Научная статья на тему 'METHOD FOR POLISHING THE SURFACE OF NI-P-COATED SKD11 STEEL'

METHOD FOR POLISHING THE SURFACE OF NI-P-COATED SKD11 STEEL Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
75
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MAGNETIC-LIQUID SUSPENSION / MAGNETIC IRON GRAINS / ABRASIVE GRAINS / POLISHING / NI-P COATING / МАГНИТНАЯ ЖИДКАЯ СУСПЕНЗИЯ / МАГНИТНЫЕ ЗЕРНА ИЗ ЖЕЛЕЗА / АБРАЗИВНЫЕ ЗЕРНА / ПОЛИРОВКА / ПОКРЫТИЕ NI-P

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Phung Xuan Son, Vu Thi Hue

Aim - to develop an effective method for polishing the surface of products using a magnetic field, facilitating the necessary removal of material and resulting in a low degree of workpiece roughness. The object of research was a sample of SKD11 steel having a cylindrical profile and a diameter of 16 mm, coated with a 1 mm layer of Ni-P. For polishing such steel according to the Taguchi experimental method, magnetic-liquid suspension patterns containing magnetic iron grains and abrasive grains having various diameters and at different working distances to the the magnet attached to the polishing equipment were used. The experimental polishing system included a permanent magnet (with magnetic induction equal to 0.45 T), a disk carrying a magnetic-liquid suspension and two electric motors. A distribution of containing magnetic iron grains and abrasive grains in the magnetic-liquid suspension on the working surface of the treated surface was studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. It was found that magnetic-liquid suspension containing large diameter MIGs (7 μm) and smaller diameter AGs (1 μm) should be used with the same polishing distance (= 1 mm) and be set to surface-finish the mirror surface of Ni-P coated SKD11 steel when using an emulsion based on magnetic iron grains; the roughness of the specimen surface of 3.6 Nm was achieved without leaving scratches or adhesion of abrasives with the magnetic-liquid suspension mixture on the treated surface. The use of a magnetic-liquid suspension, containing magnetic iron grains, is an effective method for obtaining precision on the workpiece surface to the nanoscale when the diameter of magnetic iron grains is greater than the diameter of abrasive grains. In terms of cost and performance, this mixture combination has good prospects for implementation in polishing technology compared to the expensive magnetic-liquid suspensioncontaining magnetic iron grains with ZrO2 coating.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «METHOD FOR POLISHING THE SURFACE OF NI-P-COATED SKD11 STEEL»

Original article / Оригинальная статья

DOI: http://dx.doi.org/10.21285/1814-3520-2020-3-561-569

Method for polishing the surface of Ni-P-coated SKD11 steel

Phung Xuan Son, Vu Thi Hue

Hanoi University of Industry, HaNoi, Vietnam

Abstract: Aim - to develop an effective method for polishing the surface of products using a magnetic field, facilitating the necessary removal of material and resulting in a low degree of workpiece roughness. The object of research was a sample of SKD11 steel having a cylindrical profile and a diameter of 16 mm, coated with a 1 mm layer of Ni-P. For polishing such steel according to the Taguchi experimental method, magnetic-liquid suspension patterns containing magnetic iron grains and abrasive grains having various diameters and at different working distances to the the magnet attached to the polishing equipment were used. The experimental polishing system included a permanent magnet (with magnetic induction equal to 0.45 T), a disk carrying a magnetic-liquid suspension and two electric motors. A distribution of containing magnetic iron grains and abrasive grains in the magnetic-liquid suspension on the working surface of the treated surface was studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. It was found that magnetic-liquid suspension containing large diameter MIGs (7 pm) and smaller diameter AGs (1 pm) should be used with the same polishing distance (= 1 mm) and be set to surface-finish the mirror surface of Ni-P coated SKD11 steel when using an emulsion based on magnetic iron grains; the roughness of the specimen surface of 3.6 Nm was achieved without leaving scratches or adhesion of abrasives with the magnetic-liquid suspension mixture on the treated surface. The use of a magnetic-liquid suspension, containing magnetic iron grains, is an effective method for obtaining precision on the workpiece surface to the nanoscale when the diameter of magnetic iron grains is greater than the diameter of abrasive grains. In terms of cost and performance, this mixture combination has good prospects for implementation in polishing technology compared to the expensive magnetic-liquid suspensioncontaining magnetic iron grains with ZrO2 coating.

Keywords: magnetic-liquid suspension, magnetic iron grains, abrasive grains, polishing, Ni-P coating

Information about the article: Received February 02, 2020; accepted for publication May 19, 2020; available online June 30, 2020.

For citation: Phung Xuan Son, Vu Thi Hue. Method for polishing the surface of Ni-P-coated SKD11 steel. Vestnik Ir-kutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2020;24(3):561-569. https://doi.org/10.21285/1814-3520-2020-3-561-569

Метод полирования поверхности стали БК011 с покрытием М-Р

Фунг Суан Шон, Ву Тхи Хуэ

Ханойский индустриальный университет, г. Ханой, Вьетнам

Резюме: Цель - разработать эффективный способ полировки поверхности изделий с использованием магнитного поля, позволяющий обеспечить необходимый съем материала и низкую степень шероховатости обрабатываемой детали. Объектом исследований был выбран образец стали SKD11 цилиндрического профиля диаметром 16 мм, покрытый №^-слоем толщиной 1 мм. Для полировки стали SKD11 с покрытием в соответствии с экспериментальной методикой Тагучи использовались образцы жидкой магнитной суспензии, содержащие магнитные зерна из железа и абразивные зерна разных диаметров с различными рабочими расстояниями до магнита полировального оборудования. Экспериментальная полировальная система включала в себя постоянный магнит (с магнитной индукцией равной 0,45 Тл), диск, несущий жидкую магнитную суспензию, и два электродвигателя. Распределение магнитных железосодержащих зерен и абразивных зерен в жидкой магнитной суспензии на рабочей обрабатываемой поверхности было исследовано методами сканирующей электронной микроскопии и энергодисперсионной рентгеновской спектроскопии. Установлено, что жидкая магнитная суспензия, содержащая магнитные зерна из железа большого диаметра (7 мкм) и абразивные зерна меньшего диаметра (1 мкм), должна использоваться на том же расстоянии полировки (= 1 мм) и применяться одновременно с эмульсией на основе магнитных зерен из железа для финишной обработки зеркальной поверхности стали SKD11, покрытой слоем. Использование данной смеси жидкой магнитной суспензии позволило достичь шероховатости 3,6 Нм на обрабатываемой поверхности образца при отсутствии царапин или адгезии абразивов со смесью. Применение жидкой магнитной суспензии, содержащей магнитные зерна из железа, является эффективным методом прецизионной обработки поверхности заготовки с погрешностью до наноуровня, когда диаметр магнитных зерен больше диаметра абразивных зерен. По характеристикам стоимости и производительности данная комбинированная смесь весьма перспективна в качестве технологии полировки по сравнению с дорогостоящей жидкой магнитной

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

ISSN 1814-3520 _яияяиивяИуТИЯИЯИИОяуДяяяяяяяя^^ 561

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

суспензией, содержащей магнитные железные зерна с покрытием ZrO2.

Ключевые слова: магнитная жидкая суспензия, магнитные зерна из железа, абразивные зерна, полировка, покрытие

Информация о статье: Дата поступления 02 февраля 2020 г.; дата принятия к печати 19 мая 2020 г.; дата он-лайн-размещения 30 июня 2020 г.

Для цитирования: Фунг Суан Шон, Ву Тхи Хуэ. Метод полирования поверхности стали SKD11 с покрытием N Вестник Иркутского государственного технического университета. 2020. Т. 24. № 3. С. 561-569. https://doi.org/10.21285/1814-3520-2020-3-561-569

1. INTRODUCTION

Due to their abrasion- and corrosion-resistance along with high hardness, magnetic materials such as Ni-P-coated SKD11 steel have become widespread in many manufacturing processes including in plastics, chemicals, electronics, automotive, aerospace and mould production industries. Due to significantly improving efficiency and working time and thereby reducing the costs in production processes, improving economic efficiency, such working materials are particularly useful in the production of moulds, including those manufactured by metal injection and stamping [1, 2]. Previously, details of the moulds coated with Ni-P were typically machined by the grinding process [3-5]. However, surfaces machined under processes of grinding with a single diamond crystal material are associated with low quality. It is therefore necessary to finish processing by polishing moulds in order to remove blemishes caused by cutting tools and reduce the roughness of the machining surface to nanometre tolerances.

Although traditional polishing processes also have the ability to improve the quality of the machining surface, in this case, abrasive particles with high hardness tend to scratch and become lodged in the machined surface of softer workpiece materials under high pressure, reducing surface quality [6-12]. For this reason, it is very difficult to create a coated Ni-P surface with high roughness quality and high machining precision using traditional polishing methods. In order to improve the quality of the surface, it is therefore necessary to develop a new, more effective polishing method for removing excess material at the same time as removing blemishes as a result of cutting tools used during stamping

and abrasive particles introduced on the machined surface due to the polishing process.

In this paper, a new promising method of polishing using a magnetic field, resulting in a processed surface having a low degree of roughness and hight machining accuracy, is presented.

2. THE PRINCIPLE OF SURFACE POLISHING USING MAGNETIC-LIQUID SUSPENSION

The operating principle of polishing using magnetic-liquid suspension (MLS) is as illustrated in Fig. 1. A shaped permanent magnet disc is attached to the underside of a rotary disc having eccentricity radius R. An aluminium plate supporting MLS grout is located below the magnet and in distance of H from this magnet. During the process of polishing, the magnet and the rotational axis of motor 2 have the same rotational speed n2. Using this method, a magnetic field is generated, in which the flux density is constant, but the magnetic power is continuously rotating around the rotational axis of motor 2. As a result, a new type of magnetic field is generated, referred to as a rotating magnetic field. The workpiece is then placed below the sheet membrane containing the MLS grout and with the gap of K from the working surface. At this time a polishing system with MLS used for the polishing process is set up.

When the distance between the work-piece and the plate bearing MLS grout has been set, the magnetic effect causes a chain of induction clusters to be formed by the magnetic particles having nanometer dimensions. At this point, the magnetic iron grains (MIGs) having a micrometre size are formed immediately under magnetic induction force. Non-

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

562 —яятяяя-ЯЯУТЯЯЯЯОИЯЯУДЯЯЯЯЯЯЯЯЯ^ ISSN 1814-3520

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

magnetic abrasive particles (AGs) under the effect of the MIGs cluster in combination with the cellulose fibre available in the MLS during the operation. In addition, all the clusters thus-formed are pulled in by the magnetic field to concentrate in areas with the strongest magnetic field. At this point, non-magnetic abrasive particles subjected to the action of gravity and a drag force are actuated by the effect of the magnetic field. Under the combined effect of the two components of the force, the majority of non-magnetic AGs in the layer of MLS grout are brought to bear on the machined surface at the same time as creating a force acting on the workpiece machining surface. When the aluminium disc carrying the MLS grout is rotated with speed n1 the magnetic particles are attracted to the lower surface of the disc and the disc rotation will transmit rotary motion to the AGs. At this time, a very small layer of workpiece surface will be removed by abrasive particles of AGs with micrometre dimensions under the effect of frictional force generated between the workpiece and AG.

3. DESIGN OF EXPERIMENTS USING THE TAGUCHI METHOD

The Taguchi method is commonly used in experimental design when analysing the impact factor of processes, including mul-

tiple factors and multiple levels [13]. It has been successfully applied to many different areas with the purpose of saving time when optimising groups of objects [14-18]. The key advantage of this method is in the design of an orthogonal table based on the factors and level of investigated impact. This method can help researchers to select appropriate representatives in order to reduce the number of trials. In the present work, since there are four factors being investigated, as well as different levels of impact, using the Taguchi experimental design setup is necessary for reducing the number of test cases.

The distribution of the MIGs and AGs of the MLS on the working surface have been studied by electron microscopy and analytical EDX (Energy-dispersive X-ray spectroscopy). The experimental setup is shown in Fig. 2.

The polishing system includes a permanent magnet, a disc bearing the MLS and two motors with transmission belt system as shown in Fig.1, is mounted on the actuator in the z-direction of a polishing machine as in Fig. 2. In the polishing equipment, a permanent magnet disc having a magnetic field strength of 0.45T is placed eccentrically with a radius R = 4.5 mm (in Fig. 1) from the rotating centre. The first motor creates rotational movement for disc bearing MLS through the transmission belt, while the second motor

Fig. 1. Principle of polishing using mixture magnetic-liquid suspension grout Рис. 1. Принцип полировки с использованием жидкой магнитной суспензии с добавками

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

ISSN 1814-3520 ВВВВВВВВВВУТВВВВВВО-_-------.-В-Х------- 563

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

Fig. 2. Equipment for experimental polishing Рис. 2. Оборудование для проведения экспериментов по полированию

transmits rotary motion to the magnet through the coupling. The MLS disc bearing is made of aluminium of non-magnetic material and has apertures H = 1 mm to make sure there is no contact between the magnet and disc bearing MLS (as shown in Fig. 1). This process aims to maintain the strongest possible magnetic field acting on the MLS grout. The workpiece for machining consists of a SKD11 steel of cylindical profile having a diameter of 16 mm covered by a Ni-P coating with a thickness of 1 mm.

4. RESULTS AND DISCUSSION

The SEM (Scanning Electron Microscopy) and EDX image analysis of the results of experimental polishing carried out on the magnetic workpiece (Ni) are shown in Figs. 3, 4 and 5. From the results of analysis, the received influence of the MIGs diameter to the ratio of AGs (through percent ratio of molecules of Al) and MIGs (through percent ratio of molecules of Fe) with magnetic material (Ni) at different positions are as shown in Fig. 6. It can be seen that when using the polishing mixtures of MLSi, MLS2, MLS2 (with increasing diameter of MIGs, respectively), the content of atoms of Al on the polishing surface increases, whereas the content of atomic Fe reduces. With a larger polishing distance of K, the distribution ratio of Al and Fe are in-

creased. It is also noted that, regardless of the diameter of the MIGs or the working distance, the percent ratio of Al is smaller than 25% when the magnetic material is used as the machining workpiece. The ratio of Al is highest at the largest working distance with MLSi, which contains the MIGs having the largest diameter during the experiment.

The percentage of the Al distribution on the polished surface of the MLS4 with magnetic materials at different positions are compared with MLS2; although two polishing mixtures have the same equal ratio of diameter MIGs/diameter AGs, the size of the particles is different, as represented in Fig. 6. It is confirmed that the greater the number of AGS involved in the polishing process, the greater the material removal rate and the better the surface quality as compared to a smaller number of AGS involved in the polishing process; that is, the better surface was obtained at a greater polishing distance K shown in Fig. 6.

However, previous works [19] have demonstrated that, since increasing the working distance will reduce the polishing force and speed of material removal, it will also limit the improvement of surface quality when polishing non-magnetic workpieces with MLS. Thus, the performance of MLS grout in the process of polishing the magnetic material depends on two factors: working distance and number of active AGs impacting on the polishing surface.

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

564 —яявяяя-ЯЯЯТЯЯЯЯОИЯЯЯДЯЯЯЯЯЯЯЯЯ^ ISSN 1814-3520

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

Fig. 3. Working surface images during machining magnetic workpiece with magnetic-liquid suspension Рис. 3. Изображения рабочей поверхности магнитной заготовки при обработке жидкой магнитной суспензией

Fig. 4. Aluminium distribution on working surface during machining magnetic workpiece with magnetic-liquid suspension Рис. 4. Распределение частиц алюминия на рабочей поверхности магнитной заготовки при обработке жидкой магнитной суспензией

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

ISSN 1814-3520 ВВВТВВВВВВУТВВОВО-О-Уд---Т----О-О------^^ 565

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

Fig. 5. Iron distribution on working surface during machining magnetic workpiece with magnetic-liquid suspension Рис. 5. Распределение частиц железа на рабочей поверхности магнитной заготовки при обработке жидкой магнитной суспензией

Fig. 6. Percentage of Al and Fe distribution on the magnetic working surface Рис. 6. Распределение атомов Al и Fe (%) на магнитной рабочей поверхности

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):661-Б69

566 —яявяяя-ЯЯЯТЯЯЯЯОИЯЯЯДЯЯЯЯЯЯЯЯЯ^ ISSN 1814-3520

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

The experimental results and analysis of the surface before and after polishing for 60 minutes at a distance of K = 1 mm with MLS1-MLS4 are shown in Fig. 7. The original rough surface Ra = 40 nm has been significantly smoothed out to Ra < 22 nm following polishing regardless of the type of MLS grout used. However, the texture and roughness of the working surface varies with the different type of MLS grout; the working surface has highest smoothness after polishing with MLS1 (Ra = 3.6 nm respectively). In general, any of a mixed type MLS involved in the process of polishing reduces the roughness of the surface work coated by Ni-P layer; however, the decreased ratio of surface roughness varies with the different MLS corresponding to the different working position. When comparing the roughness before and after polishing, in most cases it can be seen that all the polished surfaces have better quality than before polishing. Nevertheless, as mentioned above, the number of active AGs is reduced when the distance K decreases, resulting in a reduction in the ability to remove material on the machining surface. However, Fig. 7 shows that when the distance K is less, the surface quality is higher. This occurs due to the working distance

being smaller and the polishing force concomitantly higher, which significantly increases the ability to polish with MLS.

Fig. 7 shows the surface polished quality, which decreases in the following sequence: with MLS1 > with MLS2 > with MLS3 > with MLS4. The ratio of a diameter of MIG to a diameter of AP (abrasive particles) reduces from (7 Mm)/(1 ^m) in MLS1 down to (3 ^m)/(1 ^m) with MLS2 and beyond to (1 ^m)/(l ^m) in MLS3, while the range of presence AGs is expanded in order: in MLS1 > in MLS2 > in MLS3, leading to an increase in the number of active AGs in the same order: in MLS1 > in MLS2 > in MLS3. This explains why the roughness reduced in the order during machining with MLS1 > with MLS2 > with MLS3. Although MLS2 and MLS4 have a very similar MIG-to-AG diameter ratio and an almost identical percentage of Al on the polishing surface (Fig. 6), the smoothing of the surface during polishing with MLS4 is much lower than with MLS2. This is due to the much greater force acting on the MIGs in MLS2 than that impacting on the MIGs in MLS4, leading to an increase in the pressure on the AP and concomitant significantly improvement in the ability to remove the material. Thus, the analysis of the influence of MLS

K = 1 K = 2 K = 3 К = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 mlsj mls2 mls3 mls4

Fig. 7. Initial and final surface roughness after the polishing process using different magnetic-liquid suspension grout formulations in different working positions Рис. 7. Начальная и конечная шероховатости поверхности до и после полировки с применением различных смесей жидких магнитных суспензий при разных рабочих позициях

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

ISSN 1814-3520 ВВВВВВВВВВУТВВВВВВО-_-------.-В--------- 567

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

grout with a different polishing distance of K during polishing the machining magnetic workpiece showed that MLS containing MIGs with diameter of 7 ^m and a AGs with diameter of 1 ^m should be used along with the same polishing distance K = 1 mm and should be set up to perform surface finishing for a mirror surface of SKD11 steel covered with a layer of Ni-P using the MLS grout based on basic MIGs.

5. CONCLUSION

Laboratory polishing was performed on a workpiece of SKD11 steel coated with Ni-P using a MLS mixture containing the MIGs and abrasive AGs having different diameters and at a different polishing distance K to determine the distribution of the polishing abrasive on the workpiece surface. The main conclusions are summarised as follows:

A mixture MLS containing MIGs with

diameter of 7 ^m and AGs with diameter of 1 ^m should be used. The working distance of K = 1 mm should be set up to perform surface finishing of a mirror surface of SKD11 steel with the Ni-P coating using the typical MIG based on MLS grout. Under the experimental conditions of this work, the quality of the surface Ni-P coating is significantly improved and a mirror surface roughness Ra = 3.6 nm has been successfully achieved without leaving scratches or adhesion abrasive with MLS grout on the machined surface.

The above results have demonstrated that the use of MLS grout containing MIGs is a practical method for creating a precision surface machining suface to nano level for the workpiece since the diameter of MIGs is larger than diameter of AGs. Polishing by means of this MLS mixture has great potential in the application of technology, both in terms of cost and performance, compared to expensive MLS containing MIGs coated with ZrO2.

Reference

1. De Cristofaro S, Funaro N, Feriti GC, Rostagno M, Comoglio M, Merlo A, Stefanini C, et al. High-speed micro-milling: Novel coatings for tool wear reduction. International Journal of Machine Tools and Manufacture. 2012;63:16-20. https://doi.org/10.1016/j.ijmachtools.2012.07.005

2. Tsai Frank Ching-Feng, Yan Biing Hwa, Kuan Changhee, Huang Fuang-Yuan. A Taguchi and Experimental Investigation into the Optimal Processing Conditions for the Abrasive Jet Polishing of SKD61 Mold Steel. International Journal of Machine Tools and Manufacture. 2008;48(7-8):932-945. https://doi.org/10.1016/j.ijmachtools.2007.08.019

3. Gabler J, Pleger S. Precision and Micro CVD Diamond-Coated Grinding Tools. International Journal of Machine Tools and Manufacture. 2010;50(4):420-424. https://doi.org/10.1016/j.ijmachtools.2009.10.008

4. Kuo Chunliang, Hsu Yichia, Chung Chunhui, Arthur Chen Chao-Chang. Multiple Criteria Optimisation in Coated Abrasive Grinding of Titanium Alloy using Minimum Quantity Lubrication. International Journal of Machine Tools and Manufacture. 2017;115:47-59. https://doi.org/10.1016/j.ijmachtools.2016.12.004

5. Chen Naichao, Ai Jun, Chen Yingchao, He Ping, Ren Jianxin, Ji Dongmei. Multilayer Strategy and Mechanical Grinding for Smoothing CVD Diamond Coated Defective Substrate. Materials & Design. 2016;103:194-200. https://doi.org/10.1016/j.matdes.2016.04.069

6. Li Min, Lyu Binghai, Yuan Julong, Yao Weifeng, Zhou Fenfen, Zhong Meipeng. Evolution and Equivalent Control Law of Surface Roughness in Shear-Thickening

568

Polishing. International Journal of Machine Tools and Manufacture. 2016;108:113-126. https://doi.org/10.1016/j.ijmachtools.2016.06.007

7. Lee Eun-Sang, Cha Ji-Wan, Kim Seong-Hyun. Evaluation of the Wafer Polishing Pad Capacity and Lifetime in the Machining of Reliable Elevations. International Journal of Machine Tools and Manufacture. 2013;66:82-94. https://doi.org/10.1016/j.ijmachtools.2012.11.003

8. Chen Fengjun, Hao Shanmei, Miao Xiangliang, Yin Shaohui, Huang Shuai. Numerical and Experimental Study on Low-Pressure Abrasive Flow Polishing of Rectangular Microgroove. Powder Technology. 2018;327:215-222.

https://doi.org/10.1016/j.powtec.2017.12.062

9. Son Phung Xuan, Quy Tran Duc. Study of the Influence of the Cutting Mode to Vibration, Roughness of the Grinding Process. Collection of III Conference reports. 2013;4:112-119.

10. Dich Tran Van, Dien Hoang Van, Son Phung Xuan, Tiep Nguyen Viet. Study of the Influence of the Cutting Mode to Vibration, Roughness of the Grinding Process. ICAT2005. 2005;028.

11. Dich Tran Van, Dien Hoang Van, Son Phung Xuan. Method of Measurement of Grinding Wheels Wear by First Measuring Compressed Air, when Grinding Flat Surfaces. Journal of Science and Technology. 2007;61:63.

12. Dich Tran Van, Dien Hoang Van, Son Phung Xuan. To Study the Effect of Cutting Mode on the Surface Roughness when Grinding Flat Surfaces. Journal of

ISSN 1814-3520

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569 PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569

Science and Technology. 2006;55:43.

13. Prihandana GS, Mahardika M, Hamdi M, Wong Yoke San, Mitsui K. Effect of Micro-Powder Suspension and Ultrasonic Vibration of Dielectric Fluid in Micro-EDM Processes - Taguchi Approach. International Journal of Machine Tools and Manufacture. 2009;49(12-13):1035-1041. https://doi.org/10.1016/j.ijmachtools.2009.06.014

14. Chang Chih-Wei, Kuo Chun-Pao. Evaluation of Surface Roughness in Laser-Assisted Machining of Aluminum Oxide Ceramics with Taguchi Method. International Journal of Machine Tools and Manufacture. 2007;47:141-147. https://doi.org/10.1016/j.ijmachtools.2006.02.009

15. Vijay Kumar M, Kiran Kumar BJ, Rudresha N. Optimization of Machining Parameters in CNC Turning of Stainless Steel (EN19) By TAGUCHI'S Orthogonal Array Experiments. Materialstoday: Proceedings. 2018;5(5-2): 11395-11407.

https://doi.org/10.1016/j. matpr.2018.02.107

Authorship criteria

Phung Xuan Son, Vu Thi Hue declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

16. Tran Van Dich. Study of Machining Accuracy by Experiments. Hanoi: Technical Sciences; 2003.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

17. Jeevanantham S, Sivaram NM, Robinson Smart DS, Nallusamy S. Optimization of Internal Grinding Process Parameters on C40E Steel Using Taguchi Technique. International Journal of Applied Engineering Research. 2017;12(19):8660—8664.

18. Le Xuan Hung, Tran Thi Hong, Le Hong Ky, Luu Anh Tung, Nguyen Thi Thanh Nga, Vu Ngoc Pi. Optimum dressing parameters for maximum material removal rate when internal cylindrical drinding using Taguchi method. International Journal of Mechanical Engineering and Technology (IJMET). 2018;9(12):123—129.

19. Niranjan MS, Singh KP, Murtaza Q. Characterization of Magnetic Abrasive Particles based Magne-torheological Polishing Fluid. Materialstoday: Proceedings. 2017;4(2-A):752-757. https://doi.org/10.1016lj.matpr.2017.01.082

Критерии авторства

Фунг Суан Шон, Ву Тхи Хуэ заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

The final manuscript has been read and approved by all the co-authors.

INFORMATION ABOUT THE AUTHORS

Phung Xuan Son,

Cand. Sci. (Eng.),

Head of the Department of Industrial Equipment and Tools, Hanoi University of Industry, 298 Kauzien St., HaNoi, Vietnam; e-mail: phungxuanson@gmail.com.com

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

СВЕДЕНИЯ ОБ АВТОРАХ

Фунг Суан Шон,

кандидат технических наук, заведующий кафедрой

промышленного оборудования и инструмента, Ханойский индустриальный университет, г. Ханой, ул. Каузиен, 298, Вьетнам; e-mail: phungxuanson@gmail.com.com

Vu Thi Hue,

Master Sci. (Eng.),

Lecturer of the Department of Industrial Equipment and Tools, Hanoi University of Industry, 298 Kauzien St., HaNoi, Vietnam; H e-mail: vuthihue@haui.edu.vn.com

Ву Тхи Хуэ,

магистр технологии, преподаватель кафедры промышленного оборудования и инструментов, Ханойский индустриальный университет, г. Ханой, ул. Каузиен, 298, Вьетнам; H e-mail: vuthihue@haui.edu.vn.com

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(3):561-569

ISSN 1814-3520 ^вввввввввввввввввввуДвввввввввввввввввввввв 569

_PROCEEDINGS OF IRKUTSK STATE TECHNICAL UNIVERSITY 2020;24(3):561-569_

i Надоели баннеры? Вы всегда можете отключить рекламу.