УДК 620.183, 669-179
Металлургические характеристики деталей из сплава Co-Cr-Mo, полученных по гибридной технологии
112 13
P. Ferro , A. Fabrizi , G. Savio , R. Meneghello , F. Berto
1 Университет Падуи, Виченца, 36100, Италия 2 Университет Падуи, Падуя, 35131, Италия 3 Норвежский университет естественных и технических наук, Тронхейм, 7491, Норвегия
Технология аддитивного производства открывает новые невероятные возможности в проектировании деталей. В настоящее время оценка конструкционной прочности деталей, изготовленных аддитивным способом, представляет собой сложную задачу, решение которой позволит вывести аддитивные детали на рынок. Одним из основных недостатков аддитивного производства является низкое качество поверхностей и большой размерный допуск выращенных изделий. Решением в данной ситуации может стать гибридное производство, объединяющее субтрактивный и аддитивный методы. Гибридное производство, требующее меньших финансовых и временных затрат, заслуживает изучения с точки зрения возможных применений. Целью настоящей работы является оценка микроструктурных свойств гибридных образцов сплава Co-Cr-Mo, в которых аддитивная часть выращивается на механически обработанной части. Результаты показали отличное металлургическое сцепление между двумя деталями, обработанными по-разному.
Ключевые слова: селективное лазерное сплавление, сплав Co-Cr-Mo, гибридное производство, микроструктура, механические свойства, биоматериалы
DOI 10.24412/1683-805X-2021-6-65-69
Metallurgical characterization of Co-Cr-Mo parts processed by hybrid manufacturing technology
P. Ferro1, A. Fabrizi1, G. Savio2, R. Meneghello1, and F. Berto3
1 Department of Engineering and Management, University of Padova, Vicenza, 36100, Italy
2 Department of Civil, Environmental and Architectural Engineering, Padova, 35131, Italy
3 Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology,
Trondheim, 7491, Norway
Additive manufacturing technology offers new and incredible opportunities in design of components. Nowadays, structural integrity assessment of additively manufactured components is a formidable challenge that needs to be faced out in order to allow such components to be launched in the market. One of the major drawbacks of additive manufacturing processes is the low surface finishing and geometrical tolerance of the built parts. In this scenario, hybrid manufacturing, which takes advantage of both subtractive and additive manufacturing, can be considered a solution worthy of investigation in view of possible applications, saving costs and time in component production. The present work is aimed at assessing the microstructural properties of subtractively/additively Co-Cr-Mo hybrid manufactured samples, where the additive part is built over the machined one. Results showed an excellent metallurgical coupling at the interface between the two differently processed parts.
Keywords: selective laser melting, Co-Cr-Mo alloy, hybrid manufacturing, microstructure, mechanical properties, bio-materials
© Ferro P., Fabrizi A., Savio G., Meneghello R., Berto F., 2021
1. Introduction
In last years additive manufacturing (AM) technologies applied to metallic materials experienced a formidable breakthrough both in the industrial sector with the production of complex structural parts and in the scientific as well as academic sector where the challenges were, and still are, to find new suitable-to-process alloys [1-3], develop process parameters optimization criteria [4, 5], assure structural integrity of the parts [6-11], re-design components with the aim of reducing their weights. It is worth mentioning the numerous advantages of these technologies, say selective laser melting (SLM), electron beam melting (EBM) or binder jetting (BJG), compared to standard subtractive methodologies: (i) a complete freedom in components shape design, (ii) less production of scraps, (iii) shorter time to market, (iv) more customization opportunities. Considering the possibility of reducing weight of the parts and saving material, AM can be classified as a green technology, as well. However, there are even disadvantages. Among these, probably the most important are: high residual stress, poor dimensional accuracy and surface finish, high initial costs and time consuming for process parameters optimization. The low productivity could also be a drawback when considering SLM process [12]. As a matter of fact, using optimum process parameters and a 40 ^m layer thickness, the volumetric deposition rate performed by SLM of maraging steel using an EOS M290 machine is 10.8 cm3/h [13, 14].
In this regard, conventional subtractive manufacturing technologies are irreplaceable and even strategic if used in synergic combination with additive techniques. Additive/subtractive hybrid manufacturing (A/SM) of metallic parts was introduced in 1998 with the pioneering work of Kruth et al. [15] who used CNC (computer numerical control) milling operation to remedy the relative inaccuracy of each powder jet deposition during the component building. It is needed to point out that when dealing with hybrid manufacturing, one can refers to the use of subtractive techniques, say milling, used in-parallel to the additive techniques in order to adjust the tolerance and roughness of the part while building the whole component itself [16-18], as well as the use of subtractive techniques, say turning, to produce first a portion of the component that needs high dimensional tolerances and then additive techniques to build, in-series, the remaining part of the component that does not require high surface finishing (that is
the case studied in the present work). This last in-series procedure is relative recent in the panorama of the powder-bed fusion (PBF) technologies and it is obviously much different from the standard use of finishing processes applied to an already built additive part. Among the main advantages in using hybrid systems there are: the repair of currently existing high-value components, the high surface finishing of external and internal parts of complex shape, the precision guaranteed by the possibility of printing and milling the part in the same reference coordinate system, the improved fatigue strength induced by high surface finishing of components [19], improved productivity and finally multi-material 3D printing [20]. For a short review of hybrid additive systems, the readers can refer to [21].
Hybrid manufacturing processes pose a significant technological advance, allowing for component repairs [22-25], production of bi-materials [26-30], manufacturing of large components with intricate designs [31-35] as well as the improvement of components productivity and performances [36-40].
Marklein et al. [37], in their recent work, described the manufacturing of a gear component with discrete tooth geometry by powder bed fusion of metal using a laser beam and forming. They found that tooth geometry manufactured by additive manufacturing and forming is closer to the target than for the conventional process chain. In their recent work, Do-lev et al. [38] examined in detail the tensile behaviour and fracture toughness of a hybrid Ti-6Al-4V alloy. Compact tension and uniaxial tension specimens extracted from the hybrid pre-forms demonstrated good fracture and properties with no preference for crack growth in neither the AM nor wrought materials. In another work [39], the impact of process parameters on relative density, warpage and bonding strength between sheet metal and additively manufactured element were studied. Meiners et al. [40] investigated the use of powder laser metal deposition (p-LMD) and wire-arc additive manufacturing (WAAM) for hybrid manufacturing of Ti-6Al-4V aerospace forgings. The proposed manufacturing route is based on a conventionally pre-formed forging, which does not yet have all the features of the final component. These features, such as ribs or other structural or functional geometries, will be added by additive manufacturing. In this way, the number of processing steps and forging dies are reduced, and efficient near-net-shape production could be provided.
References
1. Mukherjee T., Zuback J.S., De DebRoy A., DebRoy T. Printability of alloys for additive manufacturing // Sci. Rep. - 2016. - V. 6. - P. 19717.
2. Gunther J., Brenne F., Droste M., Wendler M., Volko-va O., Biermann H., Niendorf T. Design of novel materials for additive manufacturing—Isotropic microstructure and high defect tolerance // Sci. Rep. -2018. - V. 8. - P. 1298.
3. Gokuldoss K.P. Design of next-generation alloys for additive manufacturing // Mater. Design Process Comm. - 2019. - V. 1. - P. e50.
4. Ferro P., Savio G., Meneghello R., Berto F. A modified volumetric energy density-based approach for porosity assessment in additive manufacturing process design // Int. J. Adv. Manufact. Tech. - 2020. - V. 110. -P. 1911-1921.
5. Ferro P., Berto F., Romanin L. Understanding powder bed fusion additive manufacturing phenomena via numerical simulation // Frat. Int. Strut. - 2020. -V. 14. - No. 53. - P. 252-284.
6. Ferro P., Fabrizi A., Berto F., Savio G., Meneghello R., Rosso S. Defects as a root cause of fatigue weakening of additively manufactured AlSi10Mg components // Theor. Appl. Fract. Mech. - 2020. - V. 108. -P. 102611.
7. Ferro P., Meneghello R., Razavi S.M.J., Berto F., Sa-vio G. Porosity inducing process parameters in selective laser melted AlSi10Mg aluminium alloy // Phys. Mesomech. - 2020. - V. 23. - No. 3. - P. 256-262. -https://doi.org/10.1134/S1029959920030108
8. Peron M., Torgersen J., Ferro P., Berto F. Fracture behavior of notched as-built EBM parts: Characterization and interplay between defects and notch strengthening behaviour // Theor. Appl. Fract. Mech. -2018. - V. 98. - P. 178-185.
9. Razavi S.M.J., Ferro P., Berto F., Torgersen J. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V // Theor. Appl. Fract. Mech. - 2018. - V. 97. - P. 376-384.
10. Razavi S.M.J., Bordonaro G.G., Ferro P., Torgersen J., Berto F. Fatigue behavior of porous Ti-6Al-4V made by laser-engineered net shaping // Materials. -2018. - V. 11. - No. 2. - P. 284-292.
11. Razavi S.M.J., Ferro P., Berto F. Fatigue assessment of Ti-6Al-4V circular notched specimens produced by selective laser melting // Metals. - 2017. - V. 7. -No. 8. - P. 291-301.
12. Bhavar V., Kattire P., Patil V., Khot S., Gujar K., Singh R. A review on powder bed fusion technology of metal additive manufacturing // 4th Int. Conf. Exh. Additive Manufact. Tech.-AM-2014, September 2014. - P. 1-2.
13. Tan C.L., Zhou K.S., Tong X., Huang Y.S., Li J., Ma W. Y. et al. Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting // Proc. 2016 6th Int. Conf. Advanc. De-
sign Manufact. Eng. / Ed. by Z.Y. Jiang. - 2016. -P. 404-410.
14. Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel // Mater. Des. - 2017. - V. 134. - P. 23-34.
15. Kruth J.P., Leu M.C., Nakagawa T. Progress in additive manufacturing and rapid prototyping // CIRP An-nals-Manuf. Tech. - 1998. - V. 47. - No. 2. - P. 525540.
16. Du W., Bai Q., Zhang B. A novel method for additive/ subtractive hybrid manufacturing of metallic parts // Proc. Manuf. - 2016. - V. 5. - P. 1018-1030.
17. Grzesik W. Advanced Machining Processes of Metallic Materials // Theory, Modelling, and Applications. - Amsterdam: Elsevier. - ISBN 978-0-44463711-6.
18. Zhu Z., Dhokia V.G., Nassehi A., Newman S.T. A review of hybrid manufacturing processes // Int. J. Comp. Integr. Manuf. - 2013. - V. 26. - P. 596-615.
19. Kasperovich G., Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting // J. Mater. Proc. Tech. - 2015. -V. 220. - P. 202-214.
20. Yamazaki T. Development of a hybrid multi-tasking machine tool: Integration of additive technology with CNC machining // Proc. CIRP. - 2016. - V. 42. -P. 81-86.
21. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: A review // J. Machine Eng. - 2018. - V. 18. - No. 4. - P. 5-24.
22. Li L. Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping // J. Mater. Sci. - 2006. - V. 41. - P. 7886-7893.
23. Song J., Deng Q., Chen C., Hu D., Li Y. Rebuilding of metal components with laser cladding forming // Appl. Surf. Sci. - 2006. - V. 252. - P. 7934-7940.
24. Sexton L., Lavin S., Byrne G., Kennedy A. Laser cladding of aerospace materials // J. Mater. Proc. Tech. -2002. - V. 122. - P. 63-68.
25. Gill D.D., Smugeresky J.E., Harris M.F., Robino C.V., Griffith M.L. On the Interface between LENS® Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components // Sandia Report. - 2004.
26. Kim H., Cong W., Zhang H.-C., Liu Z. Laser engineered net shaping of nickel-based superalloy Inconel 718 powders onto AISI 4140 alloy steel substrates: Interface bond and fracture failure mechanism // Materials. - 2017. V. 10. - No. 4. - P. 341-358.
27. Tan C., Zhou K., Ma W., Min L. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture // Mater. Des. -2018. - V. 155. - P. 77-85.
28. Cyr E., Asgari H., Shamsdini S., Purdy M., Hosseink-hani K., Mohammadi M. Fracture behaviour of addi-
tively manufactured MS1-H13 hybrid hard steels // Mater. Lett. - 2018. - V. 212. - P. 174-177.
29. Azizi H., Ghiaasiaan R., Prager R., Ghoncheh M.H., Samk K.A., Lausic A., Byleveld W., Phillion A.B. Metallurgical and mechanical assessment of hybrid addi-tively-manufactured maraging tool steels via selective laser melting // Addit. Manuf. - 2019. - V. 27. -P. 389-397.
30. Shakerin S., Hadadzadeh A., Amirkhiz B.S., Shamsdi-ni S., Li J., Mohammadi M. Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique // Addit. Manuf. - 2019. - V. 29. -P. 100797.
31. Schaub A., Juechter V., Singer R.F., Merklein M. Characterization of hybrid components consisting of SEBM additive structures and sheet metal of alloy Ti-6Al-4V // Key Eng. Mater. - 2014. - P. 609-614.
32. Ahuja B., Schaub A., Karg M., Schmidt R., Merklein M., Schmidt M. High power laser beam melting of Ti-6Al-4V on formed sheet metal to achieve hybrid structures // Laser 3D Manuf. - 2015. - P. 93530X.
33. Huber F., Papke T., Kerkien M., Tost F., Geyer G., Merklein M., Schmidt M. Customized exposure strategies for manufacturing hybrid parts by combining laser beam melting and sheet metal forming // J. Laser Appl. - 2019. - V. 31. - P. 22318.
34. Butzhammer L., Dubjella P., Huber F., Schaub A., Au-müller M., Petrunenko O., Merklein M., Schmidt M. Experimental investigation of a process chain combining sheet metal bending and laser beam melting of Ti-6Al-4V // Lasers Manufact. - 2017.
35. Tan C., Zhou K., Ma W., Min L. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture // Mater. Des. -2018. - V. 155. - P. 77-85.
36. Altiparmak S.C., Yardley V.A., Shi Z., Lin J. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing // Int. J. Lightweight Mater. Manuf. - 2021. - V. 4. - No. 2. - P. 246-261.
37. Merklein M., Schulte R., Papke T. An innovative process combination of additive manufacturing and sheet bulk metal forming for manufacturing a functional hybrid part // J. Mater. Proc. Tech. - 2020. - V. 291. -P. 117032.
38. Dolev O., Osovski S., Shirizly A. Ti-6Al-4V hybrid structure mechanical properties—Wrought and additive manufactured powder-bed material // Additive Manuf. - 2021. - V. 37. - P. 101657.
39. Papke T., Merklein M. Processing of 316L hybrid parts consisting of sheet metal and additively manufactured element by powder bed fusion using a laser beam // Proc. CIRP. - 2020. - V. 94. - P. 35-40.
40. Meiners F., Ihne J., Jürgens P., Hemes S., Mathes M., Sizova I., Bambach M., Hama-Saleh R., Weisheit A. New hybrid manufacturing routes combining forging
and additive manufacturing to efficiently produce high performance components from Ti-6Al-4V // Proc. Manuf. - 2020. - V. 47. - P. 261-267.
41. Tan C., Zhou K., Ma W., Min L. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture // Mater. Design. -2018. - V. 155. - P. 77-85.
42. Osipovich K.S., Astafurova E.G., Chumaevskii A.V., Kalashnikov K.N., Astafurov S.V., Maier G.G., Mel-nikov E.V., Moskvina V.A., Panchenko M.Yu., Tara-sov S.Yu., Rubtsov V.E., Kolubaev E.A. Gradient transition zone structure in "steel-copper" sample produced by double wire-feed electron beam additive manufacturing // J. Mater. Sci. - 2020. - V. 55. -P. 9258-9272.
43. Azizi H., Ghiaasiaan R., Prager R., Ghoncheh M.H., Samk K.A., Lausic A., Byleveld W., Phillion A.B. Metallurgical and mechanical assessment of hybrid addi-tively-manufactured T maraging tool steels via selective laser melting // Addit. Manuf. - 2019. - V. 27. -P. 389-397.
44. Ahuja B., Schaub A., Karg M., Lechner M., Merklein M., Schmidt M. Developing LBM process parameters for Ti-6Al-4V thin wall structures and determining the corresponding mechanical characteristics // Phys. Proc. - 2014. - V. 56. - P. 90-98.
45. Schaub A., Ahuja B., Ahuja B., Butzhammer L., Osterziel J., Merklein M. Additive manufacturing of functional elements on sheet metal // Phys. Proc. - 2016. -V. 83. - P. 797-807.
46. Schaub A., Ahuja B., Karg M., Schmidt M., Merklein M. Fabrication and Characterization of Laser Beam Melted Ti-6Al-4V Geometries on Sheet Metal // DDMC 2014 Fraunhofer Direct Digital Manufacturing Conference At. - Berlin, 2014. - P. 1-5.
47. Schaub A., Juechter V., Singer R.F., Merklein M. Characterization of hybrid components consisting of SEBM additive structures and sheet metal of alloy Ti-6Al-4V // Key Eng. Mater. - 2014. - V. 611-612. -P. 609-614.
48. Revilla-Leon M., Sadeghpour M., Ozcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry // J. Prosthodontics. - 2020. - V. 29. - P. 579-59.
49. Mangano F., Chambrone L., van Noort R., Miller C., Hatton P., Mangano C. Direct metal laser sintering titanium dental implants: A review of the current literature // Int. J. Biomater. - 2014. - P. 461534.
50. Silva M., Felismina R., Mateus A., Parreira P., Mal-cp C. Application of a hybrid additive manufacturing methodology to produce a metal/polymer customized dental implant // Proc. Manuf. - 2017. - V. 12. -P. 150-155.
51. Xiang D.D., Wang P., Tan X.P., Chandra S., Wang C., Nai M.L.S., Tor S.B., Liu W.Q., Liu E. Anisotropic microstructure and mechanical properties of additively
manufactured Co-Cr-Mo alloy using selective electron beam melting for orthopedic implants // Mater. Sci. Eng. A. - 2019. - V. 765. - P. 138270.
52. Sun S.-H., Koizumi Y., Kurosu S., Li Y.-P., Matsumo-to H., Chiba A. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting // Acta Mater. - 2014. - V. 64. - P. 154-168.
53. Sun S.-H., Koizumi Y., Kurosu S., Li Y.-P., Chiba A. Phase and grain size inhomogeneity and their influences on creep behavior of Co-Cr-Mo alloy additive manufactured by electron beam melting // Acta Mater. - 2015. - V. 86. - P. 305-318.
54. Milosev I. CoCrMo Alloy for Biomedical Applications // Biomedical Applications. Modern Aspects of Electrochemistry. V. 55 / Ed. by S. Djokic. - Boston: Springer, 2012.
55. Mantrala K.M., Das M., Balla V.K., Rao C.S., Kesava Rao V.V.S. Additive manufacturing of Co-Cr-Mo alloy: Influence of heat treatment on microstructure, tri-bological, and electrochemical properties // Front. Mech. Eng. - 2015. - V. 1. - P. 2.
56. Tan X.P., Wang P., Kok Y., Toh W.Q., Sun Z., Nai S.M.L., Descoins M., Mangelinck D., Liu E.,
Tor S.B. Carbide precipitation characteristics in additive manufacturing of Co-Cr-Mo alloy via selective election beam melting // Scripta Mater. - 2018. -V. 143. - P. 117-121.
57. Razavi S.M.J., Avanzini A., Cornacchia G., Giorleo L., Berto F. Effect of heat treatment on fatigue behavior of as-built notched Co-Cr-Mo parts produced by selective laser melting // Int. J. Fatigue. - 2021. -V. 142. - P. 105926.
58. Haan J., Asseln M., Zivcec M., Eschweiler J., Radermacher R., Broeckmann C. Effect of subsequent hot isostatic pressing on mechanical properties of ASTM F75 alloy produced by selective laser melting // Powder Metallurgy. - 2015. - V. 58. - No. 3. - P. 161165.
59. Suwas S., Ray R.K. Crystallographic Texture of Materials, Engineering Materials and Processes. - London: Springer-Verlag, 2014.
60. Zhao Y., Koizumi Y., Aoyagi K., Wei D., Yamanaka K., Chiba A. Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co-Cr-Mo alloy // Materialia. - 2019. - V. 6. - P. 100346.
Received 12.05.2021, revised 03.06.2021, accepted 03.06.2021
This is an excerpt of the article "Metallurgical Characterization of Co-Cr-Mo Parts Processed by Hybrid Manufacturing Technology". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/S1029959922020072
Сведения об авторах
Paolo Ferro, Prof., University of Padova, Italy, [email protected]
Alberto Fabrizi, Prof., University of Padova, Italy, [email protected]
Gianpaolo Savio, Assist. Prof., University of Padova, Italy, [email protected]
Roberto Meneghello, Prof., University of Padova, Italy, [email protected]
Filippo Berto, Prof., Norwegian University of Science and Technology, Norway, [email protected]