Методика оценивания оперативности принятия решения на применение средств зондирования околоземного космического пространства
Лиференко Виктор Данилович
доктор технических наук, профессор, независимый специалист, ОАО «СУПЕРТЕЛ», г. Санкт-Петербург, Россия, [email protected] Гураль Дмитрий Александрович
соискатель ученой степени кандидата наук, Военно-космическая академия им. А.Ф.Можайского, г. Санкт-Петербург, Россия, [email protected] Легков Константин Евгеньевич
кандидат технических наук, доцент, Военно-космическая академия им. А.Ф.Можайского, г. Санкт-Петербург, Россия, [email protected]
АННОТАЦИЯ_
Введение: в данной статье предложена методика оценивания оперативности принятия решения на применение средств зондирования околоземного космического пространства на основе программной реализации имитационной модели получения измерений по космическим объектам в средней и дальней околоземной космической зоне средствами разведки космического пространства с применение программно-аппаратного комплекса сбора информации. Постановка задачи: разработка методики оценивания на основе имитационной модели обнаружения космических объектов на орбитах их движения наземными средствами наблюдения за космическим пространством, учитывающие различные варианты стохастического построения траекторий движения космических объектов и условий работы, технического состояния, географического размещения и численности оптических средств наблюдения. Результаты: разработана методика и имитационная модель программно-аппаратного комплекса сбора информации о космической обстановке, учитывающая различные варианты построения орбит наблюдаемых космических объектов и позволяющая динамически развивать моделируемую космическую обстановку, а так же моделировать изменения состояния средств наблюдения, учитывая изменения в их техническом состоянии, погодных условиях, суточного цикла и географического расположения. Практическая значимость: предложенная методика и имитационная модель позволяет рассчитать оптимальное количество необходимых средств наблюдения за космическим пространством и предпочтительные районы их размещения на основе оценки эффективности их функционирования при динамическом изменении состояний их функционирования. Обсуждение: новизна предложенной постановки задачи состоит в том, что структура разработанной методики и имитационной модели позволяет учитывать различные факторы влияющие на средства наблюдения и строить вероятностные оценки эффективности их функционирования на основе динамического изменения состояний функционирования средств наблюдения.
КЛЮЧЕВЫЕ СЛОВА: имитационная модель; средства наблюдения за космическим пространством; космические объекты; искусственный спутник Земли; программно-аппаратный комплекс; оптические средства.
Введение
Со времени запуска первого космического аппарата 4 октября 1957-го года количество космических объектов в околоземном космическом пространстве непрерывно растет. Вместе с ростом количества искусственных спутников Земли (ИСЗ), усложняются и растут их задачи и возможности, что влечет за собой острую необходимость в наблюдении за их движением по орбитам и контроли совершаемых ими маневров. Если контроль ИСЗ в ближней операционной космической зоне хорошо организован с применением радиоэлектронных средств, то наблюдение за средней и дальней операционными космическими зонами выполняется оптическими средствами с большими ограничениями. Для организации эффективного контроля этих космических зон в первую очередь необходимо определить возможности оптических средств по наблюдению за существующими и выводимыми ИСЗ, а так же возможности получения этой информации потребителями. С этой целью предложено разработать методику на основе имитационной модели с применением метода Монте-Карло, для оценки вероятности успешного обнаружения космических аппаратов на орбитах их движения, которая способна учесть различные варианты космической обстановки и различные состояния наземных оптических средств наблюдения.
Разработка имитационной модели получения измерений по космическим объектам средствами контроля космического пространства
Если провести сравнение имитационных моделей с аналитическими моделями, то их основным преимуществом выступает появившаяся возможность для решения сложных математических задач. Именно имитационные модели нам позволяют учитывать как дискретные, так и непрерывные элементы, а также нелинейные характеристики, случайные воздействия и др.
Реализующий модель алгоритм имитационного моделирования воспроизводит процесс функционирования всей системы во времени. Моделируются явления, а также состояния, составляющие процесс, всегда сохраняя их логическую структуру и последовательность их протекания во времени. Разрабатываемая имитационная модель процесса функционирования системы наблюдения за космическими объектами является стохастической, дискретной, динамической моделью, предназначенной для оценивания вероятностно-временных характеристик процесса получения информации о космической обстановке.
Согласно руководящих документов, определяющих требования к работе информационных систем по контролю космического пространства, выраженных в определенных значениях показателей вероятностно-временных характеристик времени не контроля ИСЗ на орбитах их движения, в качестве показателя оперативности работы автоматизированной системы предоставления информации о средней и дальней операционных космических зон выступает показатель среднего не контроля ИСЗ, вероятности своевременного обнаружения движения ИСЗ и актуальности поступающей информации о космической обстановке потребителям [110].
Таким образом целью имитационного моделирования (рис. 1) является определение значений выбранного показателя оперативности для различных вариантов космической обстановки и состоянии средств разведки космического пространства. При разработке конкретной модели цель моделирования должна уточняться с учетом используемого критерия оперативности. Для критерия пригодности модель, как правило, должна обеспечивать расчет
значении показателей оперативности для всего множества возможных вариантов космической обстановки и состояния системы контроля космического пространства [11-21].
Входные данные
Моделирование космической обстановки
Моделирование средств наблюдения за космическим пространством
Модуль прогнозирования прохождения КА через зону обзора. Расчет времени прохождения КА в зону обзора средств наблюдения
Модуль оценки возможностей средств наблюдения.
#
Расчет вероятности своевременного получения потребителем информации о изменении космической
обстановки
Рис. 1. Функциональная схема работы имитационной модели
Для моделирования космической обстановки было решено учесть три группы ИСЗ:
- космические аппараты, движущиеся по известным орбитам;
- маневрирующие космические аппараты;
- выводимые космические аппараты.
При моделировании состояния наземных оптических средств были учтены:
- вывод средств на техническое обслуживание;
- нарушение работоспособного технического состояния;
- ограничение работы системы контроля космического пространства в связи с неблагоприятными погодными условиями;
- ограничения работы системы контроля космического пространства, связанные с изменением времени суток.
На основе поставленных перед моделью задач была предложена блок схема методики оценивания оперативности принятия решения на основе имитационной модели (рис. 2).
Начало
I
Ввод исходных данных
т
©
Модель получения параметров орбит выводимых КА
@
Модель изменения параметров орбит маневрирующих КА
®
Модель изменения технического сотояния СРКП
Вывод данных
конец
(13)
Модель закатов и рассветов в токе стояния СРКП
Модель прогнозирования прохождения КА через зоны обзора средств разведки космического пространства
I
@ Модель оценки возможностей оптических СРКП по получению координатной информации о КА в СОКЗ и ДОКЗ
Методика потокового сбора информации о КА-целях в СОКЗ и ДОКЗ от оптических средств РКП входящих в состав СККП МО РФ
Методика потокового сбора информации о КА-целях в СОКЗ и ДОКЗ от оптических средств РКП входящих в состав СККП МО и СРКП ВУЗов и предприятий
@ Методика ежесуточного получения информации о КА-целях в СОКЗ и ДОКЗ через ядро АСПОС
от оптических средств РКП входящих в состав СККП МО РФ, предприятий и вузов
Модель оценки старения информации за время отсутствия измерений по КА-целям
2
3
2
3
Рис. 2. Блок-схема методики оценивания оперативности принятия решения на основе имитационной модели процесса функционирования программно-аппаратного комплекса сбора информации о космической обстановке
Исходными данными являются (Блок 1):
- параметры орбит ИСЗ из каталога космических объектов;
- координаты точки стояния комплекса запуска выводимых ИСЗ;
- координаты точек стояния оптических средств контроля космического пространства;
- планы технического обслуживания средств контроля космического пространства;
- расчетный параметр наработки на отказ средств контроля космического пространства (СККП);
- дата и время начала моделирования;
- вариант моделирования космической обстановки;
- количество прогонов модели.
Блок 2 задает цикл в модели с количеством N проходов для получения наиболее точных вероятностных характеристик своевременного поучения информации и актуальности полученной информации.
Блоки 3, 4, 5, 7, 9 выполняют функцию выбора варианта расчета космической обстановки в соответствии с исходным параметром Q из четырех заданных вариантов:
1. Выполнение модели по космическим аппаратам из каталога космического пространства;
2. Выполнение модели по маневрирующим космическим аппаратам;
3. Выполнение модели по запускаемым космическими аппаратами;
4. Выполнение модели по всем видам космических аппаратам.
Блок 6 реализует работу модели по параметрам орбит космических аппаратов взятых из каталога космических объектов.
Блок 8 является стохастическим блоком и реализует модель получения параметров орбит выводимых космических аппаратов:
Входными данными для данной модели является координаты точки пуска ракеты-носителя (РН) и азимут пуска, при этом стохастическими будет являться скорость движения РН
Для расчета параметров орбит (рис. 3) необходимых для дальнейшей работы модели по выводимым ИСЗ найдены координаты ракеты-носителя хст, уст, (zcm = 0) и проекции скорости движения Vxcm, V , (Vicm = 0) в конце активного участка относительно стартовой системы координат OXc, Yc, Zc. Для расчета параметров орбиты выведения ИСЗ необходимо рассчитать координаты , у0, z0 и проекции скоростей Vo, Vo' Vo в тот же момент времени
для инерциальной системы координат O , X ,Y , Z (начальные условия пассивного движения).
В качестве инерциальной системы отсчета выбрана геоцентрическая экваториальная системы координат, ось O3Xu которая проходит через меридиан точки старта в момент окончания активного участка. Введённая таким образом инерциальная система координат повернута относительно звездной геоцентрической инерциальной системы на угол, где S * -местное звездное время в момент выхода космического аппарата на опорную орбиту. Положение стартовой системы координат OXc, Y, Zc относительно принятой инерциальной
O, Xu ,Y, Zu определяется широтой пункта старта из исходных данных (рст и азимутом
запуска A (рис. 3).
Переход от координат конца активного участка , уси!, zcm в стартовой системе к начальным координатам х0, у0, z0 орбитального движения в геоцентрической инерциальной системе (рисунок 2) выполняется по формулам:
*0 = cos A sin (ст + (R3 + уск )c0S(cm
Уо = *ск sin A 0)
^0 = -*ск C0S A C0S(Pcm + (R3 + уск)Sin(cm
Рис. 3. Основные системы координат и их ориентация в пространстве Величина радиус-вектора начальной точки орбитального движения:
Г
~у1хо + уо + 2о
(2)
Проекции относительно Кск на оси геоцентрической системы Ои, Хи, Уи, ^ выражаются через проекции относительной скорости Кск -УуСк ЛК2СК = 0) на стартовые оси аналогичными формулами.
Абсолютная скорость в начале орбитального движения складывается из относительной скорости У = V и переносной скорости, которая определяется по формуле:
(3)
\ и ]и к и
к = ^ Xг0 = о о ®з = -®з У о1 и +®з 2о Ju
хо Уо 2о
где / , у, ки - единичные векторы геоцентрической системы координат.
Таким образом, проекция абсолютной скорости на геоцентрические оси координат в начальной точке орбиты определяются формулами:
Ко = Кск Л эЬрст + Ууак СОЪРт - Шзуо Vо = Кск эт А х0
К0 = Кхсск СОЭ А СОЭ Рст + Кск эт СРт
(4)
Величина начальной скорости орбитального движения и угол наклона ее к местному горизонту соответственно:
Vo =/v0 + V20+Vz20
в0 = arcsin
XVxO + yoVo+^Ko
rV
(5)
При запуске космических аппаратов определяются элементы орбиты выведения. Сначала находятся компоненты и модуль векторной константы интеграла площадей (секторной скорости):
с = УоК0 - zoV0,
С2 = ZoK О — X0Vz О, C3 = xoVy О — yoVx О,
(6)
с—С с + С 2 ^ С 2
Расчет элементов орбиты производится в указанной последовательности:
-долгота восходящего узла Q относительно принятой инерциальной системы отсчета:
C
tgQ = — ^Г, sin «(sin Q) — sin «Cl
sin «(cos Q) — sin nC2
(7)
-наклонение орбиты относительно плоскости экватора:
. C
cos I
C
- эксцентриситет e , большая полуось a, период обращения T
e — ^ 1 + (v0 — 2)v0 cos2 в(
vo =
V 2r
Vo ro
M
V
V
v кр
a ■
2 — vA
p = a (l — e2 )
T = 2n
a
(8)
(9) (10)
(11)
2
r
0
- аргумент перигея:
_У08Ь6>0С08 6>0
- 27; г V С0Б О0-1
81и п (Б1П ^ ) - 81и п (в1п#0) б1П и(С0Б^) - Б1П П (V С0Б2 в0-1)
„ \1 С + С 2 + Сп С0Б Оп - ——1-2-3
(12)
ГУ Г0У 0
• п Х0Ух 0 + У0УУ 0 + 0 Б1П &п ---У
ГУ
Г0У0
Г Б1ПI
С0Б и
х0 С0Б Ц + У0 б1И Ц
0
С - и -
- момент времени прохождения через перигей Т :
Е
е &
■1 &
1 + е 2
а2
Т
- 10--г= ( Е0 - е 81П Е0)
(13)
Таким образом поле работы блока 8 выходными данными будут являться параметры орбиты выводимого космического аппарата (КА): долгота восходящего узла Ц, наклонение орбиты относительно плоскости экватора, эксцентриситет е , большая полуось а, период обращения, аргумент перигея и момент времени прохождения через перигей Т .
Блок 9 так же является стохастическим блоком построения космической обстановки и реализует модель получения параметров орбит маневрирующих ИСЗ.
В качестве основных видов маневра КА были выбраны одноимпульсные когерентные переходы.
Входными данными для модели получения параметров орбит маневрирующих ИСЗ определены исходные параметры орбит космических аппаратов, выделенные из каталога космических объектов, при этом стохастическими параметрами необходимыми для моделирования маневра являются импульс скорости и угол его приложения.
Начальные условия Х0, у0, ^ ,У0 ,уо , У0 - в абсолютной системе координат, соответствуют начальной точке вывода. После интегрирования получаем вектор состояния ИСЗ в момент времени (X, у, У ,У , У ) рис. 4.
Г
0
Рис. 4. Перелет по пресекающейся орбите
По вектору состояния можно рассчитать параметры орбиты КА. Фокальный параметр:
р = С2 / ], где С-интеграл площадей .
С = гXV, |С| = С = >/(СГ+СГ+С) Сх = ^vz - zVy
Су = zVx — XV2 - проекции на оси абсолютной системы координат; Cz = xVy — yVx
Эксцентриситет:
е = / / ] где / - вектор Лапласа
/ = V X С — ]г / г/\ = / ^(/х2 + /у2 + /z2)
/х = VyCz — VzCy —Ц2х / г / = VZCX — VXCZ — ] У/ г /х = VxCy — VyCx — ] 2/ г
- проекции на оси АСК;
Большая полуось:
р = а (1 — е2)
Наклонение орбиты:
Cx = C sin(i)sin Q C = C sin(i)cos Q C = Ccos(i)
Наклонение орбиты можно найти из формулы:
i = arccos(Q / C)
Долгота восходящего узла:
sin Q = C / C sin(i) cos Q = C / C sin(i) Если sin Q > 0, Q = arccos(- C / Csin(i)) Если sin Q < 0, Q = 360 - arccos(- C / Csin(i))
Аргумент перигея:
/х = / (cosacos Q- sin®sin Q cos(i)) / = / (cosacos Q + sin® sin Q cos(i))
/x = y sin®sin(i)
cos® = / cosQ / / = / sinQ / / sin® = / / / sin(i)
Если sin ® > 0, ® = arccos( / cos Q / / + / sin Q / /) Если sin ® < 0, ® = 360 - arccos( /x cos Q / / + / sin Q / /)
Период обращения:
T =
V
Выходными параметрами модели будут параметры орбиты космического аппарата после совершения маневра.
Блок 11 так же вносит вероятностные характеристики, но уже в состояние наземных средств контроля космического пространства и содержит в себе две составляющие:
1. График вывода средств на техническое обслуживание (на оптических средствах для которых он известен), который вводится в качестве исходных данных;
2. Вероятность перехода системы контроля в нерабочее состояние при техническом отказе.
Если первая составляющая является определённой для начала работы модели, то вторая использует в качестве исходных данных наработку на отказ для конкретного узла и позволяет рассчитать вероятность его отказа входящую в исходные данные и представляющую из себя количество выходов из строя за последний год эксплуатации системы контроля космического пространства:
- т т
pв .... „ „
^вых фун раб
К гр
фун
Выходными данными блока 11 является матрица технических состояний СККП, где моделируемый период времени 8тех(Ь),
, -2, •••, ti
Sтех () -
о,
О
О,
S21 ,522 , •••, 52
2i
]1,] 2 , •••, 5
Блок 12 так же является стохастическим и позволяет рассчитать вероятность рабочего состояния СККП в зависимости от условий окружающей среды (прозрачность атмосферы, авральные образования)
Входными данными является дата и время начала моделирования, координаты состояния СККП:
Сб ) = Рнс *т(1)
5* [1,0] = РР6 > 0-5
Сезоны (месяцы)
12-02 03-05 06-08 09-11
Вероятность неблагоприятных Вероятность неблагоприятных Вероятность неблагоприятных Вероятность неблагоприятных
условий Рнс условий Рнс условий Рнс условий Рнс
0.83 0.71 0.63 0.7
0.85 0.68 0.61 0.66
0.87 0.69 0.67 0.67
0.78 0.72 0.7 0.71
0.8 0.77 0.71 0.76
0.66 0.61 0.56 0.57
0.58 0.57 0.54 0.58
0.57 0.47 0.44 0.48
0.68 0.61 0.57 0.6
0.51 0.45 0.44 0.47
0.49 0.35 0.31 0.35
0.46 0.36 0.35 0.37
0.47 0.37 0.31 0.36
0.46 0.35 0.25 0.31
0.44 0.37 0.22 0.33
Выходными данными блока моделирования является матрица состояний СККП по со-
стоянию среды Scp(t).
Scp (t) =
G,
G,
t1, t2 , •••, ti
S11,S12, •••, S1i
S S S
S21, S22' •••, S2i
Sj1, Sj 2, •••, Sji
Блок 13 представляет собой модель расчета времени наступления закатов и рассветов в районе расположения СККП, что обусловливает время его работы. Соответственно входными данными блока являются дата и время начала моделирования и широта стояния средства разведки космического пространства:
cos( = - tan^tan^ 8 = sin-1(sinssinA)
ф - широта стояния СККП; (У0 - часовой угол; 8 - склонение солнца;
n = JD - 2451545.0 (= число дней с J2000.0). Julian Day (JD) на 10 июня 2002г. в 0ч00 UT: 2452435.5;
L = 280.472 + 0.9856474n -средняя долгота солнца;
g = 357.528 + 0.9856003n -средняя аномалия;
эклиптическая долгота:
Л = L + 1.915sin g + 0.020 sin 2g
наклонность эклиптики
S = 23.439 - 0.0000004n
ГГ1 ггT ^^
вос м пол (0
J, J,
зак.м пол (0
Выходными данными блока 13 является матрица состояний СККП по времени работы в зависимости от времени суток 3сут{().
Блок 14 позволяет рассчитать время входа космического аппарата в зоны обзора средств наблюдения, объединяя выходные данные блоков 2, 6, 8, 10, 11, 12, 13, которые являются его входными данными. Работа модели прогнозирования прохода КА через зону обзора СККП построена в соответствии с блок схемой представленной на рис. 5-6.
с
Начало
Ввод начальных данных
Построение зон контроля средств ККП
_*_
Построения трассы КА
Вычисление времени прохождении трассы через зоны контроля
Вывод результатов
С
Конец
Рис. 5. Блок схема построения трассы космического аппарата.
В блоке «Построения зон контроля средств ККП» должны быть построены проекции зон на карту Земли.
В блоке «Построение трассы КА» должна отображаться трасс космического объекта в динамике (режиме реального или ускоренного времени).
В блоке «Вычисление времени прохождении трассы через зоны контроля средств ККП» в случае, если космический аппарат попал в зону контроля должно выводится время входа в зону, выхода из зоны, а также время пребывания в зоне контроля средством ККП.
Блок 15 отвечает за накопление и обработку полученных статистических данных о попадании и нахождения КА в зоне обзора средств наблюдения.
Блоки 16,17 реализует процесс выбора способа сбора информации командным пунктом системы со средств наблюдения.
Блоки 18,19,20 реализуют методики сбора информации со средств разведки космического пространства.
Блок 21 представляет собой модель оценивания актуальности поученной информации от СРКП на основе выбранной методики сбора путем вычисления времени старения информации со времени последнего проведенного измерения по КА.
Блок 22 реализует функцию вывода данных.
Конец
Рисунок 6. Блок-схема построения трассы искусственного спутника Земли
Заключение
Предложенная в работе методика и имитационная модель позволяет рассчитать оптимальное количество необходимых средств наблюдения за космическим пространством и предпочтительные районы их размещения на основе оценки эффективности их функционирования при динамическом изменении состояний их функционирования. Новизна предложенной постановки задачи состоит в том, что структура разработанной методики и имитационной модели позволяет учитывать различные факторы, влияющие на средства наблюдения и строить вероятностные оценки эффективности их функционирования, на основе динамического изменения состояний функционирования средств наблюдения.
Литература
1. Бойкова А.В. Использование информационных технологий в образовательном процессе военного вуза // Интернет-журнал «Мир науки». 2017. Том 5, № 6.; URL: https://mir-nauki.com/PDF/96PDMN617.pdf (дата обращения 05.01.2021)
2. Иванов Н.М., Лысенко Л.Н. Баллистика и навигация космических аппаратов. М.: МГТУ имени Н.Э.Баумана, 2016. 528 с.
3. Лиференко В.Д., Легков К.Е., Гураль Д.А. Методический подход к математическому описанию функционирования информационно - управляющей сети распределенными гетерогенными информационно - вычислительными ресурсами в интересах системы поддержки и принятия решения специального назначения // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. 2021. № 1-2 (151-152). С. 8490.
4. Легков К. Е., Буренин А. Н. Модели и методы оперативного мониторинга информационных подсистем перспективных автоматизированных систем управления // Информация и космос. 2016. № 4. C. 46-60.
5. Легков К. Е., Бабошин В. А., Нестеренко О. Е. Модели и методы управления современными мультисервисными сетями связи // Техника средств связи. 2018. № 2 (142). C. 181-182.
6. Легков К. Е. Модели и методы мониторинга параметров, характеризующих состояние инфокоммуникационной системы специального назначения // T-Comm: Телекоммуникации и транспорт. 2016. Т. 10. № 1. C. 11-18.
7. Буренин А. Н., Легков К. Е. Системный подход к формированию структуры подсистем мониторинга автоматизированных систем управления инфокоммуникациями // T-Comm: Телекоммуникации и транспорт. 2016. Т. 10. № 8. C. 46-50.
8. Федоренко Д.С., Легков К.Е. Моделирование спектра отражения высокоорбитального искусственного спутника Земли // Т-Comm: Телекоммуникации и транспорт. 2020. Т. 14. № 11. С. 14-20.
9. Liferenko V.D., Legkov K.E., Kolesnik D.Y. Method for recognizing the type of space object in airspace based on the use of radar images // В сборнике: 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2020. 2020. С.9166055.
10. Liferenko V.D., Fedorenko D.S., Legkov K.E. Verification of the model forming the space object reflection spectrum based on normal-hemispheric reflection coefficients of reflection of materials and coatings // В сборнике: 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF 2020. 2020. С. 9131551.
11. Aldokhina V.N., Kolesnik D.Y., Liferenko V.D., Legkov K.E. Model of recognition of cosmic objects based on informative signs obtained by radar means // В сборнике: 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF 2020. 2020. С.9131444.
12. Liferenko V.D., Legkov K.E., Gural D.A. Organization of effective functioning of the information subsystem of a network of distributed heterogeneous information and computing resources // В сборнике: 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, Conference Proceedings. 2021. С. 9416101.
13. Aldohina V.N., Fedorenko D.S., Liferenko V.D., Legkov K.E. Methodology for creating a reference reflection spectra database for space objects monitoring // В сборнике: 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, Conference Proceedings. 2021. С. 9416097.
14. Гураль Д.А., Легкое К.Е. Программный комплекс моделирования процессов получения информации от средств сопровождения космических объектов. Свидетельство о регистрации программы для ЭВМ 2021680088, 07.12.2021. Заявка № 2021669737 от 29.11.2021.
15. Гураль Д.А., Легкое К.Е. Программный комплекс моделирования информационных подсистем автоматизированных систем управления объектами специального назначения. Свидетельство о регистрации программы для ЭВМ 2021680877, 15.12.2021. Заявка № 2021669953 от 22.11.2021.
16. Алдохина В.Н., Куликов С.В., Лиференко В.Д., Чесноков Д.С. Виртуальный прибор для исследования формы трассы полета КО от значений элементов орбиты // Компоненты и технологии. 2017. № 2. С. 128-130.
17. Алдохина В.Н., Гудаев Р.А., Смирнов М.С., Шаймухаметов Ш.И. Модель системы мониторинга и контроля воздушно-космического пространства // Труды Военно-космической академии имени А.Ф. Можайского. 2019. № 668. С. 8-20.
18. Druk E.V., Legkov K.E., Levko L.V. The system approach to the organization of heterogeneous data storage system for decision support system // В сборнике: 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2019. 2019. С.8813930.
19. Basyrov A.G., Legkov K.E., Maksimov V.A. Model of onboard heterogeneous data storage system functioning with the consideration of different information importance // В сборнике: 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2019. 2019. С. 8813922.
20. Legkov K.E., Burenin A.N. Evaluation of the state of modern information systems in the organization of stochastic control based on the kalman-bucy theory // В сборнике: 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019). 2019. С. 8840600.
21. Kaflanov R.I., Levko I.V., Legkov K.E. Selection and justification of parameters and characteristic of the functioning of the aggregative automated control system of complex organizational and technical system in the conditions of intensive impacts // В сборнике: 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019). 2019. С. 8840606.
METHODOLOGY FOR ASSESSING THE EFFICIENCY OF DECISION-MAKING ON THE USE OF NEAR-EARTH SPACE SENSING TOOLS
VIKTOR D. LIFERENKO
PhD, Professor, independent specialist, JSC "SUPERTEL", St. Petersburg, Russia, [email protected]
DMITRY A. GURAL
Candidate of Scientific degree of Candidate of Sciences, A.F.Mozhaisky Military Space Academy, St. Petersburg, Russia, [email protected]
KONSTANTIN E. LEGKOV
Candidate of Technical Sciences, Associate Professor, A.F.Mozhaisky Military Space Academy, St. Petersburg, Russia, [email protected]
ABSTRACT
Introduction: this article proposes a methodology for assessing the efficiency of decision-making on the use of near-Earth space sensing tools based on the software implementation of a simulation model for obtaining measurements on space objects in the middle and far near-Earth space zone by means of space exploration using a hardware and software complex for collecting information. Problem statement: development of an estimation methodology based on a simulation model of the detection of space objects in their orbits by ground-based means of observing outer space, taking into account various options for stochastic construction of trajectories of space objects and working conditions, technical condition, geographical location and number of optical means of observation. Results: a methodology and a simulation model of a hardware and software complex for collecting information about the space environment has been developed, taking into account various options for constructing orbits of observed space objects and allowing for dynamically developing the simulated space environment, as well as modeling changes in the state of observation facilities, taking into account changes in their technical condition, weather conditions, daily cycle and geographical location. Practical significance: the proposed methodology and simulation model allows us to calculate the optimal number of necessary means of observing outer space and the preferred areas of their placement based on an assessment of the effectiveness of their functioning with a dynamic change in the states of their functioning. Discussion: the novelty of the proposed formulation of the problem is that the structure of the developed methodology and simulation model allows us to take into account various factors affecting the means of observation and to build probabilistic estimates of the effectiveness of their functioning on the basis of dynamic changes in the states of functioning of the means of observation.
Keywords: simulation model; means of observing outer space; space objects; artificial Earth satellite; hardware and software complex; optical means.
REFERENCES
1. Boikova A.V. The use of information technologies in the educational process of a military university. Online magazine "World of Science". 2017. Vol. 5, No. 6. URL: https://mir-nauki.com/PDF/96PDMN617.pdf (accessed 05.01.2021)
2. Ivanov N.M., Lysenko L.N. Ballistics and navigation of spacecraft. Moscow: Bauman Moscow State Technical University, 2016. 528 p.
3. Liferenko V.D., Legkov K.E., Gural D.A. Methodological approach to the mathematical description of the functioning of an information management network by distributed heterogeneous information and computing resources in the interests of a special purpose support and decision-making system. Issues of defense technology. Series 16: Technical means of countering terrorism. 2021. No. 1-2 (151-152). Pp. 84-90.
4. Legkov K. E., Burenin A. N. Models and methods of operational monitoring of information subsystems of promising automated control systems. Information and space. 2016. No. 4. Pp. 46-60.
5. Legkov K. E., Baboshin V. A., Nesterenko O. E. Models and methods of management of modern multiservice communication networks. Equipment of means communications. 2018. No. 2 (142). Pp. 181-182.
6. Legkov K. E. Models and methods of monitoring parameters characterizing the state of a special purpose infocommunication system. T-Comm. 2016. Vol. 10. No. 1. Pp. 11-18.
7. Burenin A. N., Legkov K. E. System approach to the formation of the structure of monitoring subsystems of automated control systems of infocommunications. T-Comm. 2016. Vol. 10. No. 8. Pp. 46-50.
8. Fedorenko D.S., Legkov K.E. Modeling of the reflection spectrum of a high-orbit artificial satellite of the Earth. T-Comm. 2020. Vol. 14. No. 11. Pp. 14-20.
9. Liferenko V.D., Legkov K.E., Kolesnik D.Y. Method for recognizing the type of space object in airspace based on the use of radar images. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2020. 2020. 9166055 p.
10. Liferenko V.D., Fedorenko D.S., Legkov K.E. Verification of the model forming the space object reflection spectrum based on normal-hemispheric reflection coefficients of reflection of materials and coatings. 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF 2020. 2020. 9131551 p.
11. Aldokhina V.N., Kolesnik D.Y., Liferenko V.D., Legkov K.E. Model of recognition of cosmic objects based on informative signs obtained by radar means. 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF 2020. 2020. 9131444 p.
12. Liferenko V.D., Legkov K.E., Gural D.A. Organization of effective functioning of the information subsystem of a network of distributed heterogeneous information and computing resources. 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, Conference Proceedings. 2021. 9416101 p
13. Aldohina V.N., Fedorenko D.S., Liferenko V.D., Legkov K.E. Methodology for creating a reference reflection spectra database for space objects monitoring. 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, Conference Proceedings. 2021. 9416097 p.
14. Gural D.A., Legkov K.E. A software package for modeling the processes of obtaining information from the means of tracking space objects. Certificate of registration of the computer program 2021680088, 07.12.2021. Application No. 2021669737 dated 29.11.2021.
15. Gural D.A., Legkov K.E. Software package for modeling information subsystems of automated control systems for special purpose objects. Certificate of registration of the computer program 2021680877, 12/15/2021. Application No. 2021669953 dated 22.11.2021.
16. Aldokhina V.N., Kulikov S.V., Liferenko V.D., Chesnokov D.S. Virtual instrument for the study of the shape of the flight path depending on the values of the elements of the orbit. Components and Technologies. 2017. No. 2. Pp. 128-130.
17. Aldokhina V.N., Gudaev R.A., Smirnov M.S., Shaimukhametov Sh.I. Model of the monitoring and control system of aerospace. Proceedings of the Military Space Academy named after A.F. Mozhaisky. 2019. No. 668. Pp. 8-20.
18. Druk E.V., Legkov K.E., Levko L.V. The system approach to the organization of heterogeneous data storage system for decision support system. 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2019. 2019. 8813930 p.
19. Basyrov A.G., Legkov K.E., Maksimov V.A. Model of onboard heterogeneous data storage system functioning with the consideration of different information importance. 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2019. 2019. 8813922 p.
20. Legkov K.E., Burenin A.N. Evaluation of the state of modern information systems in the organization of stochastic control based on the kalman-bucy theory. 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019). 2019. 8840600 p.
21. Kaflanov R.I., Levko I.V., Legkov K.E. Selection and justification of parameters and characteristics of the functioning of the aggregate automated control system of complex organizational and technical system in the conditions of intensive impacts. 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019). 2019. 8840606 p.