всех х е X) будем называть стохастическим или случайным полем. Условные вероятности вида Р{ХА — хА \ XS]/I = x5V4),

А с 5, хл е ХА, е XS]/( являются локальными характеристиками [3].

Семейство N = {Ns | Vs е 5] подмножеств ¿'называется системой окрестностей, s е N, тогда и только тогда, когда t е Ns, s. t е S. Различают окрестности различных порядков. В системе окрестностей первого порядка каждая внутренняя позиция имеет четыре смежные с ней позиции, второго — восемь. Порядок окрестности однозначно определяет порядок модели МСП. Подмножество Сиз 5будем называть кликой, если любые два различных элемента из С являются соседями (принадлежат одной окрестности) |3).

Перейдем к определению марковского случайного поля. Л1 называется марковским случайным полем на сетке S по отношению к системе окрестностей N тогда и только тогда, когда выполняются следующие условия: Р(х) > О, Vx (положительность) и

Р(xs | xs_s) = P(xs | xN ) (марковость). Марковость описывает локальные характеристики изображения X, т. е. позиция взаимосвязана только с соседними позициями.

Вышеуказанное определение марковского поля дано в терминах локальных характеристик; глобальной характеристикой случайного поля является распределение Гиббса. Вероятностные меры, представи-мые в виде

Р(х) =

ехр(Ч/(*)) Iexp(-t/(a-))

= Zlexp(-t/(.y))(l)

всегда строго положительны и, следовательно (согласно определению), являются случайными полями. Поле Ра этом случае называют гиббсовским случайным полем (ГСП), порожденным энергетической функцией и = У]У (сумму потенциальных

се<"

функций Ус рассчитываем по всевозможным кликам). Знаменатель в представлении (I) называют статус-суммой. Иногда для описания энергии распределения Гиббса используется сумма нескольких слагаемых, каждое относится к кликам определенного размера, таким образом:

<еС,

v.i'jei'

(j.j'.i •)«<■,

Чем меньше значение энергетической функции U(x), тем больше вероятность f\x) появления конфигурации х. Подходы, основанные на локальных и глобальных характеристиках, эквивалентны в соответствии с теоремой Хаммерсли — Клиффорда [3).

Наибольший интерес из всех моделей представляют совместные авторегрессионные процессы, которые удовлетворяют уравнению

+ + (2)

leN,

где ßv, — коэффициенты взаимосвязи значений пикселей Xs и Х,\ ц, — математические ожидания случайных величин Х5 и X, соответственно; е — белый шум с дисперсией er. Данные поля имеют плотность, пропорциональ-

ную ехр

-—т(*-ц) B'B(x-\i) , где ц -

¿а' >

вектор математических ожиданий. В — матрица размером |5|х|5| с единицами на диагонали и с элементами —р„ вне диагонали (если 5 и г не являются соседями, то р„ = 0). Матрица ковариаций для авторегрессинного поля имеет вид о2(В*В)~1. Модели изображений, полученные на основе авторегрессионных процессов, обладают достаточно высокой точностью, поэтому для дальнейших исследований здесь рассматривается именно эта модель МСП. Изображение предварительно преобразуется к изображению с нулевым математическим ожиданием.

Опишем процесс нахождения необходимых оценок, предлагаемый в статье. Сеточная система 5 разбивается на два подмножества позиций: внутреннего множества 5/ и граничного множества Внутреннее множество определяется следующим образом: для любого пикселя из внутреннего множества все смежные с ним пиксели принадлежат сеточной системе 5, а граничное — 5Д = 5 — 5/. Для оценки коэффициентов рассмотрим уравнение (2) для каждой точки множества Я/, получим СЛАУ:

Л"(, = Х(3). Матрица системы Л" представляет собой следующее. В каждой строке находятся значения пикселей, смежных пикселям некоторой подобласти исходного изображения, т. е. первая строка — соседи для первого пикселя подизображения, вторая строка — для второго и т.д . Столбцом свободных членов Убудут значения пикселей указанной подобласти. В случае если (кИЛ") * 0, решением СЛАУ (3) будет Р = Л"'Г, но в практических приложениях часто возникают ситуации, когда с1еИЛ') = 0 или матрица системы X прямоугольна. Поэтому для нахождения решения р СЛАУ (3) необходимо найти псевдообратную матрицу X*. Псевдорешение является наилучшим (в смысле метода наименьших квадратов) приближением решения матричного уравнения. Оно минимизирует величину среднеквадратичного отклонения между правой и левой частями СЛАУ, что обеспечивает корректный выбор коэффициентов (3 в авторегрессионной модели. Для некоторых частных случаев существуют простые формулы для нахождения псевдообратной матрицы. Например, если столбцы матрицы X независимы, то X* = (ХТХ)~1ХТ. Если же независимы строки, то = Хт(ХХт)~х. Наиболее распространенный метод вычисления псевдообратной матрицы — скелетное разложение, но его основной недостаток — высокая вычислительная сложность. Поэтому предлагается использовать метод Гревилля последовательного нахождения псевдообратной матрицы X* [4|.

Далее исследуем точность полученных оценок. Вначале покажем, что оценка р является несмещенной, т. е. Ер = р: ЕР = Е(Х^У) = Х¥Е( У) = Х*Е(Х\р + е) = = Х+Х$ + Лн"Е(е) = р.

Затем подсчитаем матрицу ковариаций оценки (3:

У( |3) = У(Х*У) = Х+У(У)(Х*)Г = = X" цхр, + е)(Л*)г= Х*а21(Х*)т=о1Х¥(Х*)т = = а2Х*{Хт)+ = а2(ХтХ)+.

Таким образом, получаем: если е е УУ(0. сг/„). Обозначим через с(' /-й диагональный элемент матрицы (Х'.Х)~,

тогда (3, € МР, о2о") и

Р,"Р,

ЛГ(0,1), где

ем в пользу альтернативной На : ру * 0, 7=1, ..., к. Оценим доверительные интервазы

/' = 1, ..., к, к — количество точек в окрестности, Ор = С2ц".

Приведем пример расчета коэффициентов на основе радиолокационного изображения морского залива (рис. 1). Для участка, отмеченного черным цветом, рассчитаны оценки |3. При расчетах учитывалось, что порядок модели (порядок окрестностей) равен двум. В результате расчетов получен следующий вектор оценок: (3 = (0,59 0,51 0,56 0,57 - 0,33 - 0,28 - 0,33 - 0,29)г.

для параметров р: р\

Р.-Р,

1-2а

= 1 -2а.

где

— двусторонний квантиль

Рис. 1. Пример РЛС изображения для расчета коэффициентов

Проверим найденные оценки коэффициентов |3 на значимость, т. е. отличие значения коэффициента от нуля. Для этого рассмотрим гипотезу Н0 : р, = 0 и альтернативную ей гипотезу На : р, * 0. Рассчитаем

Р, - г-

величину I где =SyJq", и крити-

Р/

ческую область С = {|/| > /,_гл/2(" — ^Ж где

11_га/2 _ квантиль распределения Стьюден-та с п — к степенями свободы (п = |5/|, к — количество точек в окрестности); Я() отвергается, если г не попадает в критическую область (7.

В результате численного эксперимента на оценках р, рассчитанных на основе предлагаемого метода, получено, что все они значимы, т. е. гипотезу Н0 : р, = 0 отверга-

(»,->. = ',-„ (»-*)=> р, е [р, ± („А ] А =

В результате расчетов были получены следующие доверительные интервалы для параметров р:

р, е [0,39, 0,79|, р, е [0,21, 0,81], Р, 6 [0,06, 1,06], р4 е [-0,23, 1,37], р5 е [-1,13, 0,47], р6 е [-1,48, 0,92]. р7 € [-2,33, 1,67], рх е [-0,69, 0,11]. Как видно из проверки значимости и расчетов доверительных интервалов для коэффициентов оценки Р достаточно точно описывают модель текстуры.

Метод определения размера модели. Важная информация для моделирования изображений — порядок используемой окрестности, т. е. количество входящих в нее пикселей. Предполагается, что пиксель, образующий окрестность, и смежные с ним пиксели связаны между собой линейно. Ставится задача определить, между какими пикселями из окрестности (на рис. 2 светло-серым цветом показаны пиксели окрестности восьмого порядка) и центральным пикселем (на рис. 2 показан темно-серым цветом) существует линейная зависимость.

Для решения данной проблемы воспользуемся методами корреляционного анализа. Все исходное изображение / разобьем на непересекающиеся участки {/,. /2, ..., /у}. Будем считать, что внутри этих областей текстура однородна. Сеточная система 5 каждого участка изображения разбивается на два подмножества позиций: внутреннего множества 5/ и граничного множества как в предыдущем пункте. Пусть Р = {/|, Уэ» —■> А) набор центральных пикселей /, и пикселей/2, ...,/к из окрестности в некоторой области /„,, где к — I — количество пикселей в окрестности заведомо высокого порядка (в данном исследовании

рассматривается восьмой порядок к = 44). В результате построения окрестностей для каждой точки /,„ сформирована выборка наборов значений для множества Р. Х = (Хп,Х,2.....Хл), /= 1, ..., Т, Т-количество пикселей внутреннего множества для /,„, к = 44. В соответствии с центральной предельной теоремой случайный вектор X распределен по многомерному нормальному закону, т. е.

г1,38 Г1.Э0 г1,ге Г1,31 Г1.39

Г1,4! Г1,22 Г1.14 fi.ii Г1,19 Г1,23 Г1.40

Г1,37 Г1,21 Г1.6 Г1.2 ГУ г1,16 Г1,Э2

Г1.28 Г1.13 ■ Г1,3 ГЛ.Г Г1,27

г1.3( Г1,2С Г1.9 Г1.4 Г1.8 Г1.33

Г1,Ф1 Г1,25 Г1,19 Г1,12 Г1.18 Г1,24 Г1.41

Г1.43 Г1.36 Г1.28 Г1.34 г1.4:

каждой оценки коэффициента корреляции,

т. е. (г1у)9, у = 2, ..., <? = I..... С? (С? —

количество подизображений). Пример расчета оценки коэффициентов ги в каждом участке изображения показан на рис. 3.

^ЗКШШШ

тшгтшшш

хт щщт шшг

J

ч

■ншвшя!

где т е /?* — вектор математических ожиданий, ЕХ - т; I = (ст,у) — ковариационная матрица размером к * к, I > О, I7 = I, У(Х) = Ъ.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Так как нас интересует взаимосвязь центральных пикселей Хл, /' = I..... Т и пикселей из их окрестностей, то для исследований нет необходимости рассчитывать корреляционную матрицу полностью. Для каждого подызображения рассчитаем оценки коэффициентов корреляции между интересующими величинами и обозначим ее г[г у = 2, ..., к. На рис. 2 обозначены все оценки между центральным пикселем и пикселями из окрестности. В результате последовательных вычислений в участках /,, /2, ..., /д получается набор значений для

Рис. 2. Схематичное изображение примера окрестности и центрального пикселя в некотором участке /„, исходного изображения /

шшшштшл

тттттыя

Рис. 3. Пример расчета коэффициентов корреляции в каждом участке изображения

Затем рассчитаем среднее значение для каждого коэффициента корреляции

\.»„ Получим средние ко-

эффициенты корреляции для всего изображения в целом, по которым будем судить о наличии линейной зависимости между пикселями.

Проверим значимость параметра связи р. Статистика г, вычисляемая по выборке из многомерно нормально распределенной совокупности, связана с распределением Стьюдента с п — ¿-степенями свободы

формулой Т(п-к)= ' . П (4), где п — (? =

VI

= 196, к — 44. Выдвигаем следующие гипотезы: #() : р = 0. #., : р * 0. Критическая область (? = {|/| > /|_н/2(я — £)}, где а — уровень значимости. Если ?1[абл, вычисленное по формуле (4), принадлежит области С, то гипотезу //0 отклоняем в пользу Нл. Проверим гипотезы для каждого коэффициента корреляции. Рассмотрим уровень значимости ос — 0,05, следовательно, |/| >0,16. Для изображения, представленного на рис. 3, были получены следующие результаты (см. таблицу). Первый столбец таблицы соответствует коэффициенту корреляции, второй —

определяет значимость коэффициента (значимый коэффициент корреляции — 1. незначимый — 0), третий — порядок окрестности. Коэффициенты корреляции приведены в порядке, обозначенном на рис. 2.

Коэффициенты корреляции

0.55 1 1

0.55 1 I

0.53 1 1

0.54 1 1

0.35 1 2

0.35 1 2

0.46 1 2

0.45 1 2

0.25 1 3

0.24 1 3

0.23 1 3

0.23 1 3

0.18 1 4

0.18 1 4

0.30 1 4

0.31 1 4

0.21 1 4

0.20 1 4

0.29 1 4

0.28 1 4

0.14 0 5

0.12 0 5

0.28 1 5

0.27 1 5

0.15 0 6

0.14 0 6

0.15 0 6

0.15 0 6

0.11 0 7

0.09 0 7

0.12 0 7

0.12 0 7

0.15 0 7

0.13 0

0.13 0 7

0.15 0

0.09 0 8

0.07 0 8

0.12 0 8

0.13 0 8

0.09 0 8

0.08 0 8

0.12 0 х

0.14 0 8

дель не всегда оказывается корректной и центральный пиксель окрестности может быть связан со своими смежными пикселями не только посредством линейной зависимости у, = а\Х,\ + агх,2 + ... + акх!к, где / е 5/, 5/ — внутреннее множество к = /V, — окрестность пикселя у,. Рассмотрим в качестве моделей взаимосвязи пикселей следующие виды функциональных зависимостей:

Таким образом, с ростом порядка коэффициенты уменьшаются. На основе полученных значений коэффициентов корреляции можно сделать следующий вывод. Линейная зависимость наблюдается для пикселей из окрестности первого порядка, для окрестностей более высокого порядка это, вообще говоря, неверно. Коэффициенты корреляции для четвертого и пятого порядков оказываются значимыми: в связи с этим можно предположить, что взаимосвязь между этими пикселями нелинейная, поэтому ставится задача исследования различных зависимостей пикселей. Порядок окрестности выбираем, учитывая не только значение коэффициента корреляции, но и его значимость. Эксперименты показали, что для радиолокационных изображений целесообразно использовать окрестности пикселей четвертого и пятого порядков.

Уравнения взаимосвязи пикселей в окрестности. В известных подходах к моделированию изображений с помошью МСП используется линейная модель взаимосвязи пикселей [1|. Предположим, что такая мо-

а.

си

а.

х.,

*,2

Х„

у, = а 11 пл", | + <з21пл",2 + ■•• + я^гис^,

V = х + х + + V

Приведем все указанные модели к линейному виду при помощи следующих замен и рассчитаем коэффициенты взаимосвязи Ь, методом, предложенным ранее.

Гиперболическая модель:

У=У,

**

Логарифмическая модель:

У = У,

£/, = 1п.т,,...,£У4 = 1п.гд,

Показательная модель:

, К= 6, и, + ... + ЬКик.

У= ь1и[ +... + ькик.

К^к-

У = \п у,

и1 = Х\,...,ик =хк,

Степенная модель:

У = \п у.

у=Ьу г/, + ... + ьКик.

у=ьхи{ +... + ьм.

Проведем оценку основных показателей корректности выбранного уравнения зависимости пикселей: оценим остатки регрессии е и коэффициент детерминации Я. Остаток

е = К — К представляет собой разницу двух

величин: отклонения наблюдаемого значения отклика Yj от обшего среднего Y и отклонения предсказанного значения YI от того же среднего Y . Коэффициентом детерминации, или долей объясненной дисперсии называ-

n2 , ESS RSS ется величина R = 1--=-, где

TSS TSS

ESS = ^(Х ~ У/)'= Xе': ~~ необъяснен-

ная дисперсия, RSS = ^(у, ~У) ~

объясненная часть всей дисперсии,

TSS = -y,f = ESS + RSS - вся дисперсия. Чем ближе R2 к 1, тем более точно у аппроксимирует у.

Для изображения, приведенного на рис. 1, получены следующие результаты. Логарифмическая модель: оценка дисперсии ошибок 219,58, коэффициент детерминации 0,41; гиперболическая модель: оценка дисперсии ошибок 685,18, коэффициент детерминации 0,29; показательная модель: оценка дисперсии ошибок 0,09, коэффициент детерминации 0,79; степенная модель: оценка дисперсии ошибок 0,01, коэффициент детерминации 0,89; линейная модель: оценка дисперсии ошибок 12,75, коэффициент детерминации 0,78.

Анализ предложенных регрессионных уравнений показывает, что далеко не во всех случаях корректно моделировать взаимосвязь центрального пикселя и пикселей, принадлежащих его окрестности, при помощи линейной зависимости.

Метод расчета количества текстур. Сегментация — одна из сложных задач анализа текстур по причине отсутствия априорной информации об их количестве и типе, а также о принадлежности конкретной текстуры к некоторой области. Для того, чтобы провести сегментацию, не обязательно знать, какие специфические текстуры находятся на исходном изображении. Фактически требуется способ, позволяющий определять — различаются ли текстуры в смежных областях изображения.

Существует два основных подхода к сегментации изображений. Первый основан на выделении областей изображения, которые имеют однородную текстуру. Дан-

ные локальные области объединяются, исходя из подобия текстурных свойств. Изображение, на котором выделены области, имеющие различные текстурные характеристики, считается сегментированным. Этот метод имеет преимущество, заключающееся в том, что границы областей всегда замкнуты, и поэтому области с отличными текстурами всегда хорошо разделимы. Недостаток — в том, что при использовании данного подхода необходима априорная информация о количестве текстур. Второй подход основан на выделении границ. В этом случае не требуется знать количество присутствующих текстур. Однако использование данного метода не гарантирует замкнутость границ, в результате чего области с различными текстурами могут остаться неразделенными. Выбираем метод, основанный на выделении областей.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Для реализации метода расчета количества текстур, присутствующих на изображении, необходимо данное изображение разбить на непересекающиеся области. В каждой области нужно рассчитать коэффициенты взаимосвязи пикселей изображения по предложенному выше алгоритму, в результате получаем вектор коэффициентов для каждого центрального пикселя окрестности. Далее находим модуль каждого вектора и получаем выборку значений для модулей векторов. Далее по известным значениям элементов данной выборки строим гистограмму их распределения.

Каждая текстура обладает определенным значением текстурной характеристики. В данном случае характеристикой будет модуль вектора коэффициентов взаимосвязи. Анализ гистограммы показывает, что наблюдаются ярко выраженные максимумы и некоторые шумы в распределении текстурной характеристики, которые связаны с зашумленностью реальных изображений. Количество четких максимумов соответствует количеству текстур на исходном изображении. Чтобы избавиться от шумов в распределении, каждое значение гистограммы усредняется на основе соседних значений. Результат усреднения представлен на рис. 4.

О 0 33 0.66 0.99 132 1.65 1.93 2 J1 2.64 2 97 3.30

Рис. 4. Гистограмма распределения значений коэффициентов взаимосвязи

Таким образом, по усредненной гистограмме можно определять количество максимумов, которое будет соответствовать количеству текстур на рассматриваемом изображении. Для решения данной задачи разработан алгоритм и написана программа, которая выполняет сглаживание гистограммы, а затем производит поиск максимумов.

Таким образом, предложенный метод позволяет рассчитывать коэффициенты линейной зависимости пикселей для различных статистических данных, что в свою очередь позволяет снять требования линейной независимости векторов, представляющих собой соседей для любых двух пикселей не-

которой подобласти исходного изображения. Метод обладает высокой скоростью расчетов и не требует вычисления детерминантов. Оценки для коэффициентов взаимосвязи пикселей изображения, полученные в работе, значимы и точны, что позволяет судить о корректной работе предложенного метода. Полученные оценки можно использовать для качественного моделирования изображений на основе МСП. Кроме того, разработан метод, точно определяющий размер модели МСП для предложенного изображения, который необходим для проведения автоматического моделирования текстуры. Анализ уравнений взаимосвязи пикселей показал, что во многих случаях целесообразно использовать степенные и показательные уравнения регрессии. Еще один * метод — определения присутствующих на изображении текстур носит достаточно универсальный характер, так как подразумевает использование текстурных характеристик, полученных не только с помощью коэффициентов линейной взаимосвязи пикселей изображения, но и какого-либо другого "оконного" алгоритма, предполагающего расчет локальных текстурных характеристик.

Все полученные результаты используются для проведения текстурной сегментации [2]. В этом случае алгоритм сегментации не зависит от задания параметров модели МСП, так как их расчет производится на основе исходного изображения.

СПИСОК ЛИТЕРАТУРЫ

1. Tuceryan M., Jain A.K. Texture Analysis. The Handbook of Pattern Recognition and Computer Vision. World Scientific Publishing Co, 1998. P. 207-248.

2. Bins Y. SAR Sea Ice Recognition Using Texture Methods PhD. Waterloo, Ontario, Canada, 2002.

3. Винклер Г. Анализ изображений, случайные поля и динамические методы Монте-Карло. Новосибирск: Изд-во СО РАН, 2002.

4. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1966.

i Надоели баннеры? Вы всегда можете отключить рекламу.