Научная статья на тему 'MATHEMATICAL ANALYSIS APPLICATION OF THE GAS-DYNAMIC PRINCIPLE FOR DEEP COOLING OF THE UNDERWAY SOIL LAYER'

MATHEMATICAL ANALYSIS APPLICATION OF THE GAS-DYNAMIC PRINCIPLE FOR DEEP COOLING OF THE UNDERWAY SOIL LAYER Текст научной статьи по специальности «Строительство и архитектура»

CC BY
49
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
subsoil / loosening / subsoiler / detonation wave / gas-dynamic impulse / soil / detonation / pressure impulse / shock wave / stresses / cotton / borehole / impulse force / friction force / penetration rate / soil resistance / soil strength / principal stresses / soil resistance.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Rasuljon Tojiyev, Xusniddin Erkaboyev, Nargiza Rajabova, Dovudbek Odilov

In the article, information on a new method of deep loosening of the subsoil layer, based on the use of detonation wave energy was given. For these purposes, the parameters of the device acting on the soil in a non-contact way and operating on the basis of detonation energy were developed and substantiated, designed for deep loosening of the subsoil.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MATHEMATICAL ANALYSIS APPLICATION OF THE GAS-DYNAMIC PRINCIPLE FOR DEEP COOLING OF THE UNDERWAY SOIL LAYER»

MATHEMATICAL ANALYSIS APPLICATION OF THE GAS-DYNAMIC PRINCIPLE FOR DEEP COOLING OF THE UNDERWAY SOIL LAYER

Rasuljon Tojiyev Xusniddin Nargiza Rajabova Dovudbek Odilov

Erkaboyev

Fergana Polytechnic Institute

ABSTRACT

In the article, information on a new method of deep loosening of the subsoil layer, based on the use of detonation wave energy was given. For these purposes, the parameters of the device acting on the soil in a non-contact way and operating on the basis of detonation energy were developed and substantiated, designed for deep loosening of the subsoil.

Keywords: subsoil, loosening, subsoiler, detonation wave, gas-dynamic impulse, soil, detonation, pressure impulse, shock wave, stresses, cotton, borehole, impulse force, friction force, penetration rate, soil resistance, soil strength, principal stresses, soil resistance.

One of the directions of the ongoing reforms in Uzbekistan is to improve the efficiency of agricultural production. There are various ways and methods of raising agricultural production to the world level. This can be achieved by intensifying agricultural production, primarily by applying scientifically grounded farming systems, efficient use of land, and increasing their fertility. Improving the efficiency of irrigated land use is impossible without improving the fertility of the subsoil by deep tillage.

"5

When the density of the subsoil horizons is higher than 1.4 g /cm , plant roots develop mainly in the arable layer, which is subject to frequent drying out during the hot summer period.

With deep cultivation, the root system of cotton develops in favorable conditions, deforms little, does not squeeze, bends less (Fig. 1) and is covered with lateral processes along the entire length. Thus, according to M.V. Mukhamedjanov, S. Suleimanov [1], with plowing to a depth of 30 cm and loosening the soil to 55 cm, the number of taproots directed vertically downward with almost no deformation was 4 times greater than when plowing to a depth of 30 cm without loosening. The experiments of A. Djuraev [1] confirmed that loosening the subsurface horizon to 50 cm made it possible for the cotton roots to penetrate to a depth of 190 cm, which led to an increase in the yield of raw cotton.

SCIENTIFIC PROGRESS

VOLUME 2 I ISSUE 7 I 2021 ISSN: 2181-1601

Fig. 1. Development of the cotton root system according to the depth of

cultivation.

The subsoilers used today do not meet the modern requirements of agricultural technology, they are energy-intensive and have low productivity. Therefore, we have proposed a new method of deep loosening of the subsoil layer, based on the use of detonation wave energy and which is a completely new method.

During operation, the gas detonation tool exerts a force effect P (t) on the borehole bottom, which is of an impulsive nature. A single-acting impulsive load is understood as a short-term load of a constant direction, which has no more than one maximum during its continuous action, represented by analytical expressions:

P(t) = Po f (t) at 0 < t <t

>

I (1)

P(t) = 0 att>

Here, t = 0 is the beginning of the load; P = 0 its maximum; f (t) -function characterizing the shape of the pulse, and the maximum.

Single-acting load (1) is characterized by three parameters:

1. Duration;

2. The shape of the impulse f (t);

3. The greatest value of P0 or impulse of force S.

T

S = Po J f (t) dt

(2)

The duration of the action of impulse gas detonation loads □ is approximately 0.002 sec. those. shock type.

The impulse at a direct impact of a wave on the bottom of the soil can be determined by the approximate formula

S=muo(1+k0) (3)

Where, m - is the mass of combustion products; uo - speed at the beginning of the strike;

o

ko - coefficient of recovery to impact, depending on the properties colliding bodies.

The pulse has three main parameters.

P-impulsive load;

S- is the strength of the impulse;

i-pulse duration.

From these parameters, P and i can be determined experimentally, i.e. by measuring. The strength of the impulse can be determined using formulas (3). To do this, it is necessary to determine the speed of the combustion products uo at the beginning of the impact.

The soil massif falling under the shock wave will undergo deformation at all its points. Note that in this array there are sets of points with the same stress values, and their geometrical place, undoubtedly, should be some kind of regular curve (Fig. 2).

Fig. 2. Calculation scheme.

In addition, the cooled portion of the detonation product serves as an intermediate layer between the fresh mixture and the detonation product at the discharge stroke. This prevents spontaneous ignition of the fresh mixture from the detonation product of the previous cycle.

Refrences

1. Tojiev R. J. Drying glass feed stock in drum drier for manufacturing glass products //Scientific-technical journal. - 2019. - T. 22. - №. 3. - C. 137-140.

2. Isomiddinov, A., Axrorov, A., Karimov, I., & Tojiyev, R. (2019). Application of rotor-filter dusty gas cleaner in industry and identifying its efficiency. Austrian Journal of Technical and Natural Sciences, (9-10).

3. Isomidinov, A. S., Karimov, I. T., & Tojiev, R. J. (2021). Searching the losing of hydraulic pressure in rotor-filter gas cleaner apparatus. Scientific-technical journal, 3(1), 69-72.

4. Ахроров, А. А. У., Исомиддинов, А. С., & Тожиев, Р. Ж. (2020). Гидродинамика поверхностно-контактного элемента ротор-фильтрующего пылеуловителя. Universum: технические науки, (8-3 (77)).

5. Тожиев, Р. Ж., Ахунбаев, А. А., & Миршарипов, Р. Х. (2018). Сушка тонкодисперсных материалов в безуносной роторно-барабанном аппарате. Научно-технический журнал ФерПИ,-Фергана, (2), 116-119.

6. Rasuljon, T., Azizbek, I., & Bobojon, O. (2021). Studying the effect of rotor-filter contact element on cleaning efficiency. Universum: технические науки, (6-5 (87)), 2832.

7. Tojiev, R., Ortikaliyev, B., & Tojiboyev, B. (2019). Improving selecting technology of raw materials of fireproof bricks. Тенденции и переспективы развития науки и оброзования в условиях глобализации. Украина, 27(46), 606-609.

8. Тожиев, Р. Ж., & Ортикалиев, Б. С. (2019). Оловбардош гишт ишлаб чикаришда хом ашёларни саралаш жараёнини тадкик килиш. Журнал Технических исследований, (2).

9. Ахунбаев, А., Ражабова, Н., & Вохидова, Н. (2021). Механизм движения дисперсного материала при сушке тонкодисперсных материалов. Збiрник наукових працъ SCIENTIA.

10. Tojiyev, R. J., Ortiqaliyev, B. S. O. G. L., Abdupattoyev, X. V. O., & Isomiddinova, D. I. J. Q. (2021). Donador-sochiluvchan mahsulotlarni saralashda sm-237a markali mashinalarmi o 'mi. Scientific progress, 2(2), 1378-1381.

11. Ортикалиев, Б. С., & Тожиев, Р. Ж. Оловбардош гишт ишлаб чикаришда хом ашёларни саралаш жараёнини тадкик килиш. Техник тадкикотлар журнали-2019 й.

12. Tojiyev, R., Ortiqaliyev, B., & Sotvoldiyev, K. (2021). Improving the design of the screed for firebricks using solidworks. Барцарорлик ва Етакчи Тадцицотлар онлайн илмий журнали, 1(5), 91-99.

13. Набиев, Т. С. О работе барабанной сушилки хлопка / Т. С. Набиев, Э. С. Умаров // Общество - наука - инновации : сборник статей Международной научно-практической конференции, Ижевск, 12 ноября 2021 года. - Уфа: Общество с ограниченной ответственностью "ОМЕГА САЙНС", 2021. - С. 38-42.

14. Ахунбaев, А., Ражабова, Н., & Сиддиков, М. (2021). Математическая модель сушки дисперсных материалов с учётом температуры материала. Збiрник наукових працъ SCIENTIA.

15. Ортикалиев, Б. С., and Р. Ж. Тожиев. "Sifatli olovbardosh g 'isht ishlab chiqarishda xom ashyolarni saralash jarayonini tadqiq qilish." Замонавий бино-иншоотларни ва уларнинг конструкцияларини (2021).

16. Ахунбаев, А. А., Ражабова, Н. Р., & Вохидова, Н. Х. (2020). Исследование гидродинамики роторной сушилки с быстровращающимся ротором. Экономика и социум, (12-1), 392-396.

17. Ахунбаев, А.А., & Ражабова, Н.Р. (2021). Высушивание дисперсных материалов в аппарате с быстро вращающимся ротором. Universum: технические науки, (7-1 (88)), 49-52.

18. Хамзаев, И. Х., & Умаров, Э. С. Применение метода конечных разностей к расчету балок-стенок-ФарПИ ИТЖ НТЖ ФерПИ (STJ FerPI), 2018. Том, 22, 48-52.

19. Тожиев, Р. Ж., Исомиддинов, А. С., Ахроров, А. А. У., & Сулаймонов, А. М. (2021). Выбор оптимального абсорбента для очистки водородно-фтористого газа в роторно-фильтровальном аппарате и исследование эффективности аппарата. Universum: технические науки, (3-4 (84)), 44-51.

20. Rasuljon, T., Azizbek, I., & Abdurakhmon, S. (2021). Research of the hydraulic resistance of the inertial scrubber. Universum: технические науки, (7-3 (88)), 44-51.

21. Mukhamadsadikov, K. J., & ugli Ortikaliev, B. S. (2021). Working width and speed of the harrow depending on soil resistivity. Web of Scientist: International Scientific Research Journal, 2(04), 152-158.

22. Application of the method of finite differences to the calculation of shallow shells / I. Hamzaev, K. Gapparov, E. Umarov, Z. Abdullaev // Universum: технические науки. - 2021. - No 3-4(84). - P. 71-76. - DOI 10.32743/UniTech.2021.84.3-4.71-76.

23. Mukhamedjanov M.V., Suleimanov S. Root system and cotton yield. Publishing house "Uzbekistan" Tashkent, 1978. -328 p.

24. Хамзаев, И. Х., & Умаров, Э. С. (2020). Применение метода конечных разностей к расчету пологих оболочек. Журнал Технических исследований, 3(1).

25. Muratov M.M., Beymetov R.I., Bibutov N.S., Mechanical and technological foundations and parameters of tools for soil decompaction. Tashkent. Fan, 1988.-101 p.

26. Prugalov A.M. Cotton production in Arizona. Cotton growing. 1986. No. 2. -176 p.

27. Korenev B.G., Rabinovich I.T. Handbook on the dynamics of structures. M.: Stroyizdat. 1972.-513 s.

28. Umarov, E. (2020). On the effect of axial displacements on the strength of frames. Technical Sciences, 1, 24-28.

29. Sytovich A. Soil Mechanics 4th ed. Revised and add. - M .: Higher. Educ., 1993 .-- 288 p.

30. R.J.Tojiev Application of the gas-dynamic principle in agricultural technology. Monograph. Fergana. -2019.

i Надоели баннеры? Вы всегда можете отключить рекламу.