Научная статья на тему 'Means of identification of water-spirit solutions'

Means of identification of water-spirit solutions Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
63
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
water-spirit solution / immittance method / two-terminal / admittance / impedance / водно-спиртовой раствор / имитансный метод / двухполюсник / адмитанс / импеданс

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — E. V. Pokhodylo, V. Z. Yuzva, O. S. Lyubchyk

The methods and means to identify the water-spirit solutions were analyzed. Herewith permittivity is used as an informative parameter for identification, by which the spirit content or specific conductivity and dielectric conductivity is calculated by the formula, which values are compared with baseline. In this case, one frequency is used, at which measurements are made. In order to be ensured against products falsification, active and reactive components of the impedance or admittance are measured at many frequencies of specified frequency range, and the results are compared with the analogical measured parameters of basic sample. General structure of measuring means for building identification means of water-spirit solutions is offered

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Средства идентификации водно-спиртовых растворо

Проанализированы способы и средства идентификации водно-спиртовых растворов. При этом как информативный параметр для идентификации используют диэлектрическую проницаемость, по которой рассчитывают содержание спирта по формуле или удельную проводимость и диэлектрическую проводимость, значение которых сравнивают с базовыми. При этом используют одну частоту, на которой осуществляются измерения. С целью лучшего обеспечения безопасности от фальсификации продукции измеряют активную и реактивную составляющие импеданса или адмитанса на многих частотах заданного частотного диапазона, а результаты сравнивают с аналогично измеренными параметрами базового образца. Предложена обобщенная структура измерительного средства для построения средств идентификации водно-спиртовых растворов.

Текст научной работы на тему «Means of identification of water-spirit solutions»

УДК 658.(62+562) Doctor of Technical Sciences, Professor E. V. Pokhodylo;

PhD student V.Z. Yuzva, PhD student O.S. Lyubchyk — National University "Lviv Polytechnic "

MEANS OF IDENTIFICATION OF WATER-SPIRIT SOLUTIONS

The methods and means to identify the water-spirit solutions were analyzed. Herewith permittivity is used as an informative parameter for identification, by which the spirit content or specific conductivity and dielectric conductivity is calculated by the formula, which values are compared with baseline. In this case, one frequency is used, at which measurements are made. In order to be ensured against products falsification, active and reactive components of the impedance or admittance are measured at many frequencies of specified frequency range, and the results are compared with the analogical measured parameters of basic sample. General structure of measuring means for building identification means of water-spirit solutions is offered.

Keywords: water-spirit solution, immittance method, two-terminal, admittance, impedance.

Introduction. Alcoholic beverage industry in Ukraine is one of the most developed thanks to the introduction of new advanced technologies aimed at intensifying all stages of the process and improving product quality. Quality control is aimed at costs compliance of raw materials, reducing their losses and establishing the identity of the results and relevant standards. Even minor deviations of the raw materials quality and irregularities in the technological process leading to the production of finished products of poor quality. If such deviations are detected by measuring control (the use of measuring devices), so it can be effectively provide identification of such products, the reliability of the results of their storage and transmission.

Analysis of ways and means of identifying water-alcohol solution. Recently the control methods of electrical parameters of spirits and water-spirit solutions, which made their identification, became widespread in this field. One of these options is the permittivity, by which the concentration of water-alcohol solution is determined [1]. However, identification by one parameter does not protect against falsification both spirit and water-spirit products. The best from this point of view is the measuring means by two parameters, namely: the permittivity and conductivity at a fixed frequency or on several frequencies of specified range. They relate to the components measurements of complex impedance [2] or complex conductivity control objects and processing results, i.e. immittance method is realized [3], by which the control object is served two-terminal, placed in the electric circuit of alternating current, and parameters of the complex impedance (conductivity) are measured and compared with the corresponding measured parameters to the standard (basic) sample of known quality level.

A well-knownonep method of effective determination of the ethanol content in water-spirit solution [4], by which the capacity of the solution is measured and permittivity is determined. Mass share of spirit is found by the empirical formula considering the temperature. For this purpose, serial meter E7-12 is used, measurement frequency of 1MHz.

A well-known method of identification of liquor parties (usually vodka) [5] by which the manufacturer measures conductivity and permittivity of parties spirit and water as components of finished products. However, the manufacturer generates

Ha^OHantHHH aicoTexHiHHHH ymBepcHTeT YKpaiHH

identification label, which contains the results of the measurements and the frequency at which they are carried out. On the other hand, the recipient of the liquor party checks the identification label, marked on the container of accounting unit of the finished product, and also carries out control measurements of the same parameters. Identification is confirmed by comparing the results of the manufacturer and the recipient. This measurement method can be implemented by measuring active and reactive components with serial immitance meters.

Active and reactive components of the control object are measured by method [6] in the frequency range from 1kHz to 1MHz. The measurement results are compared with base impedance-grams, obtained for samples with well-known spirit content in water-spirit solution. Multifrequency serial meter E7-20 is used for measurements.

Therefore, to ensure the reliability of the spirit identification and water-spirit solutions both manufacturer and recipient must have the appropriate controls, and abide the same measurement conditions of permittivity and conductivity. That is, the control means should have a basic structure that ensures the same working process on the level of the test signal, fixed frequency of specified frequency range, connecting primary converter and its construction, temperature conditions.

Measurement means of electrophysical parameters. The authors offer a general structural scheme of the measurement means, which can be realized by measuring conductivity and permittivity of water-spirit solution. The scheme of such mean is shown in Figure.

Fig. Structural scheme of meter of conductivity and permittivity spirit solutions

The following structural scheme of meter contains generator of sinusoidal oscillation G, vector converter of electrophysical parameters of voltage VC, which includes contact capacitive sensor Cx, active exemplary resistor of given resistance Ro, and an operational amplifier OA. To vector converter are connected two converters of vector quantity in scalar, namely the active component converter CVS1 and reactive - CVS2. To adjust temperature error are used correction schemes output voltages CVS1 and CVS2 considering data from temperature sensors TS1 and TS2 about temperature of control object. The presence of two sensors and two correction schemes are caused by the varied temperature dependence of permittivity and conductivity on

226

36ipHHK HayKOBO-TexHiHHHx nnaub

temperature. Corrected DC voltages U2 and U3 are converted by analog-digital converters ADC1, ADC2 into digital codes and are displayed on the display device DDI. To eliminate the impact of generator voltage on the measurement result, resisted voltage ADC are formed from the output generator voltage by analogical to CVS1 device CVS3. The primary converter (sensor) may be both a plane parallel and coaxial construction. Consider the work of the meter by using sensor of plane-parallel structures.

In this case, the output ВП for frequency of test signal a and considering the sensor parameters there is a complex voltage with active G and reactive Bx components

Ui = UmRo (Gx + jB )= UmRo (Gx + jaCx), (1)

and considering sensor parameters, expression (1) will have the form

Ui = UmRo |sS + ja^dS j, (2)

where s - the conductivity of controlled fluid; e0, ex - permittivity of vacuum and controlled object, respectively; d - distance between electrode; S - area of electrodes. From complex voltage (2) by converters CVS1, CVS2 its active Re (Ui) and reactive Im (Ui) components are selected

S

U2 = Re (U ) = UmkRs-, (3)

U3 = Im (U1) = Umk2RaeejS, (4)

d

and resisted voltage ADC proportional to the generator voltage is formed by CVS3 converter, namely

U3 = Uткз, (5)

where k1, k2 and k3 - the conversion coefficient of converters CVS1, CVS2 and CVS 3, and respectively.

Using ADC the division of expressions is made (2) to (4) and (3) to (4), as a result we get

N1 = ^■ SRo s = As, (6)

k3 d

N2 = k2 •S a Ro eo ■£x = A2£x, (7)

k3 d

where A2 = —1-SR0s, A2 = -2SaRe0 and is constant for a fixed frequency. k3d k3d

In order to increase the number of identification parameters, which at the same time leads to prevent the falsification of such products, the measurement should be performed at several frequencies specified frequency range.

The scheme also allows using four-electrode capacitive sensor to reduce the impact in electronic impedance, including double layer capacitance. To reduce the

Нащональний лкотехшчний унiверситет Украши

impact uninformative impedance caused by scheme connection of capacitive sensor is used screening all items. The screen must be connected to the common generator point and op-amp (operational amplifier).

Conclusions. Analysis of schemes of identification means water-spirit solutions by electrical parameters showed the following.

1) To identify water-spirit solution is used permittivity, by which the spirit content is determined, using the empirical formula or specific conductivity and permittivity, which value is compared with the basic. In this case, one frequency is used at which measurements are made.

2) In order to be ensured against products falsification, active and reactive components of the impedance or admittance are measured at many frequencies of specified frequency range, and the results are compared with the analogical measured parameters of basic sample.

3) Mainly to realize these methods of solutions identification are used multifunction universal serial measuring devices, parameters of test signals (voltage and generator frequency) which are different, which can lead to not identical measurement results.

4) The structure of the measuring tools, which is given, is universal and can be a base for building identification means of water-spirit solutions. It easily provides connection with computers to process measurement results.

Literature

1 Patent of Russia № 2135993. The device for determining the concentration of water-spirit solutions, IPC G01N 33/14 of 04/27/2003.

2. Kukla A.L. Impedance analyzer for marks identification of water-spirit drinks / A.L. Kukla, A.S. Pavlyuchenko, A.S. Maystrenko, A.V. Mamykin // The technology and construction in the electronics industry, Kyiv. - 2012. - № 1, P. 15-21.

3. Pokhodylo E.V. Immittance quality control : monography / E.V. Pokhodylo, P.G. Stolyarchuk. - Lviv : Lviv Polytechnic National University Publishing House, 2012. - Pp. 164.

4. Patent of Russia № 2203485. The method of determining the operational strength water-spirit solutions, МПК G01N from 27.04.2003.

5. Russian Patent № 2488109. The method of recognizing of strong spirit drinks identification, mostly vodka, МПК G01N 33/14 from 27.04.2003.

6. Patent of Ukraine № 93243. Method of effective determination of ethanol spirit content in water-spirit solution, МПК G01N27/48, G01N27/02, from 25.09.2014.

Походило €.'В, Юзва В.З., Любчик О. С. Засоби вдентифжаци водно-спиртових розчишв

Проан^зовано способи та засоби щентифжаци водно-спиртових розчишв. При цьому як шформативний параметр для щентифжацц використано дiелектричну проник-шсть, за якою розраховують вмют спирту за формулою або питому провщшсть та дь електричну провщшсть, значения яких поршнюють з базовими. При цьому використо-вують одну частоту, на якш здшснюються вишрювання. З метою кращого убезпечення вщ фальсифжацц продукцн вимрюють активну та реактивну складовi частини iмпе-дансу чи адмкансу на багатьох частотах заданого частотного дiапазону, а результати щ^внюють з аналопчно вишряними параметрами базового зразка. Запропоновано уза-гальнену структуру вишрювального засобу для побудови засобiв щентифжаци водно-спиртових розчишв.

Ключовi слова: водно-спиртовий розчин, iмiтансний метод, двополюсник, адмь танс, iмпеданс.

Походило €.В, Юзва В.З., Любчик О. С. Средства идентификации водно-спиртовых растворов

Проанализированы способы и средства идентификации водно-спиртовых растворов. При этом как информативный параметр для идентификации используют диэлектрическую проницаемость, по которой рассчитывают содержание спирта по формуле или удельную проводимость и диэлектрическую проводимость, значение которых сравнивают с базовыми. При этом используют одну частоту, на которой осуществляются измерения. С целью лучшего обеспечения безопасности от фальсификации продукции измеряют активную и реактивную составляющие импеданса или адмитанса на многих частотах заданного частотного диапазона, а результаты сравнивают с аналогично измеренными параметрами базового образца. Предложена обобщенная структура измерительного средства для построения средств идентификации водно-спиртовых растворов.

Ключевые слова: водно-спиртовой раствор, имитансный метод, двухполюсник, адмитанс, импеданс.

УДК 614.84 Нач. магктратури управлтня С.Ю. Руденко,

канд. техн. наук - НУ цивтьного захисту Украти

ВИЗНАЧЕННЯ ОБСЯГУ ПОВ1ТРЯ, ЩО БЕРЕ УЧАСТЬ У ПШОУТВОРЕНН1 КОМПРЕС1ЙНО1 П1НИ

Проаналiзовано вогнегасш шни, що використовують для гасшня пожеж, наведено 1х класифшацвд. Розкрито основш переваги компресшно! шни пор1вняно з пов^яно-мехашчною. За умови використання пожежного насосу з подачею до 20 л/с для пода-вання розчину пшоутворювача аналггичним шляхом визначено юльюсть повiтря, що бере участь у шноутворенш компресшно! пiни. Побудовано залежност необхщно! об-сягу повiтря залежно вiд витрати розчину пiноутворювача для шни низько! кратностi. Визначено, що за умови використання пожежного насосу з подачею до 20 л/с для пода-вання розчину пшоутворювача необхщно забезпечити подачу пов^я до 400 л/с.

Ключовi слова: пожежогасшня, компресшна пiна, газонаповнена пiна, подача, по-вiтря, шноутворювач, розчин.

Постановка проблеми. Вогнегасш шни широко використовують для гасшня пожеж на промислових шдприемствах, складах, у нафтосховищах, на транспорта тощо [1]. Пши е дисперсними системами, що складаються з бульба-шок газу, оточених плiвками рiдини, що мiстить стабшзатор пiни [2].

Залежно вщ структури та способу отримання розрiзняють повиряно-ме-ханiчну та компресiйну шни. Пов^яно-мехашчну шну отримують внаслiдок мехашчного змiшування водного розчину пiноутворювача, що попередньо от-риманий у шнозмтувач^ з повiтрям у спецiальних пристроях гасiння (пiнних стволах або шногенераторах) [1-2].

Компресiйна шна (англiйською - CAF - Compressed Air Foam) - одно-рiдна дрiбноструктурна шна низько!' кратностi, отримана шляхом змшування пiноутворювача, води та стиснутого пов^я або азоту. Також у лiтературi трап-ляються назви "газонаповнена шна", "пов^онаповнена пiна", "пневматична ш-на", "легка пiна" [3].

Компресiйна шна е ушверсальним засобом пожежогасiння та може бути застосована для гасшня пожеж клаав А, В, D та Е. Принципова вiдмiннiсть систем CAF ввд систем пожежогасшня пов^яно-мехашчною шною е те, що компресшна шна утворюеться у спещальних пристроях - пiнозмiшувачах шляхом змшування И компонент. Тому рукавами рухаеться вже готова шна, що мае питому вагу, значно меншу за вагу води, тому компресшну шну можна подавати

i Надоели баннеры? Вы всегда можете отключить рекламу.