Научная статья на тему 'Методические подходы к организации пошагового решения обучающимися средней школы задач по стереометрии'

Методические подходы к организации пошагового решения обучающимися средней школы задач по стереометрии Текст научной статьи по специальности «Математика»

CC BY
573
82
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МЕТОДИКА ОБУЧЕНИЯ МАТЕМАТИКИ / СТЕРЕОМЕТРИЯ / ПРОСТРАНСТВЕННОЕ ВООБРАЖЕНИЕ / ЭТАПЫ РЕШЕНИЯ / MATHEMATICS TEACHING METHODOLOGY / STEREOMETRY / SPATIAL IMAGINATION / SOLUTION STEPS

Аннотация научной статьи по математике, автор научной работы — Серюкова А.С., Подпятникова С.А.

В статье рассмотрены проблемы, возникающие при решении стереометрических задач и предложены пути их решения на основе выделенных этапов по организации работы с требованиями задачи. На конкретных примерах показана структура деятельности учителя и обучающихся при формировании умения пошагового решения задач по стереометрии

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

METHODICAL APPROACHES TO ORGANIZING A STEP-BY-STEP SOLUTION FOR STUDENTS OF SECONDARY SCHOOL OF PROBLEMS BY STEREOMETRY

The article discusses the problems that arise when solving stereometric problems and suggests ways to solve them based on the steps outlined for organizing work with the requirements of the problem. The concrete examples show the structure of the teacher and students in the formation of the ability to step-by-step solving problems in stereometry

Текст научной работы на тему «Методические подходы к организации пошагового решения обучающимися средней школы задач по стереометрии»

УДК 514.1 ББК 22.151.1

МЕТОДИЧЕСКИЕ ПОДХОДЫ К ОРГАНИЗАЦИИ ПОШАГОВОГО РЕШЕНИЯ ОБУЧАЮЩИМИСЯ СРЕДНЕЙ ШКОЛЫ ЗАДАЧ ПО СТЕРЕОМЕТРИИ

СЕРЮКОВА А.С., ПОДПЯТНИКОВА С.А. ФГБОУВО ЮУрГГПУ, Челябинск, Россия e-mail: aseryukova@mail.ru, SvetlanaPodpyatnikova@yandex.ru.

Аннотация

В статье рассмотрены проблемы, возникающие при решении стереометрических задач и предложены пути их решения на основе выделенных этапов по организации работы с требованиями задачи. На конкретных примерах показана структура деятельности учителя и обучающихся при формировании умения пошагового решения задач по стереометрии.

Ключевые слова: методика обучения математики, стереометрия, пространственное воображение, этапы решения.

Актуальность. Стереометрия формирует и развивает у обучающихся пространственные представления и воображение, логическое мышление, формирует умение выделять пространственные свойства и отношения объектов и оперировать ими в процессе решения задачи. Умение решать стереометрические задачи является одним из основных показателей уровня сформированности у выпускников школ математического мышления и глубины понимания изученного учебного материала. Поэтому контрольно-измерительные материалы (КИМ) по математике содержат задачу повышенного и высокого уровня сложности по стереометрии. На едином государственном экзамене (ЕГЭ) около 98% старшеклассников допускают ошибки при решении весьма несложной стереометрической задачи [2]. Многие обучающиеся испытывают большие трудности не только в поиске решения задачи, дополнительных построениях

пространственных объектов с учетом предлагаемых задач, но и в понимании методов построения объемных фигур, их взаимного расположения в трехмерном пространстве [5]. Отсутствие понимания объясняется тем, что на уроках многие учащиеся стремятся просто выучить изучаемый материал, не желая понимать его полностью [4, 10].

По мнению Саниной Е.И.: "Проведение определения стереометрических отношений должно основываться не просто на изучении наглядного материала, а в совокупности с интенсивным обдумыванием и перестройкой имеющихся данных, т.е. осуществление

определенной "интеллектуализации" [6]. В данном ракурсе под образом следует понимать определенную единицу пространственного мышления. Такие расчеты основываются на активной мыслительной деятельности, позволяющей создать ряд пространственных образов, которые лежат в рамках плоскости решения задач. Сам процесс осуществления разбора и решения задач, связанных с расположением пространственных фигур основан на мыслительных действия по формированию в сознании образов стереометрического расположения в пространстве фигур с определением взаимосвязи между двумерным образом и реальным положением фигур в пространстве. В процессе такой деятельности может возникнуть проблемы, не позволяющие довести решение до логического завершения.

Учитывая, что решение некоторых задач ученые-математики искали несколько лет. Но также есть некоторые задачи, которые, спустя не один десяток лет, до сих пор небыли решены. Одним из ярких примеров таких задач является Гипотеза Берча и Суиннертон-Дайера, которой не одна сотня лет. За доказательство данной гипотезы в США математический институт Клэя намерен вручить один миллион долларов. Сущность гипотезы основана на том, что ранг кривой можно определить, зная порядок нуля дзета-функции. За счет доказательства данной гипотезы современная наука может далеко продвинуться вперед. Большого прогресса в доказательстве достигли несколько математиков из США и Англии в 1977 году. Но они смогли

найти доказательство лишь для единственного частного случая [7]. На этапе стимулирования преодоления трудностей при решении стереометрических задач можно привести данные исторические сведения или использовать другие методические подходы.

Цель работы. Выявить и описать методические подходы к организации пошагового решения обучающимися средней школы задач по стереометрии.

Во время изучения стереометрии принято выделять следующие этапы:

1. в 1-9 классах создание условий для формирования начальных представлений о пространственных фигурах;

2. в 10-11 классах ведение систематического курса стереометрии.

В систематический курс стереометрии входят следующие темы:

1. Аксиомы стереометрии и их простейшие следствия.

2. Параллельность прямых и плоскостей в пространстве.

3. Перпендикулярность прямых и плоскостей в пространстве.

4. Координаты, векторы, геометрические преобразования в пространстве.

5. Многогранники.

6. Тела вращения.

7. Площадь поверхностей и объем геометрических тел.

8. Изображение пространственных фигур на плоскости.

Для достижения планируемых результатов изучения раздела "Стереометрия" учителю необходимо:

- использовать различные формы организации учебно-познавательной деятельности обучающихся;

- сконструировать банк заданий, способствующих формированию у обучающихся умения решать задачи, в том числе представленные в КИМ ЕГЭ;

- применять алгоритмическое предписание по этапному решению задач, развивая тем самым аналитические и логические умения обучающихся, расширяя их познавательный интерес и формируя у них творческие способности.

Материалы и методы. С целью ликвидации причин, связанных с неумением обучающимися решать стереометрические задачи высокой сложности без вмешательства педагога, необходимо определить алгоритм решения.

Следует выделить основные этапы обучения и разложить сложное решение на несколько более простых задач. Также нужно чтобы обучающиеся смогли научиться решать трудные задачи не только без посторонней помощи, но и без применения аналогий.

Обучение учащихся старших классов самостоятельному решению сложных стереометрических задач возможно через формирование у них навыков, нацеленных на применение общего подхода и адаптацию его под ту или иную задачу с правильным выбором направлений поиска способа решения неизвестных им ранее алгоритмов решения, для чего необходимо:

1. Сформировать у учащихся глубокие знания по теории решения задач. При этом преподнесение теории не должно отрываться от практики. Не стоить выделять отдельные теоретические темы, необходимо вводить теоретические знания вместе с решением задач на протяжении всего периода обучения, но при этом регулярно возвращаться к тому или иному понятию и повторять его.

2. Выработать у учеников и закрепить на практике четкие умения и навыки для реализации простых действий, выступающих частью решения сложных стереометрических задач, к которым следует отнести такие этапы работы: проведение анализа условий задачи, построение чертежей стереометрических фигур, поиск способа решения через систематизацию условий, проверку полученного результата, конечный анализ полученного решения.

3. Проработать с учениками основные способы решения стереометрических задач высокой сложности с обязательным закреплением полученных умений через решение ряда геометрических задач с применением каждого способа [8, 9, 10].

Управление процессом решения

стереометрических задач основывается на ряде поэтапных действий, которые берут свою основу в геометрии, но в первую очередь до учащихся необходимо довести информацию по разделу стереометрии, т.е. необходимо разложить весь сложный мыслительный процесс решения стереометрических задач на более простые подзадачи [1]. В качестве первого этапа решения задач выступает анализ условия задачи, который можно разделить на несколько более простых действия: а) определение точной области условий задачи с выявлением всех ее структурных элементов; б) определение

зависимостей элементов каждой области задачи и их свойств; в) выявление сути условий задачи. На втором этапе решения стереометрической задачи определяется план ее решения, а также формируется основная идея ее решения. К тому же второй этап решения задачи выступает ведущим в определении искомых величин и выборе направлений и способов решения, построение стратегии. Переходя к третьему этапу решения стереометрических задач в работу включается уже выстроенный план решения, т.е. план получает реализацию на практике. Подробно описывается решение, при необходимости корректируется, выбирается методика решения, решение задачи записывается и оформляется. Четвертый этап деятельности, направленной на решение стереометрической задачи, направлен на обсуждение и анализ процесса решения. Приводится итоговое решение задачи, осуществляется анализ решения и систематизация полученных в процессе решения знаний. На основе описанного алгоритма решения стереометрической задачи можно более четко выделить следующие этапы: этап 1 - осуществление анализа условий задачи;

этап 2 - построение схемы условий задачи; этап 3 - выбор способов решения задачи; этап 4 - осуществление деятельности по решению задачи;

этап 5 - проведение проверки полученного решения;

этап 6 - окончательное формулирование ответа задачи.

Обратим внимание на первый этап. При внимательном прочтении любой задачи по геометрии, можно заметить, что в задаче прослеживается либо требование, либо вопрос, требующий ответа, основываясь на условиях, которые указаны в задаче. Поэтому при изучении условий стереометрической задачи, необходимо провести анализ ее условий, определить поставленные требования, на основе которых задача и будет решена. Приведем пример стереометрической задачи:

Задача 1. Найдите катеты прямоугольного треугольника, в котором гипотенуза в точке касания с вписанной окружностью делится на отрезки длинной 7 см и 10 см [3].

После прочтения задачи сразу же можно заметить, что в ней присутствует определенное утверждение, а именно: "в прямоугольном треугольнике гипотенуза в точке касания с

вписанной окружностью делится на отрезки длинной 7 см и 10 см". Далее необходимо выяснить, что надо найди или доказать. Требование данной стереометрической задачи заключается в том, что нужно найти катеты прямоугольного треугольника. Теперь на основе формулировки задачи необходимо вывести ее условия. Особенностью стереометрической задачи выступает то, что ее условие содержит несколько условий по решению отдельных элементарных задач, т.е. исходное задание подлежит расчленению на несколько более простых заданий. Поэтому утверждение и требования, установленные в условиях задачи, необходимо разделить на более простые условия и элементарные части.

В рассматриваемом варианте задачи можно выделить ряд следующих простых условий:

1) рассматриваемый треугольник является прямоугольным;

2) в данный треугольник вписана окружность;

3) гипотенуза точкой касания с окружностью делится на два отрезка;

4) длина первого отрезка составляет 7 см;

5) длина второго отрезка 10 см.

Требование данной задачи можно разделить

на два простых:

1) найти длину первого катета треугольника;

2) найти длину второго катета треугольника.

Глубина анализа в основном зависит от того,

знаком ли учащийся со стереометрическими задачами, и знает ли он общий способ их решения. Если да, то достаточно провести простой анализ, который сводится к определению вида задачи; если нет, то для отыскания решения стереометрической задачи необходим более подробный анализ.

В некоторых случаях анализ решения задачи должен быть оформлен письменно. В данном случае следует использовать различные схемы, позволяющие представить условия задачи в более простом виде. Схематическая запись решения стереометрических задач представляет собой второй этап. Схематическая запись стереометрических задач заключается в необходимости использования чертежа той фигуры, которая рассматривается в задаче. В момент построения такого чертежа нужно придерживаться следующих требований.

В основе чертежа лежит схематический рисунок основного объекта задачи, т.е. рисунок геометрической фигуры, нескольких фигур или их частей, которые имеют буквенное

обозначение или иных знаков, используемых для обозначения частей рисунка, представленного на схеме. Если в условиях задачи присутствуют обозначения фигуры или какой-либо ее части, то данные обозначения также переносятся на чертеж, если же обозначения специально не введены, то на чертеже используются произвольные обозначения, которые могут быть основаны на наборе наиболее распространенных опознавательных знаков.

Рассмотрим на примере одной из стереометрических задач, как строятся их схематические записи при помощи чертежей.

Задача 2. Представлена трапеция, диагональ которой проходит перпендикулярно к основаниям. Большое основание имеет длину 13 см, а тупой угол, который принадлежит ей составляет 120о. К тупому углу принадлежит боковая сторона, равная также 13 см. Необходимо определить среднюю линию трапеции [3].

Рис. Трапеция

Проводя анализ условий задачи, необходимо отметить, что основным объектом задачи является трапеция, в которой одна диагональ имеет перпендикулярное положение по отношению к ее основаниям. Следует обратить внимание, что при начертании трапеции, начав ее построение с боковых сторон, обязательно будет допущена ошибка. Поэтому построение чертежа трапеции необходимо начать с начертания диагонали, указанной в условиях задачи, так как она перпендикулярна основаниям трапеции. Обозначение диагонали можно осуществить через указание прописной буквы "а". Данную диагональ следует определить как вертикальный отрезок, из концов которого выходят основания трапеции -два горизонтальных отрезка. При таком алгоритме начертания трапеции видно, что углы, принадлежащие вершинам трапеции -тупые. На основе условий задачи можно определить, что тупой угол, принадлежащий

большому основанию, имеет 120о. Также отражено, что вершина данного угла выступает одновременно и одним из концов построенной диагонали. С данного момента построить трапецию становится намного проще. Далее необходимо обозначить все вершины трапеции, провести в ней среднюю линию, а данный в задаче тупой угол отметить дугой и подписать градусную меру (рис.).

После этого необходимо записать все условия и требования данной задачи, пользуясь принятыми на рисунке 1 буквенными обозначениями. Дано:

1) ADHCB;

2) AD±AC;

3) АС±СВ;

4) ^DAB = 120°;

5) AD = 13 см;

6) АВ = 6 см;

7) АМ = MB.DN = NC.

Найти: MN.

Сразу же после того, как были сделаны анализ задачи и ее чертеж, которые считаются обязательными этапами для нахождения способа решения стереометрической задачи, необходимо осуществить сам поиск способа ее решения. Это и есть третий этап процесса решения стереометрической задачи. Рассмотрим его на примере последней задачи. Прежде чем приступить к поиску способа решения данной задачи, необходимо вспомнить, средняя линия трапеции расположена параллельно к основаниям. Поэтому MN параллельна AD и MN параллельна ВС. При дальнейшем решении необходимо применение теоремы о средней линии трапеции: средняя линия трапеции параллельна ее основаниям, и длина ее равна полу сумме длин оснований. Данная теорема выступит основным правилом для решения рассматриваемой задачи.

Нахождение способа решения задачи становится переходом к следующему, четвертому этапу решения задачи по стереометрии. Продолжим рассмотрение данного этапа на примере этой же задачи. Реализация этапов решения второй задачи имеет достаточно простую схему:

1) Осуществить определение оснований трапеции, приведенной в задаче, по длине;

2) Найти полу сумму оснований. Найденная полу сумма и будет являться длиной средней линии.

Теперь необходимо записать решение данной

задачи.

Рассмотрим треугольник 5СД:

АЛС =

^С = 90°, ^АЛС = 120° - 90° = 30° ^

^ АС = 0,5 • ЛД (катет, лежащий напротив угла в 30°) ^ 5С = 0,5 •б см = 3 см.

= (££+££)= (3+13) = 8 см.

2 2

В процессе решения задач учащиеся совершают многочисленные ошибки, исправление которых часто вызывает большие затруднения. Основной причиной является не столько непонимание учащимся сути допущенной ошибки, сколько неумение их обнаружить. В связи с этим, после решения задачи нужно удостовериться в том, что найденное решение верное, что оно соответствует и удовлетворяет всем условиям и требованиям задачи. Это и есть пятый этап процесса решения стереометрических задач. В методической литературе всего существует два способа проверки стереометрических задач:

- составить и решить обратную задачу;

- решить данную задачу совершенно другим способом.

Для проверки задачи чаще всего используют первый способ. Данный метод довольно универсален, так как для любой задачи возможно составить обратную. Решение задачи другим способом - метод довольно сложный, потому что данная работа является по большей мере творческой, помимо этого не каждый учащийся способен найти хотя бы один способ решения стереометрической задачи.

Рассмотрим на примере второй задачи другой способ ее решения. Для отыскания другого способа решения стереометрической задачи, существуют различные методы: построение другой модели задачи, отличной от используемой; дополнение условия задачи сведениями, которые не повлияют на конечный результат; описание практического решения ситуации, представленной в задаче. В данной задаче возможно дополнение сведеньями. Изначально решить вторую задачу нам помогло свойство средней линии трапеции. Также осуществить решение данной задачи возможно, воспользовавшись теоремой Пифагора и синусом угла. Это и будет другой способ решения.

2 способ решения. Возьмем другие значения: В условиях дается трапеция, диагональ в которой проходит перпендикулярно ее основаниям, при этом длина большего

основания равна 12 см, а тупой угол, принадлежащий ей, составляет 120о. К этому тупому углу принадлежит боковая сторона, длиной 7 см. Найдите среднюю линию данной трапеции [3]. Дано:

- Л£||СА;

- ;

- ЛС±СА;

- ^ША = 120°;

- = 12 см;

- = 7 см;

- ЛМ = МА,Ш = МС.

Найти: ММ.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Рассмотрим треугольник 5СД:

АЛС =

^С = 90°, ^АЛС = 120° - 90° = 30° ^ ^ АС = 0,5

• ЛД (катет, лежащий напротив угла в 30°) ^ АС = 0,5 • 7 см = 3,5 см ^ ЛС = •

cos 30° = 7 • — = 3,5V3.

2

Из прямоугольного А ЛСД: ЛД2 = CD2 ЛС2 = 144 - 36,75 = 107,75 ЛД = 0,5 • V429 см.

„ (ВС+ЛО) 3,5+0,5 • V429

Средняя линия =-=-=

1,75 + 0,25 • V429 = 6,9 см.

Проверив решение и определив его верность, необходимо четко сформулировать и записать его. Данный этап является завершающим в решении стереометрической задачи (шестой этап).

Если учащиеся будут придерживаться данных этапов, то это даст им возможность узнать приемы решения стереометрических задач, сформировать умение использовать полученные знания в " измененных" ситуациях, "нетипичных" задачах. Процесс решения по данным, рассмотренный в разрезе приведенных этапов, дает возможность формирования и развития таких качеств у обучающихся, которые формируют аналитическую склонность, развивают способность освоения новой информации, логическое мышление,

основанное на алгоритмах исследовательской работы. К тому же приобретенные при решении стереометрических задач навыки, позволят повысить эффективность подготовки к ЕГЭ по геометрии, а также при определении профессиональных интересов учащихся, связанных с математикой.

Стремление к введению инновационных

методов обучения подталкивает педагогов к созданию более эффективных и продуктивных способов решения задач по данному разделу. Данный метод обосновывается своей структурированностью. Использование этого алгоритма на уроках по геометрии в 10 классе поможет педагогу научить решать стереометрические задачи более эффективно и

быстро, так как данный способ позволяет выстраивать новую программу обучения для старшеклассников. Главная идея данного метода направлена на результат более детального способа изучения и решения геометрических задач, путем их непосредственного поэтапного анализа.

Список литературы

1. Бордовская Н.В. Педагогика: учебное пособие /Н.В. Бордовская, А.А. Реан. - СПб.: Питер, 2006. - 304 с.

2. Журавлева Н.А. Интерпретация критериев проверки заданий с параметром ЕГЭ по математике /Н.А. Журавлева // Современная система образования: опыт прошлого, взгляд в будущее. - 2013. - №2. - С. 62-67.

3. Зив Б.Г. Геометрия. Дидактические материалы. 10 класс: базовый и профил. уровни / Б.Г. Зив. - М.: Просвещение, 2011. - 159 с.

4. Крайнева С.В. Психологические особенности процесса решения прикладных естественнонаучных задач / С.В. Крайнева, О.Р. Шефер //Психология обучения. - 2018. - №6. - С. 139-145.

5. Макарченко М.Г. Контекстуальный анализ учебных текстов по математике / М.Г. Макарченко // Известия Российского государственного педагогического университета имени А.И. Герцена. - 2008. - №11. - С. 268-276.

6. Санина Е.И. Развитие пространственного мышления в процессе обучения стереометрии /Е.И. Санина, О.А. Гришина // Вестник Российского университета дружбы народов. Серия: Психология и педагогика. - 2013. - №4. - С. 99-102.

7. Фильчев Э.Г. Гипотеза Берча и Свиннертон-Дайера / Э.Г. Фильчев //Проблемы науки. - 2016. - №4. - С. 19-21.

8. Фридман Л.М. Как научиться решать задачи /Л.М. Фридман, Е.Н. Турецкий. - М.: Просвещение. 1989. - 192 с.

9. Фридман Л.М. Теоретические основы методики обучения математике: учеб. пособ. /Л.М. Фридман. -М.: Едиториал УРСС, 2005. - 248 с.

10. Шефер О.Р. Комплексные задачи по физике как средства достижения обучающимися метапредметных и предметных результатов: монография / О.Р. Шефер, Ю.Г. Ваганова. - Челябинск: Край Ра, 2014. - 196 с.

METHODICAL APPROACHES TO ORGANIZING A STEP-BY-STEP SOLUTION FOR STUDENTS OF SECONDARY SCHOOL OF PROBLEMS BY STEREOMETRY

SERYUKOVA A.S., PODPYATNIKOVA S.A. FSBEI HE SUSHPU, Chelyabinsk, Russia e-mail: aseryukova@mail.ru, SvetlanaPodpyatnikova@yandex.ru.

Abstract

The article discusses the problems that arise when solving stereometric problems and suggests ways to solve them based on the steps outlined for organizing work with the requirements of the problem. The concrete examples show the structure of the teacher and students in the formation of the ability to step-by-step solving problems in stereometry.

Keywords: mathematics teaching methodology, stereometry, spatial imagination, solution steps.

i Надоели баннеры? Вы всегда можете отключить рекламу.