Научная статья на тему 'Методика определения расчетных величин пожарного риска на производственных объектах'

Методика определения расчетных величин пожарного риска на производственных объектах Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
471
72
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Методика определения расчетных величин пожарного риска на производственных объектах»

ОБЩИЕ ВОПРОСЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ПРИКАЗ

от 10 июля 2009 г. № 404

ОБ УТВЕРЖДЕНИИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ

В соответствии с Федеральным законом от 27 декабря 2002 г. № 184-ФЗ "О техническом регулировании" [1] и постановлением Правительства Российской Федерации от 31 марта 2009 г. № 272 "О порядке проведения расчетов по оценке пожарного риска" [2] приказываю:

Утвердить прилагаемую методику определения расчетных величин пожарного риска на производственных объектах.

Первый заместитель Министра Р. Х. Цаликов

ЗАРЕГИСТРИРОВАНО в Минюсте РФ 17 августа 2009 г. Регистрационный № 14541

1 Собрание законодательства Российской Федерации, 2002, № 52 (часть I), ст. 5140; 2005, № 19, ст. 1752; 2007, № 19, ст. 2293; 2007, № 49, ст. 6070; 2008, № 30 (часть II), ст. 3616.

2 Собрание законодательства Российской Федерации, 2009, № 14, ст. 1656.

Приложение к приказу МЧС России от 10 июля 2009 г. № 404

МЕТОДИКА

определения расчетных величин пожарного риска на производственных объектах

I. Общие положения

1. Настоящая методика определения расчетных величин пожарного риска на производственных объектах (далее — Методика) устанавливает порядок расчета величин пожарного риска на производственных объектах (далее — объект).

Положения настоящей Методики не распространяются на определение расчетных величин пожарного риска производственных объектов специального назначения, в том числе объектов военного назначения, объектов производства, переработки, хранения радиоактивных и взрывчатых веществ и материалов, объектов уничтожения и хранения химического оружия и средств взрывания, наземных космических объектов и стартовых комплексов, горных выработок, объектов, расположенных в лесах, линейной части магистральных трубопроводов.

2. Расчеты по оценке пожарного риска проводятся путем сопоставления расчетных величин пожарного риска с соответствующими нормативными значениями пожарных рисков, установленными Федеральным законом от 22 июля 2008 г. № 12Э-ФЗ "Технический регламент о требованиях пожарной безопасности"1 (далее — Технический регламент).

3. Определение расчетных величин пожарного риска на объекте осуществляется на основании:

а) анализа пожарной опасности объекта;

б) определения частоты реализации пожароопасных ситуаций;

в) построения полей опасных факторов пожара для различных сценариев его развития;

г) оценки последствий воздействия опасных факторов пожара на людей для различных сценариев его развития;

д) наличия систем обеспечения пожарной безопасности зданий, сооружений и строений.

4. Расчетные величины пожарного риска являются количественной мерой возможности реализации пожарной опасности объекта и ее последствий для людей.

Количественной мерой возможности реализации пожарной опасности объекта является риск ги-

1 Собрание законодательства Российской Федерации, 2008, № 30 (часть I), ст. 3579.

бели людей в результате воздействия опасных факторов пожара, в том числе: — риск гибели работника объекта; - риск гибели людей, находящихся в селитебной

зоне вблизи объекта.

Риск гибели людей в результате воздействия опасных факторов пожара на объекте характеризуется числовыми значениями индивидуального и социального пожарных рисков.

5. Для целей настоящей Методики используются основные понятия, установленные статьей 2 Технического регламента.

II. Общие требования к определению расчетных величин пожарного риска

Анализ пожарной опасности объекта

6. Анализ пожарной опасности объекта предусматривает:

а) анализ пожарной опасности технологической среды и параметров технологических процессов на объекте;

б) определение перечня пожароопасных аварийных ситуаций и параметров для каждого технологического процесса;

в) определение для каждого технологического процесса перечня причин, возникновение которых позволяет характеризовать ситуацию как пожароопасную;

г) построение сценариев возникновения и развития пожаров, влекущих за собой гибель людей.

7. Анализ пожарной опасности технологической среды и параметров технологических процессов предусматривает сопоставление показателей пожарной опасности веществ и материалов, обращающихся в технологическом процессе, с параметрами технологического процесса.

Перечень потенциальных источников зажигания пожароопасной технологической среды определяется посредством сопоставления параметров технологического процесса и иных источников зажигания с показателями пожарной опасности веществ и материалов.

8. Определение перечня пожароопасных аварийных ситуаций и параметров для каждого техно-

логического процесса осуществляется на основе анализа пожарной опасности каждого из технологических процессов, предусматривающего выбор ситуаций, при реализации которых возникает опасность для людей, находящихся в зоне поражения опасными факторами пожара, взрыва и сопутствующими проявлениями опасных факторов пожара.

Не подлежат рассмотрению ситуации, в результате которых не возникает опасность для жизни и здоровья людей. Эти ситуации не учитываются при расчете пожарного риска.

9. Для каждой пожароопасной ситуации на объекте приводится описание причин возникновения и развития пожароопасных ситуаций, мест их возникновения и факторов пожара, представляющих опасность для жизни и здоровья людей в местах их пребывания.

10. Для определения причин возникновения пожароопасных ситуаций рассматриваются события, реализация которых может привести к образованию горючей среды и появлению источника зажигания.

Наиболее вероятными событиями, которые могут являться причинами пожароопасных ситуаций на объектах, считаются следующие события:

- выход параметров технологических процессов за критические значения, который вызван нарушением технологического регламента (например, перелив жидкости при сливо-наливных операциях, разрушение оборудования вследствие превышения давления по технологическим причинам, появление источников зажигания в местах образования горючих газопаровоздушных смесей);

- разгерметизация технологического оборудования, вызванная механическим (влияние повышенного или пониженного давления, динамических нагрузок и т. п.), температурным (влияние повышенных или пониженных температур) и агрессивным химическим (влияние кислородной, сероводородной, электрохимической и биохимической коррозии) воздействиями;

- механическое повреждение оборудования в результате ошибок работника, падения предметов, некачественного проведения ремонтных и регламентных работ и т. п. (например, разгерметизация оборудования или выход из строя элементов его защиты в результате повреждения при ремонте или столкновения с железнодорожным или автомобильным транспортом).

11. На основе анализа пожарной опасности объекта, при необходимости, проводится определение комплекса дополнительных мероприятий, изменяющих параметры технологического процесса до

уровня, обеспечивающего допустимый пожарный риск.

12. Для выявления пожароопасных ситуаций осуществляется деление технологического оборудования (технологических систем), при их наличии на объекте, на участки. Указанное деление выполняется исходя из возможности раздельной герметизации этих участков при возникновении аварии. Рассматриваются пожароопасные ситуации, как на основном, так и на вспомогательном технологическом оборудовании. Кроме этого, учитывается также возможность возникновения пожара в зданиях, сооружениях и строениях (далее — здания) различного назначения, расположенных на территории объекта.

В перечне пожароопасных ситуаций применительно к каждому участку, технологической установке, зданию объекта выделяются группы пожароопасных ситуаций, которым соответствуют одинаковые модели процессов возникновения и развития.

При анализе пожароопасных ситуаций, связанных с разгерметизацией технологического оборудования, рассматриваются утечки при различных диаметрах истечения (в том числе максимальные — при полном разрушении оборудования или подводящих/отводящих трубопроводов).

Определение частоты реализации пожароопасных ситуаций

13. Для определения частоты реализации пожароопасных ситуаций на объекте используется информация:

а) об отказах оборудования, используемого на объекте;

б) о параметрах надежности используемого на объекте оборудования;

в) об ошибочных действиях работника объекта;

г) о гидрометеорологической обстановке в районе размещения объекта;

д) о географических особенностях местности в районе размещения объекта.

14. Для определения частоты реализации пожароопасных ситуаций могут использоваться статистические данные по аварийности или расчетные данные по надежности технологического оборудования, соответствующие специфике рассматриваемого объекта.

15. Информация о частотах реализации пожароопасных ситуаций (в том числе возникших в результате ошибок работника), необходимая для оценки риска, может быть получена непосредственно из данных о функционировании исследуемого объекта или из данных о функционировании других подобных объектов. Рекомендуемые сведения по частотам реализации инициирующих пожароопасные

ситуации событий для некоторых типов оборудования объектов, частотам утечек из технологических трубопроводов, а также частотам возникновения пожаров в зданиях приведены в приложении № 1 к настоящей Методике.

Построение полей опасных факторов пожара для различных сценариев его развития

16. При построении полей опасных факторов пожара для различных сценариев его развития учитываются:

— тепловое излучение при факельном горении, пожарах проливов горючих веществ на поверхность и огненных шарах;

— избыточное давление и импульс волны давления при сгорании газопаровоздушной смеси в открытом пространстве;

— избыточное давление и импульс волны давления при разрыве сосуда (резервуара) в результате воздействия на него очага пожара;

- избыточное давление при сгорании газопаровоздушной смеси в помещении;

— концентрация токсичных компонентов продуктов горения в помещении;

— снижение концентрации кислорода в воздухе помещения;

- задымление атмосферы помещения;

- среднеобъемная температура в помещении;

- осколки, образующиеся при взрывном разрушении элементов технологического оборудования;

- расширяющиеся продукты сгорания при реализации пожара-вспышки.

Оценка величин указанных факторов проводится на основе анализа физических явлений, протекающих при пожароопасных ситуациях, пожарах, взрывах. При этом рассматриваются следующие процессы, возникающие при реализации пожароопасных ситуаций и пожаров или являющиеся их последствиями (в зависимости от типа оборудования и обращающихся на объекте горючих веществ):

- истечение жидкости из отверстия;

— истечение газа из отверстия;

- двухфазное истечение из отверстия;

- растекание жидкости при разрушении оборудования;

- выброс газа при разрушении оборудования;

- формирование зон загазованности;

- сгорание газопаровоздушной смеси в открытом пространстве;

- разрушение сосуда с перегретой легковоспламеняющейся жидкостью, горючей жидкостью или сжиженным горючим газом;

- тепловое излучение от пожара пролива или огненного шара;

— реализация пожара-вспышки;

- образование и разлет осколков при разрушении элементов технологического оборудования;

- испарение жидкости из пролива;

- образование газопаровоздушного облака (газы и пары тяжелее воздуха);

- сгорание газопаровоздушной смеси в технологическом оборудовании или помещении;

— пожар в помещении;

- факельное горение струи жидкости и/или газа;

- тепловое излучение горящего оборудования;

- вскипание и выброс горящей жидкости при пожаре в резервуаре.

Также, при необходимости, рассматриваются иные процессы, которые могут иметь место при возникновении пожароопасных ситуаций и пожаров.

17. Для определения возможных сценариев возникновения и развития пожаров рекомендуется использовать метод логических деревьев событий (далее — логическое дерево).

Сценарий возникновения и развития пожароопасной ситуации (пожара) на логическом дереве отражается в виде последовательности событий от исходного до конечного события (далее — ветвь дерева событий).

Процедура построения логического дерева событий приведена в приложении № 2 к настоящей Методике.

При построении логического дерева событий используются:

- условная вероятность реализации различных ветвей логического дерева событий и перехода пожароопасной ситуации или пожара на ту или иную стадию развития;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- вероятность эффективного срабатывания соответствующих средств предотвращения или локализации пожароопасной ситуации или пожара (принимается исходя из статистических данных, публикуемых в научно-техническом журнале "Пожарная безопасность", или по паспортным данным завода — изготовителя оборудования);

- вероятность поражения расположенного в зоне пожара технологического оборудования и зданий объекта в результате воздействия на них опасных факторов пожара, взрыва.

18. Оценка опасных факторов пожара проводится с помощью методов, приведенных в приложении № 3 к настоящей Методике.

Оценка последствий воздействия опасных факторов пожара на людей для различных сценариев его развития

19. Оценка последствий воздействия опасных факторов пожара, взрыва на людей для различных сценариев их развития осуществляется на основе сопоставления информации о моделировании ди-

намики опасных факторов пожара на территории объекта и прилегающей к нему территории и информации о критических для жизни и здоровья людей значениях опасных факторов пожара, взрыва. Для этого используются критерии поражения людей опасными факторами пожара.

20. При оценке последствий воздействия опасных факторов пожара, взрыва на людей для различных сценариев развития пожароопасных ситуаций предусматривается определение числа людей, попавших в зону поражения опасными факторами пожара, взрыва.

Для оценки пожарного риска используют, как правило, вероятностные критерии поражения людей опасными факторами пожара. Детерминированные критерии используются при невозможности применения вероятностных критериев.

Детерминированные и вероятностные критерии оценки поражающего действия волны давления и теплового излучения на людей приведены в приложении № 4 к настоящей Методике.

Анализ наличия систем обеспечения пожарной безопасности зданий

21. При анализе влияния систем обеспечения пожарной безопасности зданий на расчетные величины пожарного риска предусматривается рассмотрение комплекса мероприятий по обеспечению пожарной безопасности объекта.

При этом рассматриваются следующие мероприятия по обеспечению пожарной безопасности:

— мероприятия, направленные на предотвращение пожара;

— мероприятия по противопожарной защите;

- организационно-технические мероприятия по

обеспечению пожарной безопасности.

22. Мероприятия по обеспечению пожарной безопасности учитываются при определении частот реализации пожароопасных ситуаций, возможных сценариев возникновения и развития пожаров и последствий воздействия опасных факторов пожара на людей для различных сценариев его развития.

III. Порядок вычисления расчетных величин пожарного риска на объекте

23. Расчет значений индивидуального и социального пожарных рисков в зданиях и на территории объекта, а также в селитебной зоне вблизи объекта проводится с использованием в качестве промежуточной величины значения соответствующего потенциального пожарного риска.

Потенциальный пожарный риск на территории объекта и в селитебной зоне вблизи объекта

24. Величина потенциального пожарного риска Р(а) (год-1) (далее — потенциальный риск) в опре-

деленной точке (а) как на территории объекта, так и в селитебной зоне вблизи объекта определяется по формуле:

Р(а) = ЁQdj(а) • Q]

j=1

(1)

где J — число сценариев развития пожароопасных ситуаций (пожаров, ветвей логического дерева событий);

Qdj (а) — условная вероятность поражения человека в определенной точке территории (а) в результате реализации ^го сценария развития пожароопасных ситуаций, отвечающего определенному инициирующему аварию событию; Qj — частота реализации в течение годау'-го сценария развития пожароопасных ситуаций, год-1. Условные вероятности поражения человека Qdj (а) определяются по значениям пробит-функций.

При расчете риска рассматриваются различные метеорологические условия с типичными направлениями ветров и ожидаемой частотой их возникновения.

25. При проведении расчета риска предусматривается рассмотрение различных пожароопасных ситуаций, определение зон поражения опасными факторами пожара, взрыва и частот реализации указанных пожароопасных ситуаций. Для удобства расчетов территория местности может разделяться на зоны, внутри которых величины Р(а) полагаются одинаковыми.

26. В необходимых случаях оценка условной вероятности поражения человека проводится с учетом совместного воздействия более чем одного опасного фактора. Так, например, для расчета условной вероятности поражения человека при реализации сценария, связанного со взрывом резервуара с легковоспламеняющейся жидкостью (далее — ЛВЖ) под давлением, находящегося в очаге пожара, необходимо учитывать, кроме теплового излучения огненного шара, воздействие волны давления.

Условная вероятность поражения человека Qjj (а) от совместного независимого воздействия нескольких опасных факторов в результате реализации^го сценария развития пожароопасных ситуаций определяется по формуле:

Qdj(а) = 1 -П (1 " QkQdjk (а)),

(2)

к = 1

где к — число рассматриваемых опасных факторов; Qк — вероятность реализации к-го опасного фактора;

Qdjk (а) — условная вероятность поражения к-м опасным фактором.

Потенциальный риск в зданиях объекта

27. Величина потенциального риска Р1 (год-1) в г-м помещении здания объекта определяется по формуле:

р = £ ■ а

]=1

Л]'

(3)

где J — число сценариев возникновения пожара в здании;

а] — частота реализации в течение года ]-го сценария пожара, год-1;

а^] — условная вероятность поражения человека при его нахождении в г-м помещении при реализации ]-го сценария пожара.

28. Условная вероятность поражения человека определяется по формуле:

алц = (1 - рЭ] )(1 - о у ), (4)

где РЭу — вероятность эвакуации людей, находящихся в -м помещении здания, при реализации ]-го сценария пожара;

О у — вероятность эффективной работы технических средств по обеспечению безопасности людей в г-м помещении при реализации]-го сценария пожара.

29. Вероятность эвакуации РЭу определяется по формуле:

Рзу= 1 - (1 - Рэ.пу )(1 - Рд.ВЦ), (5)

где РЭ.П ] — вероятность эвакуации людей, находящихся в г-м помещении здания, по эвакуационным путям при реализации ]-го сценария пожара; Рд.В ] — вероятность выхода из здания людей, находящихся в г-м помещении, через аварийные или иные выходы.

При отсутствии данных вероятность Рдщ допускается принимать равной 0,03 при наличии аварийных или иных выходов и 0,001 — при их отсутствии.

30. Вероятность эвакуации по эвакуационным путям РЭ.П ] определяется по формуле:

Р

э.пу

0,8х бл] гР]

если

1Н. э

(6)

гР] < 0,8х блг] < гР] + х Н.ЭЦ;

°,999, если 1ру + хнзц ^ 0,8хблг];

0,001, если 1р]> 0,8хбл],

где хбл] — время от начала реализации]-го сценария пожара до блокирования эвакуационных путей в результате распространения на них опасных

факторов пожара, имеющих предельно допустимые для людей значения (время блокирования эвакуационных путей), мин; гР] — расчетное время эвакуации людей из г-го помещения при ]-м сценарии пожара, мин; Хнэ] — интервал времени от начала реализации ]-го сценария пожара до начала эвакуации людей из -го помещения, мин.

31. Время от начала пожара до начала эвакуации людей хНЭ для зданий без систем оповещения определяется по результатам исследования поведения людей при пожарах в зданиях конкретного назначения.

При наличии в здании системы оповещения людей о пожаре и управления эвакуацией людей в зданиях (далее — СОУЭ) хНЭ принимается равным времени срабатывания системы с учетом ее инерционности. При отсутствии необходимых исходных данных для определения времени начала эвакуации в зданиях без СОУЭ тНЭ допускается принимать равным 0,5 мин для этажа пожара и 2 мин — для вышележащих этажей.

32. Если местом возникновения пожара является зальное помещение, где пожар может быть обнаружен одновременно всеми находящимися в нем людьми, то хНЭ допускается принимать равным нулю.

В этом случае вероятность РЭщ определяется по формуле:

Р

Э.Пг]

0,999, если гру < 0,8 х бл]; 0,001, если гР] > 0,8 х бщ.

(7)

33. Время от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара и расчетное время эвакуации определяются по методам, приведенным в приложении №5к настоящей Методике.

Расчетное время эвакуации гР ] рассчитывается при максимально возможной расчетной численности людей в здании, определяемой на основе решений по организации эксплуатации здания, от наиболее удаленной от эвакуационных выходов точки г-го помещения. Допускается определение расчетного времени эвакуации на основе экспериментальных данных.

Для определения указанных выше величин тбл] и гР] допускается дополнительно использовать методы, содержащиеся в методиках определения расчетных величин пожарного риска, утвержденных в установленном порядке.

34. При определении величин потенциального риска для работников, которые находятся в здании на территории объекта, допускается рассматривать для здания в качестве расчетного один наиболее неблагоприятный сценарий возникновения пожара, характеризующийся максимальной условной веро-

ятностью поражения человека. В этом случае расчетная частота возникновения пожара принимается равной суммарной частоте реализации всех возможных в здании сценариев возникновения пожара.

35. Вероятность Б у эффективной работы технических средств по обеспечению пожарной безопасности г-го помещения при реализацииу-го сценария пожара определяется по формуле:

Бу= 1 -П (1 - Бук),

(8)

к=1

где К — число технических средств противопожарной защиты;

Бук — вероятность эффективного срабатывания (выполнения задачи) к-го технического средства приу-м сценарии пожара для г-го помещения здания.

При отсутствии данных по эффективности технических средств величины Бу допускается принимать равными нулю.

36. При определении значений Б у следует учитывать только технические средства, направленные на обеспечение пожарной безопасности находящихся (эвакуирующихся) в -м помещении здания людей при реализации у-го сценария пожара. При этом учитываются следующие мероприятия:

- применение объемно-планировочных и конструктивных решений, обеспечивающих ограничение распространения пожара в безопасную зону (при организации эвакуации в безопасную зону);

- наличие систем противодымной защиты рассматриваемого помещения и путей эвакуации;

— использование автоматических установок пожарной сигнализации (далее — АУПС) в сочетании с СОУЭ;

- наличие установок пожаротушения в помещении очага пожара.

При определении условной вероятности поражения людей, находящихся в помещении очага пожара, не допускается учитывать наличие в этом помещении АУПС и СОУЭ (за исключением случаев, когда пожар не может быть обнаружен одновременно всеми находящимися в помещении людьми), а также установок пожаротушения, срабатывание которых допускается только после эвакуации находящихся в защищаемом помещении людей (например, при наличии установок газового пожаротушения).

Индивидуальный пожарный риск в зданиях и на территории объекта

37. Индивидуальный пожарный риск (далее — индивидуальный риск) для работников объекта оценивается частотой поражения определенного

работника объекта опасными факторами пожара, взрыва в течение года.

Области, на которые разбита территория объекта, нумеруются:

г = 1, ..., I.

Работники объекта нумеруются: т = 1, ..., М.

Номер работника т однозначно определяет наименование должности работника, его категорию и другие особенности его профессиональной деятельности, необходимые для оценки пожарной безопасности. Допускается проводить расчет индивидуального риска для работника объекта, относя его к одной категории наиболее опасной профессии.

38. Величина индивидуального рискаЯт (год-1) для работника т объекта при его нахождении на территории объекта определяется по формуле:

кт =Ё Чт • Р(0>

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

г = 1

(9)

где Р( ) — величина потенциального риска в -й области территории объекта, год-1; Чгт — вероятность присутствия работника т в г-й области территории объекта. 39. Величина индивидуального риска Ят (год-1) для работника т при его нахождении в здании объекта, обусловленная опасностью пожаров в здании, определяется по формуле:

К =Ё Рг

г ' Ч ш ,

(10)

=1

где Р — величина потенциального риска в -м помещении здания, год-1;

Чгт — вероятность присутствия работника т в -м помещении;

N — число помещений в здании, сооружении и

строении.

40. Индивидуальный риск работника т объекта определяется как сумма величин индивидуального риска при нахождении работника на территории и в зданиях объекта, определенных по формулам (9) и (10).

41. Вероятность чгт определяется исходя из доли времени нахождения рассматриваемого человека в определенной области территории и/или в -м помещении здания в течение года на основе решений по организации эксплуатации и технического обслуживания оборудования и зданий объекта.

Индивидуальный и социальный пожарный риск в селитебной зоне вблизи объекта

42. Для людей, находящихся в селитебной зоне вблизи объекта, индивидуальный пожарный риск (далее — индивидуальный риск) принимается рав-

ным величинам потенциального риска в этой зоне, определенным по формуле (1).

43. Для объекта социальный пожарный риск (далее — социальный риск) принимается равным частоте возникновения событий, ведущих к гибели 10 и более человек.

Для людей, находящихся в селитебной зоне вблизи объекта, социальный риск S (год-1) определяется по формуле:

^ = ±8], (11) ]=1

где Ь — число сценариев развития пожароопасных ситуаций (пожаров), для которых выполняется условие N I > 10;

Ni — среднее число погибших людей в селитебной зоне вблизи объекта в результате реализации ]-го сценария в результате воздействия опасных факторов пожара, взрыва. 44. Величина N определяется по формуле:

N I =±8,] ■ п{, (12)

г=1

где I— количество областей, на которые разделена территория, прилегающая к объекту ( г — номер области);

8щ — условная вероятность поражения человека, находящегося в -й области, опасными факторами при реализации]-го сценария; пг — среднее число людей, находящихся в г-й области.

Приложение № 1 к пункту 15 Методики

Наименование оборудования Инициирующее аварию событие Диаметр отверстия истечения, мм Частота разгерметизации, год 1

Резервуары, емкости, сосуды и аппараты под давлением Разгерметизация с последующим истечением жидкости, газа или двухфазной среды 5 12,5 25 50 100 Полное разрушение 4,010-5 1,010-5 6,210-6 3,810-6 1,710-6 3,010-7

Насосы (центробежные) Разгерметизация с последующим истечением жидкости или двухфазной среды 5 12,5 25 50 Диаметр подводящего/ отводящего трубопровода 4,3 10-3 6,1-Ю-4 5,1-Ю-4 2,0 -10-4 1,0-Ю-4

Компрессоры (центробежные) Разгерметизация с последующим истечением газа 5 12,5 25 50 Полное разрушение 1,110-2 1,3 -10-3 3,9 -10-4 1,3 -10-4 1,0 -10-4

Резервуары для хранения ЛВЖ и горючих жидкостей (далее — ГЖ) при давлении, близком к атмосферному Разгерметизация с последующим истечением жидкости в обвалование 25 100 Полное разрушение 8,8 -10-5 1,2 -10-5 5,0 -10-6

Резервуары с плавающей крышей Пожар в кольцевом зазоре по периметру резервуара Пожар по всей поверхности резервуара 4,6 -10-3 9,3 -10-4

Резервуары со стационарной крышей

Пожар на дыхательной арматуре Пожар по всей поверхности резервуара

9,0109,010-

Сведения по частотам реализации инициирующих пожароопасные ситуации событий для некоторых типов оборудования объектов, частотам утечек из технологических трубопроводов, а также частотам возникновения пожаров в зданиях

Таблица П1.1. Частоты реализации инициирующих пожароопасные ситуации событий для некоторых типов оборудования объектов

Примечание. Здесь и далее под полным разрушением подразумевается утечка с диаметром истечения, соответствующим максимальному диаметру подводящего или отводящего трубопровода, или разрушения резервуара, емкости, сосуда или аппарата.

При определении частоты разгерметизации фильтров и кожухотрубных теплообменников указанное оборудование допускается рассматривать как аппараты под давлением.

Аппараты воздушного охлаждения допускается рассматривать как участки технологических трубопроводов, длина которых соответствует суммарной длине труб в пучках теплообменника.

Частота реализации сценариев, связанных с образованием огненного шара на емкостном оборудовании со сжиженными газами и ЛВЖ вследствие внешнего воздействия очага пожара, определяется на основе процедуры построения логических деревьев событий, приведенной в приложении № 2 к настоящей Методике. При отсутствии необходимых данных допускается принимать частоту внешнего воздействия, приводящего к реализации огненного шара, равной 2,510-5 год-1 на один аппарат (резервуар).

Таблица П1.2. Частоты утечек из технологических трубопроводов

Диаметр Частота утечек, м '-год 1

трубопровода, мм малая (диаметр отверстия 12,5 мм) средняя (диаметр отверстия 25 мм) значительная (диаметр отверстия 50 мм) большая (диаметр отверстия 100 мм) разрыв

50 5,7-10-6 2,4-10-6 - - 1,410-6

100 2,8-10-6 1,210-6 4,7-10-7 - 2,4-10-7

150 1,910-6 7,9-10-7 3,110-7 1,310-7 2,5-10-8

250 1,110-6 4,7-10-7 1,910-7 7,8-10-8 1,5-10-8

600 4,7-10-7 2,010-7 7,9-10-8 3,4-10-8 6,4-10-9

900 3,110-7 1,310-7 5,2-10-8 2,2-10-8 4,2-10-9

1200 2,4-10-7 9,8-10-8 3,910-8 1,710-8 3,2-10-9

Таблица П1.3. Частоты возникновения пожаров в зданиях

Наименование объекта Частота возникновения пожара, м 2тод 1

Электростанции 2,2-10-5

Склады химической продукции 1,210-5

Склады многономенклатурной продукции 9,0-10-5

Инструментально-механические цеха 0,6-10-5

Цеха по обработке синтетического каучука и искусственных волокон 2,7-10-5

Литейные и плавильные цеха 1,910-5

Цеха по переработке мясных и рыбных продуктов 1,510-5

Цеха горячей прокатки металлов 1,910-5

Текстильные производства 1,510-5

Приложение № 2 к пункту 17 Методики

Процедура построения логического дерева событий

Настоящий метод позволяет определить развитие возможных пожароопасных ситуаций и пожаров, возникающих вследствие реализации инициирующих пожароопасную ситуацию событий. Анализ дерева событий представляет собой "осмысливаемый вперед" процесс, т. е. процесс, при котором исследование развития пожароопасной ситуации начинается с исходного события с рассмотрением цепи последующих событий, приводящих к возникновению пожара.

При построении логических деревьев событий учитываются следующие положения:

- выбирается пожароопасная ситуация, которая может повлечь за собой возникновение аварии с пожаром с дальнейшим его развитием;

- развитие пожароопасной ситуации и пожара должно рассматриваться постадийно с учетом места их возникновения на объекте оценки риска, уровня потенциальной опасности каждой стадии и возможности ее локализации и ликвидации. На логическом дереве событий стадии развития пожароопасной ситуации и пожара могут отображаться в виде прямоугольников или других геометрических фигур с краткими названиями этих стадий;

— переход с рассматриваемой стадии на новую определяется возможностью либо локализации пожароопасной ситуации или пожара на рассматриваемой стадии, либо развития пожара, связанного с вовлечением расположенных рядом технологического оборудования, помещений, зданий и т. п. в результате влияния на них опасных факторов пожара, возникших на рассматриваемой стадии. Условные вероятности переходов пожароопасной ситуации или пожара со стадии на стадию одной ветви или с ветви на ветвь определяются исходя из свойств вовлеченных в пожароопасную ситуацию или пожар горючих веществ (физико-химические и пожароопасные свойства, параметры, при которых вещества обращаются в технологическом процессе, и т. д.), условной вероятности реализации различных метеорологических условий (температура окружающей среды, скорость и направление ветра и т. д.), наличия и условной вероятности эффективного срабатывания систем противоаварийной и противопожарной защиты, величин зон поражения опасными факторами пожара, объемно-планировочных решений и конструктивных особенностей оборудо-

вания и зданий производственного объекта. При этом каждой стадии иногда присваивается идентификационный номер, отражающий последовательность переходов со стадии на стадию;

- переход со стадии на стадию, как правило, отображается в виде соединяющих линий со стрелками, указывающими направления развития пожароопасной ситуации и последующего пожара. При этом соединения стадий должны отражать вероятностный характер события с выполнением условия "или" или "да", "нет";

- для каждой стадии рекомендуется устанавливать уровень ее опасности, характеризующийся возможностью перехода пожароопасной ситуации или пожара на соседние с пожароопасным участки объекта;

- при повторении одним из путей части другого пути развития для упрощения построения логического дерева событий иногда вводят обозначение, представляющее собой соответствующую линию со стрелкой и надпись "на стадию (код последующей стадии)".

При анализе логических деревьев событий руководствуются следующими положениями:

- возможностью предотвращения дальнейшего развития пожароопасной ситуации и пожара, зависит от количества стадий и времени их протекания (т. е. от длины пути развития пожароопасной ситуации и пожара). Это обусловливается большей вероятностью успешной ликвидации пожароопасной ситуации и пожара, связанной с увеличением времени на локализацию пожароопасной ситуации и пожара и количеством стадий, на которых эта локализация возможна;

- наличием у стадии разветвлений по принципу "или", одно из которых приходит на стадию локализации пожароопасной ситуации или пожара (например, тушение очага пожара, своевременное обнаружение утечки и ликвидация пролива, перекрытие запорной арматуры и т. п.), свидетельствует о возможности предотвращения дальнейшего развития пожароопасной ситуации и пожара по этому пути.

Значение частоты реализации отдельной стадии дерева событий или сценария определяется путем умножения частоты возникновения инициирующего события на условную вероятность развития по конкретному сценарию.

В таблице П2.1 приводятся рекомендуемые условные вероятности мгновенного воспламене-

Таблица П2.1. Условная вероятность мгновенного воспламенения и воспламенения с задержкой

Массовый расход истечения, кг/с Условная вероятность мгновенного воспламенения Условная вероятность последующего воспламенения при отсутствии мгновенного воспламенения Условная вероятность сгорания с образованием избыточного давления при образовании горючего газопаровоздушного облака и его последующем воспламенении

Диапазон Номинальное среднее газ двухфазная смесь жидкость газ двухфазная смесь жидкость газ двухфазная смесь жидкость

значение

Малый 0,5 0,005 0,005 0,005 0,005 0,005 0,005 0,080 0,080 0,050

(< 1)

Средний 10 0,035 0,035 0,015 0,036 0,036 0,015 0,240 0,240 0,050

(1-50)

Большой 100 0,150 0,150 0,040 0,176 0,176 0,042 0,600 0,600 0,050

(>50)

Полный Не опре- 0,200 0,200 0,050 0,240 0,240 0,061 0,600 0,600 0,100

разрыв делено

ния и воспламенения с задержкой по времени в зависимости от массового расхода и скорости истечения горючих газа, двухфазной среды или жидкости при разгерметизации типового технологического оборудования на объекте.

Для легковоспламеняющихся жидкостей с температурой вспышки менее +28 °С должны использоваться условные вероятности воспламенения как для двухфазной среды.

При определении условных вероятностей реализации различных сценариев должны приниматься во внимание свойства поступающих в окружающее пространство горючих веществ, условные вероятности реализации различных метеорологических условий (температура окружающей среды, скорость и направление ветра и т. д.), наличие и условные вероятности эффективного срабатывания систем про-тивоаварийной и противопожарной защиты и т. д.

Приложение № 3 к пункту 18 Методики

Методы оценки опасных факторов пожара

1. В настоящем приложении представлены методики оценки опасных факторов, реализующихся при различных сценариях пожаров, взрывов на территории объекта и в селитебной зоне вблизи объекта.

Для оценки опасных факторов, реализующихся при пожарах в зданиях (помещениях) объекта, используются методы, регламентированные приложением № 5 к настоящей Методике.

I. Истечение жидкости и газа Истечение жидкости

2. Рассматривается резервуар, находящийся в обваловании (рис. П3.1).

Вводятся следующие допущения:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- истечение через отверстие однофазное;

- резервуар имеет постоянную площадь сечения по высоте;

- диаметр резервуара много больше размеров отверстия;

- размеры отверстия много больше толщины стенки;

— поверхность жидкости внутри резервуара горизонтальна;

- температура жидкости остается постоянной в течение времени истечения. Массовый расход жидкости О (кг/с) через отверстие во времени t (с) определяется по формуле:

2 А 2

О(г) = О0 - р^ Ам t, (П3.1)

Ак

А0 Но! Н

ь

Рис. П3.1. Схема для расчета истечения жидкости из отверстия в резервуаре

где О0 — массовый расход в начальный момент времени, кг/с, определяемый по формуле:

О 0 = № Ако/V2 Е ( к 0 - кко1 ), (П3.2)

где р — плотность жидкости, кг/м3;

Е—ускорение свободного падения (9,81 м/с2); ц — коэффициент истечения; Ако1 — площадь отверстия, м2; кко/ — высота расположения отверстия, м; АК — площадь сечения резервуара, м2; к0 — начальная высота столба жидкости в резервуаре, м.

Высота столба жидкости в резервуаре к (м) в зависимости от времени t определяется по формуле:

ЕЦ 2 А1/(2 2 Л1

к( t) = к 0--— t +

РАЯ

(П3.3)

Условие перелива струи жидкости (при к0 >кко1) через обвалование определяется по формуле:

кко/ ^ Н + Ь/ц ,

(П3.4)

где Н — высота обвалования, м;

Ь — расстояние от стенки резервуара до обвалования, м.

Количество жидкости т (кг), перелившейся через обвалование за полное время истечения, определяется по формуле:

т =

роиг 2 а 2

I О(t= О0tpoUr - рЕЦ ко/ 12роиГ, (П3.5)

А К

где tpour — время, в течение которого жидкость переливается через обвалование, с (т. е. время, в течение которого выполняется условие (П3.4)). Величина ^оиг определяется по формуле:

- Ь + Л/ Ь2 - 4 ас

(П3.6)

где а, Ь, с — параметры, которые определяются по формулам:

а = ец2 А2Ы1 (2АК), м/с2; (П3.7)

О

Ь = --

Р А1

, м/с;

с = к0 - Н--, м.

ц

(П3.9)

В случае, если жидкость в резервуаре находится под избыточным давлением АР (Па), величина мгновенного массового расхода О0 (кг/с) определяется по формуле:

О0 = ЦРА ко/V2 АР/р + 2е (к0 - кко/). (П3.10)

Для определения количества жидкости, перелившейся через обвалование, и времени перелива следует проинтегрировать соответствующую систему уравнений, где величина АР может быть переменной.

Истечение сжатого газа

3. Массовая скорость истечения сжатого газа из резервуара определяется по формулам: • докритическое истечение:

■.у/(у-1)

при

РV

2

у + 1

(П3.11)

О = Ако/ Ц

Рг Рг

Р

у - 1Л Ру

2 у

X <¡1 -

(у-1)/ у

п!2

(П3.12)

• сверхкритическое истечение:

у/(у-1)

при

Ру

<

2

у + 1

О = Ако/ Ц

Ру Ру у

у + 1

(у + 1)/(у-1)'

12

(П3.13) (П3.14)

где О — массовый расход, кг/с; Ра — атмосферное давление, Па; Ру — давление газа в резервуаре, Па; у — показатель адиабаты газа; Ако/ — площадь отверстия, м2; ц — коэффициент истечения (при отсутствии данных допускается принимать равным 0,8); Ру — плотность газа в резервуаре при давлении Ру, кг/м3.

Истечение сжиженного газа из отверстия в резервуаре

4. Массовая скорость истечения паровой фазы Оу (кг/с) определяется по формуле:

Оу = Ц Ако/

ЯТ„

РсМ ' Рс(0,167РК5 + 0,534РК1'95), (П3.15)

(П3.8) где ц — коэффициент истечения;

Ако/ — площадь отверстия, м2

ко/

Рс—критическое давление сжиженного газа, Па; М — молярная масса, кг/моль; К — универсальная газовая постоянная, равная 8,31 Дж/ (К-моль);

Тс — критическая температура сжиженного газа, К;

РК = Ру/Рс — безразмерное давление сжиженного газа в резервуаре;

Ру — давление сжиженного газа в резервуаре, Па.

а

2

Массовую скорость истечения паровой фазы можно также определять по формулам (П3.11) -(П3.14).

Массовая скорость истечения жидкой фазы Оь (кг/с) определяется по формуле:

= °у

рА Рг

Р„

1,22 Г

312

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(П3.16)

к

где р£ — плотность жидкой фазы, кг/м3; рг — плотность паровой фазы, кг/м3; Тк = Т/Тс — безразмерная температура сжиженного газа;

Т — температура сжиженного газа в резервуаре, К.

Растекание жидкости при квазимгновенном разрушении резервуара

5. Под квазимгновенным разрушением резервуара следует понимать внезапный (в течение секунд или долей секунд) распад резервуара на приблизительно равные по размеру части. При такой пожароопасной ситуации часть хранимой в резервуаре жидкости может перелиться через обвалование.

Ниже представлена математическая модель, позволяющая оценить долю жидкости, перелившейся через обвалование при квазимгновенном разрушении резервуара. Приняты следующие допущения:

- рассматривается плоская одномерная задача;

- время разрушения резервуара много меньше характерного времени движения гидродинамической волны до обвалования;

— жидкость является невязкой;

- трение жидкости о поверхность земли отсутствует;

- поверхность земли является плоской, горизонтальной.

Система уравнений, описывающих движение жидкости, имеет вид:

+ д [(к - ко >] = 0;

ды

~дг

д_ дх

Г^ + | = 0,

(П3.17)

где к — высота столба жидкости над фиксированным уровнем, м;

кО — высота подстилающей поверхности над фиксированным уровнем, м; ы — средняя по высоте скорость движения столба жидкости, м/с;

х — координата вдоль направления движения жидкости, м; t — время, с;

g — ускорение свободного падения (9,81 м/с2).

Граничные условия с учетом геометрии задачи (рис. П3.2) имеют вид:

дк

дх

= 0;

х = 0 Ы1х = 0 = 0;

дк дх

= 0;

с = Ь

х = Ь

= \g12 (к - а)3/2/к ,

0, если к < а,

(П3.18)

(П3.19) (П3.20)

(П3.21)

где а — высота обвалования.

Массовая доля жидкости 0 (%), перелившейся через обвалование к моменту времени Т, определяется по формуле:

| ыы (кы - а

0 = 100

к 0 К

(П3.22)

где ым — средняя по высоте скорость движения столба жидкости при х = Ь, м/с; кя — высота столба жидкости при х = Ь, м; к0 — начальная высота столба жидкости в резервуаре, м;

К — ширина резервуара, м. График расчетной и экспериментальной зависимостей массовой доли перелившейся через обвалование жидкости 0 от параметра а/к0 представлен на рис. П3.3.

Рис. П3.2. Типичная картина движения жидкости в обваловании при квазимгновенном разрушении резервуара:

---уровень начального столба жидкости;-уровень

жидкости в промежуточный момент времени (результаты расчета)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 а/к0

Рис. П3.3. Зависимость доли перелившейся через обвалование жидкости 2 от параметра а/к0: 1 — расчет; 2 — эксперимент

ы

0

II. Количественная оценка массы горючих веществ, поступающих в окружающее пространство в результате возникновения пожароопасных ситуаций

6. Количество поступивших в окружающее пространство горючих веществ, которые могут образовать взрывоопасные газопаровоздушные смеси или проливы горючих сжиженных газов, легковоспламеняющихся и горючих жидкостей на подстилающей поверхности, определяется исходя из следующих предпосылок:

а) происходит расчетная авария одного из резервуаров (аппаратов) или трубопровода;

б) все содержимое резервуара (аппарата, трубопровода) или часть продукта (при соответствующем обосновании) поступает в окружающее пространство. При этом в случае наличия на объекте нескольких аппаратов (резервуаров) расчет следует проводить для каждого резервуара (аппарата);

в) при разгерметизации резервуара (аппарата) происходит одновременно утечка веществ из трубопроводов, питающих резервуар по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов. Расчетное время отключения трубопроводов определяется в каждом конкретном случае исходя из реальной обстановки и должно быть минимальным с учетом паспортных данных на запорные устройства и их надежности, характера технологического процесса и вида расчетной аварии.

При отсутствии данных допускается расчетное время отключения технологических трубопроводов принимать равным:

времени срабатывания системы автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов;

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении;

г) в качестве расчетной температуры при пожароопасной ситуации с наземно расположенным оборудованием допускается принимать максимально возможную температуру воздуха в соответствующей климатической зоне, а при пожароопасной ситуации с подземно расположенным оборудованием — температуру грунта, условно равную максимальной среднемесячной температуре окружающего воздуха в наиболее теплое время года;

д) длительность испарения жидкости с поверхности пролива принимается равной времени ее полного испарения, но не более 3600 с. Для проливов

жидкости до 20 кг время испарения допускается принимать равным 900 с.

Допускается использование показателей пожа-ровзрывоопасности для смесей веществ и материалов по наиболее опасному компоненту.

Разгерметизация надземного резервуара

7. Масса жидкости, поступившей в окружающее пространство при разгерметизации резервуара, определяется по формуле:

та =РьУК , (П3.23)

где та — масса жидкости, кг;

РЬ — плотность жидкости, кг/м3;

УК — объем жидкости в резервуаре, м3.

Масса жидкости, поступившей самотеком при полном разрушении наземного или надземного трубопровода, выходящего из резервуара, определяется по формулам:

та = ОЬТ + -4 й2р^¿Ьг^рь, (П3.24)

где

Оь = ц-4 ^РА/2р ь АРк;

АРк = кь Р ьЕ>

(П3.25)

(П3.26)

где ОЬ — начальный расход жидкости, истекающей из резервуара через разгерметизированный трубопровод, кг/с; ц — коэффициент истечения; х — расчетное время отключения трубопроводов, связанных с местом разгерметизации, с; йр — диаметр трубопроводов, м (в случае различных диаметров трубопроводов, связанных с местом разгерметизации, объем выходящей жидкости рассчитывается для каждого трубопровода в отдельности);

Ь1 — длина г-го участка трубопровода от запорного устройства до места разгерметизации, м; п — число участков трубопроводов, связанных с местом разгерметизации; аРК — напор столба жидкости в резервуаре, Па; кЬ — высота столба жидкости (от верхнего уровня жидкости в резервуаре до уровня места разгерметизации), м;

Е—ускорение свободного падения, м/с2 (е = 9,81). При проливе на неограниченную поверхность площадь пролива Гпр (м2) жидкости определяется по формуле:

(П3.27)

где^Р — коэффициент разлития, м-1 (при отсутствии

-1

данных допускается принимать равным 20 м при проливе на грунтовое покрытие, 150 м-1 при проливе на бетонное или асфальтовое покрытие);

Уж — объем жидкости, поступившей в окружающее пространство при разгерметизации резервуара, м3.

Масса паров ЛВЖ, выходящих через дыхательную арматуру

8. В случае наполнения резервуара масса паров определяется по формуле:

ту = Р уУяР»1Р0, (П3.28)

М

(П3.29)

где

Ру =

У0(1 + 0,00367^ 0)

где ту— масса выходящих паров ЛВЖ, кг; ру — плотность паров ЛВЖ, кг/м3; Рн — давление насыщенных паров ЛВЖ при расчетной температуре, кПа, определяемое по справочным данным;

Р0 — атмосферное давление, кПа (допускается принимать равным 101);

УЯ — геометрический объем паровоздушного пространства резервуара (при отсутствии данных допускается принимать равным геометрическому объему резервуара), м3;

М — молярная масса паров ЛВЖ, кг/кмоль; У0 — мольный объем, равный 22,413 м3/кмоль; t0 — расчетная температура, °С.

Масса паров ЛВЖ при испарении со свободной поверхности в резервуаре

9. Масса паров ЛВЖ при испарении со свободной поверхности в резервуаре определяется по формуле:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ту=Оу Те , (П3.30)

где ОУ — расход паров ЛВЖ, кг/с, который определяется по формуле:

Оу = РкЩ (П3.31)

где те—время поступления паров из резервуара, с; Рк — максимальная площадь поверхности испарения ЛВЖ в резервуаре, м2; Ж — интенсивность испарения ЛВЖ, кг/(м2-с) (определяется в соответствии с разделом VIII настоящего приложения).

III. Максимальные размеры взрывоопасных зон

10. Радиус ЯНКПР (м) и высота Zнкпp (м) зоны, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (далее — НКПР), при неподвижной воздушной среде определяются по формулам:

• для горючих газов (далее — ГГ)

Я

НКПР

= 7,

тг

Р гс

г ^ НКПР

0,33

(П3.32)

2нкпр = °>26

тг

Р гС

г ^ НКПР

0,33

(П3.33)

где тг — масса ГГ, поступившего в открытое пространство при пожароопасной ситуации, кг; рг — плотность ГГ при расчетной температуре и атмосферном давлении, кг/м3; СНКПР — нижний концентрационный предел распространения пламени ГГ, % об.; • для паров ЛВЖ

ЯНКПР = 3,2

2 НКПР = 0,12

' т ^0,5 ( Рн ^°>8 ( ' тп

3600) V С НКПР ) V .Р пРн

( т ) °'5 Г Рн ^ °'8 '( тп

[3600) V С НКПР ) \Р пР

0,33

; (П3.34)

, (П3.35)

где тп — масса паров ЛВЖ, поступивших в открытое пространство за время испарения по п. 6 настоящего приложения, кг;

рп — плотность паров ЛВЖ при расчетной температуре, кПа;

Рн — давление насыщенных паров при расчетной температуре, кПа;

Т — продолжительность поступления паров в открытое пространство, с; СНКПР — нижний концентрационный предел распространения пламени паров, % об. За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры пролива.

При необходимости может быть учтено влияние различных метеорологических условий на размеры взрывоопасных зон.

IV. Определение параметров волны давления при сгорании газо-, паро- или пылевоздушного облака

11. Методика количественной оценки параметров воздушных волн давления при сгорании газо-, паро- или пылевоздушного облака (далее — облако) распространяется на случаи выброса горючих газов, паров или пыли в атмосферу на производственных объектах.

Основными структурными элементами алгоритма расчетов являются:

— определение ожидаемого режима сгорания облака;

— расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления для различных режимов;

- определение дополнительных характеристик взрывной нагрузки;

— оценка поражающего воздействия. Исходными данными для расчета параметров

волн давления при сгорании облака являются:

вид горючего вещества, содержащегося в облаке;

концентрация горючего вещества в смеси Сг; стехиометрическая концентрация горючего вещества с воздухом Сст;

масса горючего вещества, содержащегося в облаке Мт, с концентрацией между нижним и верхним концентрационным пределом распространения пламени. Допускается величину Мт принимать равной массе горючего вещества, содержащегося в облаке, с учетом коэффициента Z участия горючего вещества во взрыве. При отсутствии данных коэффициент Z может быть принят равным 0,1. При струйном стационарном истечении горючего газа величину Мт следует рассчитывать с учетом стационарного распределения концентраций горючего газа в струе;

удельная теплота сгорания горючего вещества

Еуд';

скорость звука в воздухе С0 (обычно принимается равной 340 м/с);

информация о степени загроможденности окружающего пространства;

эффективный энергозапас горючей смеси Е, который определяется по формуле:

Таблица П3.1

Е =

МтЕ

уд,

МтЕ

Сс

т уд

с.

с < С

^ ^ — ^ с

с, > Сс

(П3.36)

При расчете параметров сгорания облака, расположенного на поверхности земли, величина эффективного энергозапаса удваивается.

Определение ожидаемого режима сгорания облака

12. Ожидаемый режим сгорания облака зависит от типа горючего вещества и степени загроможден-ности окружающего пространства.

Классификация горючих веществ по степени чувствительности

13. Вещества, способные к образованию горючих смесей с воздухом, по степени своей чувствительности к возбуждению взрывных процессов разделены на четыре класса:

класс 1 — особо чувствительные вещества (размер детонационной ячейки менее 2 см);

класс 2 — чувствительные вещества (размер детонационной ячейки лежит в пределах от 2 до 10 см);

класс 3 — средне чувствительные вещества (размер детонационной ячейки лежит в пределах от 10 до 40 см);

класс 4 — слабо чувствительные вещества (размер детонационной ячейки больше 40 см).

Класс 1 Класс 2 Класс 3

Ацетилен Акрило- Ацетальдегид

Винил- нитрил Ацетон

ацетилен Акролеин Бензин

Водород Бутан Винилацетат

Гидразин Бутилен Винилхлорид

Изопропил- Бутадиен Гексан

нитрат 1,3-Пента- Изооктан

Метил- диен Метиламин

ацетилен Пропан Метилацетат

Нитрометан Пропилен Метилбутилке-

Окись Сероуглерод тон

пропилена Окись Этан Метилпропил-

Этилен кетон

этилена Эфиры: Метилэтил-

Этилнитрат диметиловый кетон

дивиниловый Октан

метилбути- Пиридин

ловый Сероводород

Широкая Спирты:

фракция метиловый

легких угле- этиловый

водородов пропиловый амиловый изобутиловый изопропи-ловый Циклогексан Этилформиат Этилхлорид

Класс 4

Бензол

Декан

о-Дихлор-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

бензол

Додекан

Метан

Метил-

бензол

Метил-

меркаптан

Метил-

хлорид

Окись

углерода

Этилен-

бензол

Классификация наиболее распространенных в промышленном производстве горючих веществ приведена в таблице П3.1. В случае, если вещество не внесено в классификацию, его следует классифицировать по аналогии с имеющимися в списке веществами, а при отсутствии информации о свойствах данного вещества его следует отнести к классу 1, т. е. рассматривать наиболее опасный случай.

14. При оценке масштабов поражения волнами давления должно учитываться различие химических соединений по теплоте сгорания, используемой для расчета полного запаса энерговыделения. Для типичных углеводородов принимается в расчет значение удельной теплоты сгорания Еуд0 = 44 МДж/кг. Для иных горючих веществ в расчетах используется удельное энерговыделение Еуд = РЕуд0. Здесь р — корректировочный параметр. Для условно выделенных классов горючих веществ величины параметра р представлены в таблице П3.2.

Классификация окружающего пространства по степени загроможденности

15. Характером загроможденности окружающего пространства в значительной степени определяется скорость распространения пламени при сгора-

нии облака и, следовательно, параметры волны давления. Характеристики загроможденности окружающего пространства разделяются на четыре класса:

класс I — наличие длинных труб, полостей, каверн, заполненных горючей смесью, при сгорании которой возможно ожидать формирование турбулентных струй продуктов сгорания, имеющих размеры не менее трех размеров детонационной ячейки данной смеси. Если размер детонационной ячейки для данной смеси не известен, то минимальный характерный размер струй принимается рав-

ным 5 см для веществ класса 1, 20 см для веществ класса 2,50 см для веществ класса 3 и 150 см для веществ класса 4;

класс II — сильно загроможденное пространство: наличие полузамкнутых объемов, высокая плотность размещения технологического оборудования, лес, большое количество повторяющихся препятствий;

класс III — средне загроможденное пространство: отдельно стоящие технологические установки, резервуарный парк;

класс IV — слабое загромождение и свободное пространство.

Классификация режимов сгорания облака

16. Для оценки воздействия сгорания облака возможные режимы сгорания разделяются на шесть классов по диапазонам скоростей их распространения следующим образом:

класс 1 — детонация или горение со скоростью фронта пламени 500 м/с и более;

класс 2 — дефлаграция, скорость фронта пламени 300-500 м/с;

класс 3 — дефлаграция, скорость фронта пламени 200-300 м/с;

класс 4 — дефлаграция, скорость фронта пламени 150-200 м/с;

класс 5 — дефлаграция, скорость фронта пламени определяется по формуле:

u=k1 М1/6, (П3.37)

где k1 — константа, равная 43;

М — масса горючего вещества, содержащегося в облаке, кг;

класс 6 — дефлаграция, скорость фронта пламени определяется по формуле:

u=k2 М1/6, (П3.38)

где k2 — константа, равная 26;

М — масса горючего вещества, содержащегося в облаке, кг.

17. Ожидаемый режим сгорания облака определяется с помощью таблицы П3.3, в зависимости от класса горючего вещества и класса загроможденно-сти окружающего пространства.

Таблица П3.3

Таблица П3.2

Классы „ горючих веществ " Классы „ горючих веществ "

Класс 1 Класс 3

Ацетилен 1,1 Кумол 0,84

Метилацетилен 1,05 Метиламин 0,70

Винилацетилен 1,03 Спирты:

Окись этилена 0,62 Метиловый 0,45

Гидразин 0,44 Этиловый 0,61

Изопропилнитрат 0,41 Пропиловый 0,69

Этилнитрат 0,30 Амиловый 0,79

Водород 2,73 Циклогексан 1

Нитрометан 0,25 Ацетальальдегид 0,56

Класс 2 Винилацетат 0,51

Этилен 1,07 Бензин 1

Диэтилэфир 0,77 Гексан 1

Дивинилэфир 0,77 Изооктан 1

Окись пропилена 0,7 Пиридин 0,77

Акролеин 0,62 Циклопропан 1

Сероуглерод 0,32 Этиламин 0,80

Бутан 1 Класс 4

Бутилен 1

Бутадиен 1 Метан 1,14

1,3-Пентадиен 1 Трихлорэтан 0,15

Этан 1 Метилхлорид 0,12

Диметилэфир 0,66 Бензол 1

Диизопропиловый 0,82 эфир Декан 1

ШФЛУ 1 Додекан 1

Пропилен 1 Метилбензол 1

Пропан 1 Метилмеркаптан 0,53

Класс 3 Окись углерода 0,23

Винилхлорид 0,42 Дихлорэтан 0,24

Сероводород 0,34 Дихлорбензол 0,42

Ацетон 0,65 Трихлорэтан 0,14

Класс горючего Класс загроможденности окружающего пространства

вещества I II III IV

1 1 1 2 3

2 1 2 3 4

3 2 3 4 5

4 3 4 5 6

При определении максимальной скорости фронта пламени для режимов сгорания 2-4 классов дополнительно рассчитывается видимая скорость фронта пламени по соотношению (П3.37). В том случае, если полученная величина больше максимальной скорости, соответствующей данному классу, она принимается за верхнюю границу диапазона ожидаемых скоростей сгорания облака.

Расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления

18. Параметры воздушных волн давления (избыточное давление АР и импульс фазы сжатия I +) в зависимости от расстояния от центра облака рассчитываются исходя из ожидаемого режима сгорания облака.

Класс 1 режима сгорания облака

19. Рассчитывается соответствующее безразмерное расстояние по формуле:

Кх=К/(Е/Р0)1/3,

(П3.39)

где Я — расстояние от центра облака, м;

Р0 — атмосферное давление, Па;

Е — эффективный энергозапас смеси, Дж.

Величины безразмерного давления Рх и импульса фазы сжатия 1Х определяются по формулам (для газопаровоздушных смесей):

1п(Рх) =-1,124- 1,66 (1п(Кх)) +

+ 0,260(1п(Кх))2; (П3.40)

1п(1х) = -3,4217 - 0,898(1п(Кх)) -

-0,0096(1п(Кх))2. (П3.41)

Формулы (П3.40), (П3.41) справедливы для значений Ях более Як = 0,2. В случае, если Ях< Як, то Рхравно 18, ав формулу (П3.41) вместоЯхподставляется величина Ях = 0,14.

Размерные величины избыточного давления и импульса фазы сжатия определяются по формулам:

АР = РхР„; (П3.42)

I += 1хР 02/3 Е13 /С 0. (П3.43)

Классы 2-6 режима сгорания облака

20. Рассчитывается безразмерное расстояние Ях от центра облака по формуле (П3.39).

Рассчитываются величины безразмерного давления Рх1 и импульса фазы сжатия 1х1 по формулам:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

Рх1 =

С 2

V с 0 У

ст -1

0,83 Я.

0,14

л

(

1Х1 = Г(1 - 0,4Ж)

0,06 0,01

Я

0,0025

х У Л

Я

Я 2

Я

3

(П3.44)

(П3.45)

Ж =

с

ст -1

(П3.46)

где ст — степень расширения продуктов сгорания (для газопаровоздушных смесей допускается принимать равной 7, для пылевоздушных смесей — 4);

и — видимая скорость фронта пламени, м/с. В случае дефлагарации пылевоздушного облака величина эффективного энергозапаса умножается на коэффициент (ст - 1)/ст.

Формулы (П3.44), (П3.45) справедливы для значений Ях, больших величины Якр1 = 0,34, в случае, если Ях < Якр1, в формулы (П3.44), (П3.45) вместо Ях подставляется величина Якр1.

Размерные величины избыточного давления и импульса фазы сжатия определяются по формулам (П3.42), (П3.43). При этом в формулы (П3.42), (П3.43) вместо Рх и 1Х подставляются величины Рх1 и 41.

V. Параметры волны давления при взрыве резервуара с перегретой жидкостью или сжиженным газом при воздействии на него очага пожара

21. Избыточное давление АР и импульс I + в волне давления, образующиеся при взрыве резервуара с перегретой ЛВЖ, ГЖ или сжиженным углеводородным газом (далее — СУГ) в очаге пожара, определяются по формулам:

АР = Рп

0,8-

т

.0,33 пр

+ 3-

т

0,66 пр

т

I+ = 123

0,66 т0р

тпр =

(Е_ * Л

V 4,52у

• 10-

(П3.47)

(П3.48) (П3.49)

У

где г — расстояние от центра резервуара, м;

Е* — эффективная энергия взрыва, рассчитываемая по формуле:

Е* = кСрт (Т - Ть), (П3.50)

к — доля энергии волны давления (допускается принимать равной 0,5);

ср — удельная теплоемкость жидкости (допускается принимать равной 2000 Дж/(кг К); т — масса ЛВЖ, ГЖ или СУГ, содержащаяся в резервуаре, кг;

Т — температура жидкой фазы, К; ТЬ — нормальная температура кипения, К. При наличии в резервуаре предохранительного устройства (клапана или мембраны) величина Т определяется по формуле:

и

г

г

6

т =

B

A - lgP,

- CA + 273,15, (П3.51)

val

где Pval — давление срабатывания предохранительного устройства;

А, В, СА — константы уравнения зависимости давления насыщенных паров жидкости от температуры (константы Антуана), определяемые по справочной литературе. Единицы измерения Pval (кПа, мм рт. ст., атм) должны соответствовать используемым константам Антуана.

VI. Интенсивность теплового излучения

22. В настоящем разделе приводятся методы расчета интенсивности теплового излучения от пожара пролива на поверхность, огненного шара, а также радиуса воздействия продуктов сгорания паровоздушного облака в случае пожара-вспышки.

Пожар пролива

23. Интенсивность теплового излучения q (кВт/м2) для пожара пролива ЛВЖ, ГЖ или СУГ определяется по формуле:

q = EfFq т, (П3.52)

где Ef — среднеповерхностная интенсивность теплового излучения пламени, кВт/м2; Eq — угловой коэффициент облученности; т — коэффициент пропускания атмосферы. Значение Ef принимается на основе имеющихся экспериментальных данных или по таблице П3.4. При отсутствии данных для нефтепродуктов допускается принимать величину Ef равной 40 кВт/м2.

Угловой коэффициент облученности Fq определяется по формуле:

Fq =

fl

h >

(П3.53)

где , — факторы облученности для вертикальной и горизонтальной площадок соответственно, которые определяются по формулам:

Fv =--

S arctg

i

- s jarctg

s -1

л

A

V

■ arctg

A 2 - 1

Fh =-

B - 1/ S

Vb 2 - 1

(A + 1)( S - 1)

(A - 1)(S + 1)

(

IS + 1

j

(П3.54)

arctg

A -1/ S

Va 2 -1

arctg

(B +1)( S - 1) (B - 1)(S + 1)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Y

л

(A + 1)(S - 1) (A - 1)(S + 1)

A = (h2 + S2 + 1V(2 S);

B =

1 + S2

2S S = 2r/d; h = 2 H/d,

(П3.55)

(П3.56) (П3.57)

(П3.58) (П3.59)

где г — расстояние от геометрического центра пролива до облучаемого объекта, м; й — эффективный диаметр пролива, м; Н — высота пламени, м.

Эффективный диаметр пролива й (м) рассчитывается по формуле:

й = V 4^/ п, (П3.60)

2

где г — площадь пролива, м .

Высота пламени Н(м) определяется по формуле:

Н = 42й[т'/ (р )]0,61, (П3.61)

где т' — удельная массовая скорость выгорания топлива, кг/(м2-с);

Ра — плотность окружающего воздуха, кг/м3; g — ускорение свободного падения Коэффициент пропускания атмосферы т для пожара пролива определяется по формуле:

т = exp[-7 • 10 -4(r - 0,5d)].

(П3.62)

При необходимости может быть учтено влияние ветра на форму пламени.

Таблица П3.4. Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив

h

Топливо Ef, кВт/м2, при d, м m',

10 20 30 40 50 кг/(м2-с)

Сжиженный природный газ (далее — СПГ) 220 180 150 130 120 0,08

СУГ (пропан-бутан) 80 63 50 43 40 0,10

Бензин 60 47 35 28 25 0,06

Дизельное топливо 40 32 25 21 18 0,04

Нефть 25 19 15 12 10 0,04

Примечание. Для диаметров очага менее 10 м или более 50 м следует принимать такой же, как и для очагов диаметром 10 и 50 м соответственно.

Огненный шар

24. Интенсивность теплового излучения д (кВт/м2) для огненного шара определяется по формуле (П3.52).

ВеличинаЕ^ определяется на основе имеющихся экспериментальных данных. Допускается принимать Е* равной 450 кВт/м2.

Значение ¥ определяется по формуле:

¥ =

Н/Б5 + 0,5

4[(Н/Б5 + 0,5)2 + (гр8 )

2 т1,5

(П3.63)

где Н — высота центра огненного шара, м;

— эффективный диаметр огненного шара, м; г — расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром огненного шара, м. Эффективный диаметр огненного шара (м) определяется по формуле:

0,327

= 5,33т0

(П3.64)

где т — масса продукта, поступившего в окружающее пространство, кг.

Величину Н допускается принимать равной /2.

Время существования огненного шара ts (с) определяется по формуле:

0,303

ts = 0,92т"

(П3.65)

Коэффициент пропускания атмосферы х для огненного шара рассчитывается по формуле:

х = ехр[-7,0 • 10-4(л/г2 + Н2 -^/2)]. (П3.66)

VII. Определение радиуса воздействия продуктов сгорания паровоздушного облака в случае пожара-вспышки

25. В случае образования паровоздушной смеси в незагроможденном технологическим оборудованием пространстве и ее зажигании относительно слабым источником (например, искрой) сгорание этой смеси происходит, как правило, с небольшими видимыми скоростями пламени. При этом амплитуды волны давления малы и могут не приниматься во внимание при оценке поражающего воздействия. В этом случае реализуется так называемый пожар-вспышка, при котором зона поражения высокотемпературными продуктами сгорания паровоздушной смеси практически совпадает с максимальным размером облака продуктов сгорания (т. е. поражаются в основном объекты, попадающие в это облако). Радиус воздействия высокотемпературных продуктов сгорания паровоздушного облака при пожаре-вспышке Я¥ определяется формулой:

где ЯНКПР — горизонтальный размер взрывоопасной зоны, определяемый по п. 10 настоящего приложения.

VIII. Испарение жидкости и СУГ из пролива

26. Интенсивность испарения Ж (кг/(м2-с)) для ненагретых жидкостей определяется по формуле:

Ж = 10 -6 МРН,

(П3.6

где "л — коэффициент, принимаемый для помещений по таблице П3.5 в зависимости от скорости и температуры воздушного потока над поверхностью испарения. При проливе жидкости вне помещения допускается принимать л = 1; М — молярная масса жидкости, кг/кмоль; РН — давление насыщенного пара при расчетной температуре жидкости, кПа. 27. При выбросе СУГ из оборудования, в котором жидкость находится под давлением, часть продукта за счет внутренней энергии мгновенно испаряется, образуя с капельками жидкости облако аэрозоля. Массовая доля мгновенно испарившейся жидкости 5 определяется по формуле:

г Ср ( Та - Ть ) Л

-— I, (П3.69)

5 = 1 - ехр

где Ср — удельная теплоемкость СУГ, Дж/(кгК);

Та — температура окружающего воздуха, К;

Ть — температура кипения СУГ при атмосферном давлении, К;

ЬЕ — удельная теплота парообразования СУГ,

Дж/кг.

Принимается, что при 5 > 0,35 вся массажидко-сти, находящаяся в оборудовании, за счет взрывного характера испарения переходит в парокапельное облако.

При 5 <0,35 оставшаяся часть жидкости испаряется с поверхности пролива за счет потока тепла от подстилающей поверхности и воздуха.

Интенсивность испарения жидкости со свободной поверхности Ж (кг/(м2-с)) определяется по формуле:

Таблица П3.5

ЯР = 1,2Ян

(П3.67)

Скорость воздушного Значение коэффициента л при температуре t (°С) воздуха

потока, м/с 10 15 20 30 35

0 1,0 1,0 1,0 1,0 1,0

0,1 3,0 2,6 2,4 1,8 1,6

0,2 4,6 3,8 3,5 2,4 2,3

0,5 6,6 5,7 5,4 3,6 3,2

1,0 10,0 8,7 7,7 5,6 4,6

(XРя )0,5(т0 - тъ)

Ж =

ья (п)

0,5

0,035и 0,8Хв(Т0 - Тъ)

, 0,8/0,2 т ч

(V а' )

(П3.70)

где — коэффициент теплопроводности материала, на поверхность которого разливается жидкость, Вт/(м-К);

Ся — удельная теплоемкость материала, Дж/(кг-К);

Ря — плотность материала, кг/м3; Т0 — начальная температура материала, К; t — текущее время с момента начала испарения, с (но не менее 10 с);

Ха — коэффициент теплопроводности воздуха при температуре Т0;

и — скорость воздушного потока над поверхностью испарения, м/с; й — характерный диаметр пролива, м; иа — кинематическая вязкость воздуха при Т0, м2/с.

IX. Размеры факела при струйном горении

28. При струйном истечении сжатых горючих газов, паровой и жидкой фазы СУГ и СПГ возникает опасность образования диффузионных факелов.

Длина факела Ьр (м) при струйном горении определяется по формуле:

Ьр = КО 0,4; (П3.71)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где О — расход продукта, кг/с;

К — эмпирический коэффициент, который при истечении сжатых газов принимается равным 12,5, при истечении паровой фазы СУГ или СПГ равным 13,5, при истечении жидкой фазы СУГ или СПГ равным 15.

Длина факела Ьр при струйном истечении горючих жидкостей определяется дальностью (высотой) струи жидкости.

Ширина факела Бр (м) при струйном горении определяется по формуле:

Бр = 0,15Ьр.

(П3.72)

29. При проведении оценок пожарной опасности горящего факела при струйном истечении сжатых горючих газов, паровой и жидкой фазы СУГ и СПГ допускается принимать следующие допущения:

- зона непосредственного контакта пламени с окружающими объектами, т. е. область наиболее опасного теплового воздействия, интенсивность которого может быть принята 100 кВт/м2, определяется размерами факела;

- длина факела Ьр не зависит от направления истечения продукта и скорости ветра;

- наибольшую опасность представляют горизонтальные факелы, условную вероятность реализации которых следует принимать равной 0,67;

- поражение человека в горизонтальном факеле происходит в 30°-м секторе с радиусом, равным длине факела;

- воздействие горизонтального факела на соседнее оборудование, приводящее к его разрушению (каскадному развитию аварии), происходит в 30°-м секторе, ограниченном радиусом, равным Ьр ;

— за пределами указанного сектора на расстояниях от Ьр до 1,5Ьр тепловое излучение от горизонтального факела составляет 10 кВт/м2;

— тепловое излучение от вертикальных факелов может быть определено по формулам (П3.52) -(П3.59), (П3.62), принимаяНравнымЬр, йравным Бр ,а Ер по таблице П3.4 — в зависимости от вида топлива. При отсутствии данных допускается принимать Ер равной 200 кВт/м2;

- при истечении жидкой фазы СУГ или СПГ из отверстия с эквивалентным диаметром до 100 мм при мгновенном воспламенении происходит полное сгорание истекающего продукта в факеле без образования пожара пролива;

- область возможного воздействия пожара-вспышки при струйном истечении совпадает с областью воздействия факела (30°-й сектор, ограниченный радиусом, равным Ьр);

- при мгновенном воспламенении струи газа возможность формирования волн давления допускается не учитывать.

Приложение № 4 к пункту 20 Методики

Детерминированные и вероятностные критерии оценки поражающего действия волны давления и теплового излучения на людей

На объектах наиболее опасными поражающими факторами пожара являются волна давления и расширяющиеся продукты сгорания при различных режимах сгорания газо-, паро- или пылевоздушно-го облака, а также тепловое излучение пожаров.

Детерминированные критерии показывают значения параметров опасного фактора пожара, при которых наблюдается тот или иной уровень поражения людей.

В случае использования детерминированных критериев условная вероятность поражения принимается равной 1, если значение критерия превышает предельно-допустимый уровень, и равной 0, если значение критерия не превышает предельно допустимый уровень поражения людей.

Таблица П4.1

Степень поражения Избыточное давление, кПа

Полное разрушение зданий 100

50 %-ное разрушение зданий 53

Средние повреждения зданий 28

Умеренные повреждения зданий (повреждение внутренних перегородок, рам, дверей и т. п.) 12

Нижний порог повреждения человека волной давления 5

Малые повреждения (разбита часть остекления) 3

Вероятностные критерии показывают, какова условная вероятность поражения людей при заданном значении опасного фактора пожара.

Ниже приведены некоторые критерии поражения людей перечисленными выше опасными факторами пожара.

I. Критерии поражения волной давления

Детерминированные критерии поражения людей, в том числе находящихся в здании, избыточным давлением при сгорании газо-, паро- или пыле-воздушных смесей в помещениях или на открытом пространстве приведены в таблице П4.1.

В качестве вероятностного критерия поражения используется понятие пробит-функции. В общем случае пробит-функцияРгописывается формулой:

Рг = а + Ь 1п£ (П4.1)

где а, Ь — константы, зависящие от степени поражения и вида объекта;

S — интенсивность воздействующего фактора.

Соотношения между величиной Рг и условной вероятностью поражения человека приведены в таблице П4.2.

При отсутствии в таблице П4.2 необходимых данных значения условной вероятности поражения человека Qdj (а) в зависимости от значения пробит-функции Рг определяются по формуле:

Рг - 5 / тт2 ехр

Qdj (а) =

1

41 2

-— I ¿4. (П4.2)

Таблица П4.2

Условная Величина пробит-функции Рг

вероятность поражения, % 0 1 2 3 4 5 6 7 8 9

0 - 2,67 2,95 3,12 3,25 3,36 3,45 3,52 3,59 3,66

10 3,72 3,77 3,82 3,87 3,92 3,96 4,01 4,05 4,08 4,12

20 4,16 4,19 4,23 4,26 4,29 4,33 4,36 4,39 4,42 4,45

30 4,48 4,50 4,53 4,56 4,59 4,61 4,64 4,67 4,69 4,72

40 4,75 4,77 4,80 4,82 4,85 4,87 4,90 4,92 4,95 4,97

50 5,00 5,03 5,05 5,08 5,10 5,13 5,15 5,18 5,20 5,23

60 5,25 5,28 5,31 5,33 5,36 5,39 5,41 5,44 5,47 5,50

70 5,52 5,55 5,58 5,61 5,64 5,67 5,71 5,74 5,77 5,81

80 5,84 5,88 5,92 5,95 5,99 6,04 6,08 6,13 6,18 6,23

90 6,28 6,34 6,41 6,48 6,55 6,64 6,75 6,88 7,05 7,33

99 7,33 7,37 7,41 7,46 7,51 7,58 7,65 7,75 7,88 8,09

Для воздействия волны давления на человека, находящегося вне здания, формулы для пробит-функции имеют вид:

Таблица П4.3

Рг = 5,0-5,74 1пЯ;

Я = 42 + 13;

Р I

Р = ДР/Рс;

I+

I =

Р012 т13

(П4.3) (П4.4)

(П4.5)

(П4.6)

где т — масса тела человека (допускается принимать равной 70 кг), кг;

ДР—избыточное давление волны давления, Па; I+ — импульс волны давления, Пас; Р0 — атмосферное давление, Па. Пробит-функции для разрушения зданий имеют вид:

• для тяжелых разрушений:

Рг = 5,0 - 0,26 1п У;

У =

17500 ДР

8,4

290 I+

9,3

для полного разрушения:

Рг = 5,0 - 0,22 1п У;

У=

40000

ДР

7,4

460

г"

11,3

(П4.7) (П4.8)

(П4.9) (П4.10)

При оценке условной вероятности поражения человека, находящегося в здании, следует использовать пробит-функцию, определяемую по формулам (П4.7), (П4.8).

II. Критерии поражения тепловым излучением

При анализе воздействия теплового излучения следует различать случаи импульсного и длительного воздействия. В первом случае критерием поражения является доза излучения Б (например, воздействие огненного шара), во втором — критическая интенсивность теплового излучения дсг (например, воздействие пожара пролива).

Величины дсг для воспламенения некоторых горючих материалов приведены в таблице П4.3, для различных степеней поражения человека — в таблице П4.4.

Для поражения человека тепловым излучением величина пробит-функции описывается формулой:

Рг = -12,8 + 2,56 1п( tq4/3), (П4.11)

где t — эффективное время экспозиции, с;

q — интенсивность теплового излучения, кВт/м2.

Материалы qcг, кВт/м2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Древесина (сосна влажностью 12 %) 13,9

Древесно-стружечные плиты (плотностью 417 кг/м3) 8,3

Торф брикетный 13,2

Торф кусковой 9,8

Хлопок-волокно 7,5

Слоистый пластик 15,4

Стеклопластик 15,3

Пергамин 17,4

Резина 14,8

Уголь 35,0

Рулонная кровля 17,4

Картон серый 10,8

Декоративный бумажно-слоистый пластик 19,0-24,0

Металлопласт 24,0-27,0

Плита древесно-волокнистая 13,0

Плита древесно-стружечная 12,0

Плита древесно-стружечная с отделкой "Полиплен" 12,0

Плита древесно-волокнистая с лакокрасочным покрытием под ценные породы дерева 12,0-16,0

Кожа искусственная 17,9-20,0

Стеклопластик на полиэфирной основе 14,0

Лакокрасочные покрытия 25,0

Обои моющиеся ПВХ на бумажной основе 12,0

Линолеум ПВХ 10,0-12,0

Линолеум алкидный 10,0

Линолеум ПВХ на тканевой основе 6,0-12,0

Покрытие ковровое 4,0-6,0

Сено, солома (при минимальной влажности до 8 %) 7,0

Легковоспламеняющиеся, горючие и трудногорючие жидкости при температуре самовоспламенения, °С: 300 12,1 350 15,5 400 19,9 500 и выше 28,0 и выше

Величина эффективного времени экспозиции t может быть определена по формулам: • для огненного шара:

t = 0,92т0 • для пожара пролива:

t = ^ + х/и,

(П4.12)

(П4.13)

где т — масса горючего вещества, участвующего в образовании огненного шара, кг; t0 — характерное время, за которое человек обнаруживает пожар и принимает решение о своих

Таблица П4.4

Степень поражения Интенсивность излучения, кВт/м2

Без негативных последствий в течение длительного времени 1,4

Безопасно для человека в брезентовой одежде 4,2

Непереносимая боль через 20-30 с Ожог 1 степени через 15-20 с Ожог 2 степени через 30-40 с 7,0

Непереносимая боль через 3-5 с Ожог 1 степени через 6-8 с Ожог 2 степени через 12-16 с 10,5

дальнейших действиях, с (может быть принято равным 5 с);

х — расстояние от места расположения человека до безопасной зоны (зона, где интенсивность теплового излучения меньше 4 кВт/м2); и — средняя скорость движения человека к безопасной зоне, м/с (принимается равной 5 м/с). Условная вероятность поражения человека, попавшего в зону непосредственного воздействия пламени пожара пролива или факела, принимается равной 1.

Для пожара-вспышки следует принимать, что условная вероятность поражения человека, попавшего в зону воздействия высокотемпературными продуктами сгорания газопаровоздушного облака, равна 1, за пределами этой зоны условная вероятность поражения человека принимается равной 0.

Приложение № 5 к пункту 33 Методики

Методы определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара и расчетного времени эвакуации

I. Метод определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара

Время от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара определяется путем выбора из полученных в результате расчетов значений критической продолжительности пожара минимального времени:

t = rnmit1 tnM t О2 t™.г} 1 бл шш11кр! 1кр ' 1 KP ' 1КР >'

кр

кр

(П5.1)

но допустимых значений в зоне пребывания людей (рабочей зоне) можно оценить по формулам: • по повышенной температуре:

tTP=JAin

1+

70 - 10

(273 + t0)Z

• по потере видимости:

tn-e = JB ln

1кр 1 f ш

1-

V ln(1,05aE)

lnpBDmZ J

1 n

; (П5.2)

1 n

; (П5.3)

• по пониженному содержанию кислорода:

Критическая продолжительность пожара по каждому из опасных факторов определяется как время достижения этим фактором критического значения на путях эвакуации на высоте 1,7 м от пола. Критические значения по каждому из опасных факторов составляют:

по повышенной температуре — +70 °С; по тепловому потоку — 1400 Вт/м ; по потере видимости — 20 м; по пониженному содержанию кислорода — 0,226 кг/м3;

по каждому из токсичных газообразных продуктов горения (СО2 — 0,11 кг/м3, СО — 1,1610-3 кг/м3, HCl — 23 10-6 кг/м3). Для помещения очага пожара критическую продолжительность пожара tKp (с) по условию достижения каждым из опасных факторов пожара предель-

t 2 = кр

* ln

A

1-

0,044

( BLC

V

+ 0,27 Z

; (П5.4)

по каждому из газообразных токсичных продуктов горения:

t™.г = J* ln

P | A

1-

VX

BLZ

B=

353 CpV

(1 -Ф ) vQ

(П5.5)

(П5.6)

где t0 — начальная температура воздуха в помещении, °С;

n

2

n

В — размерный комплекс, зависящий от теплоты сгорания материала и свободного объема помещения, кг;

п — показатель степени, учитывающий изменение массы выгорающего материала во времени; А — размерный параметр, учитывающий удельную массовую скорость выгорания горючего вещества и площадь пожара, кг/сп; Z — безразмерный параметр, учитывающий неравномерность распределения опасного фактора пожара по высоте помещения; Q — низшая теплота сгорания материала, МДж/кг;

Ср — удельная изобарная теплоемкость воздуха, МДж/кг;

Ф — коэффициент теплопотерь; Л — коэффициент полноты горения; V — свободный объем помещения, м3; а — коэффициент отражения предметов на путях эвакуации;

Е — начальное освещение, лк; 1пр—предельная дальность видимости в дыму, м; Бт — дымообразующая способность горящего материала, Нп-м2/кг;

Ь — удельный выход токсичных газов при сгорании 1 кг горючего вещества, кг/кг; X — предельно допустимое содержание токсичного газа в помещении, кг/м3; Ь0г —удельный расход кислорода, кг/кг. Свободный объем помещения соответствует разности между геометрическим объемом и объемом оборудования или предметов, находящихся внутри. При отсутствии данных допускается свободный объем принимать равным 80 % геометрического объема помещения.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Если под знаком логарифма получается отрицательное число, то данный опасный фактор пожара не представляет опасности.

Параметр Z определяется по формуле:

Z = к ехР^1,4 к] при Н< 6 м, (П5.7)

где к — высота рабочей зоны, м; Н — высота помещения, м. Высотарабочей зоны определяется по формуле:

к = кпл +1,7-0,55,

(П5.

где кпл — высота площадки, на которой находятся люди, над полом помещения, м; 5 — разность высот пола, равная нулю при горизонтальном его расположении, м. Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. Поэтому при определении необходимого времени эвакуации следует ори-

ентироваться на наиболее высоко расположенные в помещении участки возможного пребывания людей.

Параметры А и п определяются следующим образом:

• для случая горения жидкости с установившейся скоростью:

А = при п =1;

(П5.9)

• для случая горения жидкости с неустановившейся скоростью:

А = ' при п =1,5; (П5.10)

• для случая кругового распространения пламени по поверхности горючего вещества или материала:

А = 1,05^ V2 при п = 3;

(П5.11)

• для вертикальной или горизонтальной поверхности горения в виде прямоугольника, одна из сторон которого увеличивается в двух направлениях за счет распространения пламени:

А = ЧруЬ при п = 2,

(П5.12)

где — удельная массовая скорость выгорания жидкости, кг/(м2-с);

V — линейная скорость распространения пламени, м/с;

Ь — перпендикулярный к направлению движения пламени размер зоны горения, м. Случай факельного горения в помещении может рассматриваться как горение жидкости с установившейся скоростью с параметром А, равным массовому расходу истечения горючего вещества из оборудования, и показателем степени п, равным 1.

При отсутствии специальных требований значения а и Е принимаются равными 0,3 и 50 лк соответственно, а 1пр равным 20 м.

При расположении людей на различных по высоте площадках критическую продолжительность пожара следует определять для каждой площадки.

II. Метод определения расчетного времени эвакуации

Расчетное время эвакуации людей tр из помещений и зданий устанавливают по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей непосредственно наружу или в безопасную зону.

При расчете весь путь движения людского потока подразделяют на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной ¡1 и шириной Ъ1. Начальными участками являются

проходы между рабочими местами, оборудованием, рядами кресел и т. п.

При определении расчетного времени длину и ширину каждого участка пути эвакуации для проектируемых зданий и сооружений принимают по проекту, а для существующих — по факту. Длину пути по лестничным маршам, а также по пандусам измеряют по длине марша. Длину пути в дверном проеме принимают равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельными участками горизонтального пути, имеющими конечную длину I.

Расчетное время эвакуации людей tp следует определять как сумму времени движения людского потока по отдельным участкам пути ti по формуле:

tp = h+ t2 + t3+ ... + t, ,

(П5.13)

где t1 — время движения людского потока на первом (начальном) участке, мин; t2, t3, ..., t, — время движения людского потока на каждом из следующих после первого участке пути, мин.

Время движения людского потока по первому участку пути t1, мин, определяется по формуле:

ti = h/vi, (П5.14)

где l1 — длина первого участка пути, м;

v1 — скорость движения людского потока по горизонтальному пути на первом участке, м/мин (определяют по таблице П5.1 в зависимости от плотности D).

Плотность однородного людского потока на первом участке пути D1 определяется по формуле:

D1 =

N 1f

/161 !

(П5.15)

где N — число людей на первом участке, чел.; /— средняя площадь горизонтальной проекции человека, м2, принимаемая равной 0,125; 51 — ширина первого участка пути, м. Скорость у. движения людского потока на участках пути, следующих после первого, принимают по таблице П5.1 в зависимости от интенсивности движения людского потока по каждому из этих участков пути, которая определяется для всех участков пути, в том числе и для дверных проемов, по формуле:

q, =

qi -16 i -1

(П5.16)

где 5., 8i-1 — ширина рассматриваемого .-го и предшествующего ему участков пути, м; д., - 1 — интенсивность движения людского потока по рассматриваемому .-му и предшествующему ему участкам пути, м/мин.

Таблица П5.1. Интенсивность и скорость движения людского потока при различной на разных участках путей эвакуации в зависимости от плотности

Горизонтальный путь Лестница вниз Лестница вверх

Плотность потока D, м2/м2 Скорость v, м/мин Интенсивность q, м/мин Дверной проем, интенсивность q, м/мин Скорость v, м/мин Интенсивность q, м/мин Скорость v, м/мин Интенсивность q, м/мин

0,01 100 1,0 1,0 100 1,0 60 0,6

0,05 100 5,0 5,0 100 5,0 60 3,0

0,10 80 8,0 8,7 95 9,5 53 5,3

0,20 60 12,0 13,4 68 13,6 40 8,0

0,30 47 14,1 16,5 52 15,6 32 9,6

0,40 40 16,0 18,4 40 16,0 26 10,4

0,50 33 16,5 19,6 31 15,6 22 11,0

0,60 28 16,3 19,05 24,5 14,1 18,5 10,75

0,70 23 16,1 18,5 18 12,6 15 10,5

0,80 19 15,2 17,3 13 10,4 13 10,4

0,90 и более 15 13,5 8,5 8 7,2 11 9,9

Примечание. Интенсивность движения в дверном проеме при плотности потока 0,9 и более, равная 8.5 м/мин, установлена для дверного проема шириной 1.6 м и более, а при дверном проеме меньшей ширины интенсивность движения следует определять по формуле д. = 2,5 + 3,755.

Интенсивность движения людского потока на первом участке пути д = д. -1 определяют по таблице П5.1 по значению В1, установленному по формуле (П5.15).

Если значение д{, определяемое по формуле (П5.16), меньше или равно дтах, то время движения по участку пути ti, мин, равно:

и = I, /У, , (П5.17)

при этом значения дтах, м/мин, следует принимать равными:

16.5 — для горизонтальных путей;

19.6 — для дверных проемов;

16,0 — для лестницы вниз;

11,0 — для лестницы вверх.

Если значение д., определенное по формуле (П5.16), больше дтах, то ширину 5. данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:

qi — qmax.

(П5.18)

При невозможности выполнения условия (П5.18) интенсивность и скорость движения людского потока по участку . определяют по таблице П5.1 при значении В = 0,9 и более. При этом следует учиты-

5г — ширина предшествующего участка г, м. Время существования скопления tск на участке г определяется по формуле:

t =

1ск 7

ЧпЬ1 + 1

(П5.20)

Расчетное время эвакуации по участку г, в конце которого на границе с участком (г + 1) образовалось скопление людей, равно времени существования скопления tск. Расчетное время эвакуации по участку г допускается определять по формуле:

Рис. П5.1. Слияние людских потоков: 1 — начало участка г

¡1

ti = — + t

зад •

(П5.21)

вать время задержки движения людей из-за образовавшегося скопления.

Время задержки tзад движения на участке г из-за образовавшегося скопления людей на границе с последующим участком (г + 1) определяется по формуле:

1 1

tЗад = Щ

9л5 г +1 45 г

(П5.19)

где N — количество людей, чел.;

/ — площадь горизонтальной проекции, м2;

— интенсивность движения через участок (г + 1) при плотности 0,9 и более, м/мин; 5г +1 — ширина участка, м, при вхождении на который образовалось скопление людей; дг — интенсивность движения на участке г, м/мин;

При слиянии в начале участка г двух и более людских потоков (рис. П5.1) интенсивность движения , м/мин, определяется по формуле:

4 =

Е41 -1 -5г

(П5.22)

где дг -1 — интенсивность движения людских потоков, сливающихся в начале участка г, м/мин; 5г _ 1 — ширина участков пути слияния, м; 5г — ширина рассматриваемого участка пути, м. Если значение дг, определенное по формуле (П5.22), больше дтах, то ширину 5г данного участка пути следует увеличивать на такое значение, чтобы соблюдалось условие (П5.18). В этом случае время движения по участку г определяется по формуле (П5.17).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.