Научная статья на тему 'Метод идентификации сопротивлений статора и ротора асинхронного двигателя'

Метод идентификации сопротивлений статора и ротора асинхронного двигателя Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
411
48
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ИДЕНТИФИКАЦИЯ / АДАПТИВНЫЙ НАБЛЮДАТЕЛЬ / АСИНХРОННЫЙ ДВИГАТЕЛЬ / СОПРОТИВЛЕНИЕ РОТОРА И СТАТОРА / IDENTIFICATION / ADAPTIVE OBSERVER / INDUCTION MOTOR / ROTOR AND STATOR RESISTANCE

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Базылев Д. Н., Бобцов А. А., Пыркин А. А., Ортега Р.

Представлен метод оценивания сопротивлений статора и ротора асинхронного двигателя. Разработанный алгоритм также позволяет оценивать магнитный поток ротора. Предполагается, что токи и напряжения обмоток статора, а также механическая скорость ротора являются измеримыми, а все остальные параметры двигателя известны. Предложенный метод обеспечивает глобальную ограниченность всех сигналов и экспоненциальную сходимость оценок.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Method for identification of asynchronous motor stator and rotor resistance

A method for estimation of stator and rotor resistances in induction motors is presented. The developed algorithm also allows to estimate the rotor flux. It is assumed that currents and voltages of stator windings and mechanical rotor speed are measurable and all the other parameters of the motor are known. The proposed method ensures a global boundness of all signals and exponential convergence of the estimates.

Текст научной работы на тему «Метод идентификации сопротивлений статора и ротора асинхронного двигателя»

УПРАВЛЕНИЕ ДИНАМИЧЕСКИМИ СИСТЕМАМИ

УДК 681.51

DOI: 10.17586/0021-3454-2017-60-9-807-811

МЕТОД ИДЕНТИФИКАЦИИ СОПРОТИВЛЕНИЙ СТАТОРА И РОТОРА АСИНХРОННОГО ДВИГАТЕЛЯ

Д. Н. Базылев1, А. А. Бобцов1, А. А. Пыркин1, Р. Ортега1'2

1Университет ИТМО, 197101, Санкт-Петербург, Россия E-mail: [email protected]

2Лаборатория сигналов и систем CNRS-SUPELEC, 91192, Жиф-сюр-Иветт, Франция

Представлен метод оценивания сопротивлений статора и ротора асинхронного двигателя. Разработанный алгоритм также позволяет оценивать магнитный поток ротора. Предполагается, что токи и напряжения обмоток статора, а также механическая скорость ротора являются измеримыми, а все остальные параметры двигателя известны. Предложенный метод обеспечивает глобальную ограниченность всех сигналов и экспоненциальную сходимость оценок.

Ключевые слова: идентификация, адаптивный наблюдатель, асинхронный двигатель, сопротивление ротора и статора

Введение. В настоящее время наиболее распространенным способом управления асинхронными двигателями в промышленности является метод векторного управления. Недостаток данного метода заключается в том, что для его реализации необходимо знать сопротивления ротора и статора двигателя, значения которых существенно зависят от температуры обмоток, частоты и амплитуды тока. В работе [1 ] показано, что устойчивость системы управления сохраняется даже при больших ошибках оценок сопротивлений. Однако при этом значительно снижается качество функционирования двигателя: ухудшается регулирование потока, что может привести к насыщению или недовозбуждению, замедляется реакция крутящего момента и возникают стационарные ошибки.

Адаптивный регулятор для асинхронного двигателя с неизвестными сопротивлением ротора и нагрузочным моментом предложен в работе [2]. Тем не менее данное решение намного сложнее классического векторного управления, в связи с чем его применение на практике существенно затруднено.

Оценка сопротивлений двигателя востребована также в других задачах, связанных с отказоустойчивым управлением и калибровкой параметров [3, 4]. Существующие подходы, как правило, основаны на введении возмущающих сигналов по току [5, 6], что требует организации специальных режимов работы двигателя. Также известны алгоритмы, использующие расширенные фильтры Калмана [7] и метод наименьших квадратов [8].

В настоящей статье предлагается новый метод оценивания сопротивлений асинхронного двигателя и его магнитного потока. Представленный алгоритм основан на применении метода [9], использование которого позволяет свести задачу оценивания магнитного потока ротора к задаче оценивания постоянных параметров. В свою очередь, полученные параметры оцениваются с помощью процедуры динамического расширения регрессора [10]. Далее, посредством линейной фильтрации некоторых сигналов системы идентификация сопротивлений

статора и ротора может быть представлена в виде стандартной линейной регрессионной модели, для которой применяется градиентный алгоритм оценки.

Постановка задачи. Классическая двухфазная а-Ь модель асинхронного двигателя представлена в работе [11]:

oLsLr d M dt

f

i = -

RsLr +MRr

\ f

X =

M MRr

L

i +

r J

f R

—I-npcJ T p

Vr

Л

X + —v; M

-i -

\

—I - np&J

L p

X;

r

J

• ПРМ T j\ xL

со = —— i JX——, J

Ai

JM Lr

(1) (2) (3)

где X = [Х а Хь ] — вектор магнитного потока; г = [\ гь ] и V = [а Уь ] — соответственно векторы тока и напряжения в обмотках статора; ш — скорость ротора; Яг, Ьг, М, пр, Jм, , Ь3 — положительные параметры, обозначающие сопротивление и индуктивность ротора, взаимоиндуктивность, число пар полюсов, момент инерции, сопротивление и индуктивность статора соответственно; а = 1 -М 2/( Ь3ЬГ) — параметр рассеяния; т ь — момент на-

"1 0" "0 -1"

I = , J =

0 1 1 0

Необходимо оценить Rs, Rr и X, считая, что остальные параметры двигателя известны, а токи и напряжения статора и скорость ротора измеримы. Также предположим х— = const, что соответствует типичному режиму работы двигателя, а сигналы i, v являются полностью интегрируемыми функциями.

Оценка сопротивления статора и наблюдатель магнитного потока. Преобразуем исходную модель (1)—(3) в соответствии с алгоритмом [9]. Для этого выразим второе слагаемое в правой части (1) и заменим его же в (2). Интегрируя полученный результат, получаем

X(t) = X(0)i (t) + ■——L-i (0) - R^—Lz2(t) + Rs—^z2(0) + ^(t) - Llz1(0),

М М М М " М

где ¿1 = V, ¿2 = г.

Перепишем выражение (4) в более простой форме:

Х = с + +^2,

где с — вектор неизвестных параметров, £1, ^ — измеримые сигналы:

М

(4)

(5)

с = X(0) +^M—Li(0)^jrt—1z2(0)-M-*1(0), $1 =-MjZ2(t), ^2 =-^Mri(t)+ 77^ (6) МММ M MM

Подставим (5) в (3) и применим к обеим частям полученного уравнения фильтр

F (p) =

ар

(Р + а)

c оператором дифференцирования р = d/dt и а > 0. В результате получим

где

g =

ар

g = щс + щ Rs +§

npM

(7)

(Р + а)2

-[и] -

ар

JULr (Р + а)

iTJ ^2

V =

npM

ap

JuLr (p + a)2

lTJ

V 2 =

npM

ap

iTJ ^

5 = _

1

ap

"[Tl ]•

JмLr (p + a)2 L Jм (p + a)'

Поскольку Tl = const, то 5 является экспоненциально затухающей функцией и на основании леммы 1 из работы [12] ею можно пренебречь. Тогда выражение (7) можно представить в виде стандартной линейной регрессионной модели

g = тл, (8)

где т = [Vii V12 V2] Л = [ci с2 Rs].

Далее, используем процедуру динамического расширения регрессора (ДРР) [10]. В со-

Р1

ответствии с данным подходом применим два динамических оператора (р) =

p + Р1

и

H 2 (p ) =

Р2

p + Р2

-, Р12 > 0, к (8) и получим две новые регрессионные модели:

g = т л, g = т л,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где g" = ВДg], т" = ВДт], g" = H2()[g], т" = Я2(-)[т]. Сформируем расширенный регрессор из (8) и (9):

Ge = Yeл,

(9)

(10)

g т1 т2 т3

где Ge = g" , Ye = т1 т2 т3

_ g т1 т2 т3

Умножив слева обе части уравнения (10) на союзную матрицу &й){Уе }, получим

С = ФЛ, (11)

где С = а${Уе}°е, ф = а4Н7е }¥е •

Последним шагом в процедуре ДРР является конструирование скалярных наблюдателей

л1 =У1ф(С1 -Фл1), (12)

л2 = 72Ф(С2 -Фл2Х (13)

л 3 = 7 зФ(сз ^зХ (14)

где 712 з > 0 — коэффициенты адаптации.

Утверждение 1. Пусть дана модель асинхронного двигателя (1)—(3). Устройство оценивания, описываемое выражениями (8), (9), (11) и (12)—(14), обеспечивает глобальную сходимость ошибки оценивания параметров л тогда и только тогда, когда функция ф не является квадратично интегрируемой. Более того, если ф также удовлетворяет условию незатухающего возбуждения, то сходимость является экспоненциальной.

Магнитный поток двигателя может быть оценен исходя из выражений (5) и (12)—(14). Оценка сопротивления ротора. Сопротивление ротора может быть оценено исходя из (1) при использовании наблюдателя магнитного потока (5) и алгоритма идентификации со-

противления статора (14). Применив к (1) фильтр K (p) = •

к

p + к

-, к> 0 , получим

oLA pk ^ ] = _ RsLr

M p + k

_n„

M p + k к

к г... MR -[i] _■—

L„

К гп R

к

p + К

[©J X ] + L

p + к к

Lr p + к

[X] _

M p + к

[v],

(15)

где оценки магнитного потока X и сопротивления статора Rs сгенерированы в соответствии

с (5) и (14).

Введем новые обозначения:

У = И + R£—[i]+ np —[®-/X] - ],

M p + к M p + к F p + к Mp + к

М Л (16)

М к г п 1 к ГЛ п

Ч = —--[г ]+т--[Х].

Ьг р + к Ьг р + к

Тогда исходное уравнение (15) может быть представлено в виде скалярной линейной регрессии

7 = Ч^. (17)

Для идентификации сопротивления Кг воспользуемся скалярным градиентным наблюдателем

К = У 4ЧТ (У - ЧК ), (18)

где у4 > 0 — параметр адаптации.

Утверждение 2. Пусть дана модель асинхронного двигателя (1)—(3). Устройство оценивания, описываемое выражениями (5), (14), (16) и (18), обеспечивает экспоненциальную сходимость ошибки оценивания сопротивления ротора тогда и только тогда, когда параметр Ч удовлетворяет условию незатухающего возбуждения.

Заключение. Представлен адаптивный наблюдатель сопротивлений статора и ротора и магнитного потока для асинхронного двигателя. Предложенный алгоритм оценивания основан на методе интерпретации задачи наблюдения к задаче идентификации постоянных параметров [9]. Для улучшения переходных процессов в устройствах оценивания применен метод динамического расширения регрессора [10].

Работа выполнена при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-И01), Министерства образования и науки РФ (проект 14.Z50.31.0031) и гранта Президента Российской Федерации (№ 14.У3116.9281-НШ).

СПИСОК ЛИТЕРАТУРЫ

1. De Wit P., Ortega R., Mar eels I. Indirect eld-oriented control of induction motors is robustly globally stable // Automatica. 1996. N 30(10). P. 1393—1402.

2. Marino R., Peresada S., Tomei P. Online stator and rotor resistance estimation for induction motors // IEEE Transact. on Control Systems Technology. 2000. N 8(3). P. 570—579.

3. Pavlov A., Zaremba A. Real-time rotor and stator resistances estimation of an induction motor // Proc. IFAC Symp. on Nonlinear Control Systems. St. Petersburg, Russia. 2001. P. 1252—1257.

4. Castaldi P., Geri W., Montanari M., Tilli A. A new adaptive approach for on-line parameter and state estimation of induction motors // Control Eng. Pract. 2005. N 13(1). P. 81—94.

5. Matsuo T., Lipo T. A. A rotor parameter identification scheme for vector-controlled induction motor drives // IEEE Transact. on Industry Applications. 1985. N 21(4). P. 624—632.

6. Wade S., Dunnigan M., Williams B. A new method of rotor resistance estimation for vector-controlled induction machines // IEEE Transact. on Industrial Electronics. 1997. N 44(2). P. 247—257.

7. Laroche E., Sedda E., Durieu C. Methodological insights for online estimation of induction motor parameters // IEEE Transact. on Control Systems Technology. 2008. N 16(5). P. 1021—1028.

8. Li-Campbell M., Chiasson J., Bodson M., Tolbert L. Speed sensorless identification of the rotor time constant in induction machines // IEEE Transact. on Automatic Control. 2007. N 52(4). P. 758—763.

9. Ortega R., Bobtsov A., Pyrkin A., Aranovskiy A. A parameter estimation approach to state observation of nonlinear systems // Systems and Control Letters. 2015. N 85. P. 84—94.

10. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Parameter estimation via dynamic regressor extension and mixing // Amer. Control Conf., ACC'16. 2016.

11. Astolfi A., Karagiannis D., Ortega R. Nonlinear and Adaptive Control with Applications. Springer, 2008.

12. Aranovskiy S., Bobtsov A., Pyrkin A., Ortega R., Chaillet A. Flux and position observer of permanent magnet synchronous motors with relaxed persistency of excitation conditions // Proc. of the 1st IFAC Conf. on Modelling, Identification and Control of Nonlinear Systems. 2015. P. 311—316.

Дмитрий Николаевич Базылев Алексей Алексеевич Бобцов Антон Александрович Пыркин Ромео Ортега

Рекомендована кафедрой систем управления и информатики

Сведения об авторах аспирант; Университет ИТМО; кафедра систем управления и информатики; E-mail: [email protected]

д-р техн. наук, профессор; Университет ИТМО; кафедра систем

управления и информатики; E-mail: [email protected]

д-р техн. наук, профессор; Университет ИТМО; кафедра систем

управления и информатики; E-mail: [email protected]

канд. техн. наук; Лаборатория сигналов и систем CNRS-SUPELEC;

директор по исследованиям; E-mail: [email protected]

Поступила в редакцию 21.03.17 г.

Ссылка для цитирования: Базылев Д. Н., Бобцов А. А., Пыркин А. А., Ортега Р. Метод идентификации сопротивлений статора и ротора асинхронного двигателя // Изв. вузов. Приборостроение. 2017. Т. 60, № 9. С. 807—811.

METHOD FOR IDENTIFICATION OF ASYNCHRONOUS MOTOR STATOR AND ROTOR RESISTANCE

D. N. Bazylev1, A. A. Bobtsov1, A. A. Pyrkin1, R. Ortega1,2

1ITMO University, 197101, St. Petersburg, Russia E-mail: [email protected]

2Laboratory of Signals and Systems CNRS-SUPELEC, 91192, Gif-sur-Yvette, France

A method for estimation of stator and rotor resistances in induction motors is presented. The developed algorithm also allows to estimate the rotor flux. It is assumed that currents and voltages of stator windings and mechanical rotor speed are measurable and all the other parameters of the motor are known. The proposed method ensures a global boundness of all signals and exponential convergence of the estimates.

Keywords: identification, adaptive observer, induction motor, rotor and stator resistance

Dmitry N. Bazylev Alexey A. Bobtsov Anton A. Pyrkin Romeo Ortega

For citation: Bazylev D. N., Bobtsov A. A., Pyrkin A. A., Ortega R. Method for identification of asynchronous motor stator and rotor resistance. Journal of Instrument Engineering. 2017. Vol. 60, N 9. P. 807—811 (in Russian).

DOI: 10.17586/0021-3454-2017-60-9-807-811

Data on authors

Post-Graduate Student; ITMO University, Department of Computer Science and Control Systems; E-mail: [email protected] Dr. Sci., Professor; ITMo University, Department of Computer Science and Control Systems; E-mail: [email protected]

Dr. Sci., Professor; ITMO University, Department of Computer Science and Control Systems; E-mail: [email protected] PhD; Laboratory of Signals and Systems CNRS-SUPELEC; Director for Research; E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.