Научная статья на тему 'МАТЕМАТИКА В ЕСТЕСТВОЗНАНИИ'

МАТЕМАТИКА В ЕСТЕСТВОЗНАНИИ Текст научной статьи по специальности «Философия, этика, религиоведение»

CC BY
247
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МАТЕМАТИКА / НАУКА / ЕСТЕСТВОЗНАНИЕ / РАСЧЕТ / ГАЛИЛЕЙ / MATHEMATICS / SCIENCE / NATURAL SCIENCES / CALCULATION / GALILEO

Аннотация научной статьи по философии, этике, религиоведению, автор научной работы — Расулова Д.Н.

Данной статье рассматривается предмет математика и её развитие в современном мире

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MATHEMATICS IN NATURAL KNOWLEDGE

This article discusses the subject of mathematics and its development in the modern world.

Текст научной работы на тему «МАТЕМАТИКА В ЕСТЕСТВОЗНАНИИ»

УДК: 13.00.02

Расулова Д.Н. преподаватель математики

школа №34

Ферганский район, Ферганская область МАТЕМАТИКА В ЕСТЕСТВОЗНАНИИ

Аннотация: Данной статье рассматривается предмет математика и её развитие в современном мире

Ключевые слова: Математика, наука, естествознание, расчет, Галилей

Rasulova D.N.

Math teacher at school number 34 Ferghana region, Ferghana region MATHEMATICS IN NATURAL KNOWLEDGE

Annotation: This article discusses the subject of mathematics and its development in the modern world.

Key words: Mathematics, science, natural sciences, calculation, Galileo

Вначале вспомогательное средство расчета, математика превратилась в абсолютно необходимого помощника всех крупнейших исследований нашего времени. Более того, оказалось, что на определенных этапах развития знаний математика является единственным средством познания и, подобно скальпелю хирурга, помогает проникать во внутренние свойства изучаемых объектов.

Известный математик Б.В. Гнеденко пишет: "В наше время математизация знаний совершает своеобразный победный марш. Многие области науки и практики, до самого последнего времени находившиеся вдали от использования математических средств исследования, теперь усиленно стремятся наверстать упущенное. Причина этого, конечно, заключается не в преходящей моде, а в том, что чисто качественное исследование явлений природы, экономики, врачебного дела, организации производства, как правило, оказывается недостаточным."

Математика развивается. Она развивается, как пишет А. Тарский, во всех трех направлениях. Она растет в вышину, т.к. на почве старых, насчитывающих века и тысячелетия теорий возникают новые проблемы. Она растет в ширину, потому что проникает в другие науки, захватывая все новые ряды явлений. Наконец, она растет в глубину, поскольку все прочнее утверждаются ее основы, совершенствуются методы и упрочиваются принципы. Но развитие математики неизбежно влечет развитие всех математизированных наук.

Никто не в состоянии дать однозначный ответ на вопрос, упорядочена ли природа, заложен ли в ее основе некий план. Но можно с полной

уверенностью заявить, что самый могущественный из созданных человеком инструмент - математика - позволяет нам достичь определенного понимания сложного и разнообразного мира природных явлений.

Леонардо да Винчи, Иммануил Кант, Карл Маркс и другие философы, пытаясь определить, что же такое наука, пришли к выводу, что в любом учении научного ровно столько, сколько в нем математического. Поэтому процесс математизации неизбежен для преобразования любой отрасли знания в науку.

Есть один расхожий афоризм "Математика - это искусство давать одно и то же имя разным вещам". Специфика математического знания заключается в том, что математики не изучают непосредственно действительность, они изучают ее с помощью абстрактных объектов, которые являются идеальными моделями, образами реальных предметов и явлений. Более того, многие абстрактные объекты возникают в математике, не имея своего реального прообраза; иногда, уже после того, как объект возник и изучен в математике, находится реальный предмет, который может быть его прообразом. Так, Лобачевский изобрел гиперболическую геометрию "на бумаге" и только после его смерти был найден реальный объект - псевдосфера - на котором выполнялись законы геометрии Лобачевского. В тот момент, когда Эйнштейн предложил теорию относительности, геометрия Лобачевского уже была хорошо разработана, что позволило теории относительности развиться очень быстро.

В современном мире математизация науки часто проявляется как компьютеризация. Задачи, которые ставят науки перед математикой так и звучат: "Как эффективно на компьютере просчитать такой -то процесс?", "Как смоделировать на компьютере поведение такого-то объекта?" Это, как и сама математизация, тоже естественный процесс. С появлением ЭВМ у математиков появилась возможность в считанные минуты проводить вычисления, на которые раньше потребовались бы годы. Кроме того, у всех ученых появилась возможность самые нудные и неинтересные (автоматизируемые) этапы познания "сгрузить" на компьютеры, освободив тем самым время для творческой деятельности.

Конечно же, влияние математики на другие отрасли знания сказывается прежде всего в том, что она поставляет аппарат количественной переработки конкретного материала наук. Методы, возникшие в других дисциплинах, нередко выходят за пределы специальной области, но отличие математических методов состоит в том, что они применяются повсеместно, не зная исключений. Это и делает математику особой наукой, обладающей универсальным назначением, даже не наукой, а, как часто говорят, универсальным языком науки.

Нельзя не отметить огромную роль, которую математика играет и играла в различных отраслях естествознания. Развитие современного естествознания, особенно, конечно, физики, немыслимо без применения

математического аппарата.

Один из первых ключевых моментов влияния математики на развитие естествознания - признание гелиоцентрической системы мира. Сейчас ни у кого не вызывает удивления утверждение о том, что Земля вращается вокруг Солнца, но во времена Коперника (XVI век) общепринятой была геоцентрическая система. Изучая движение небесных тел, Коперник предложил гелиоцентрическую гипотезу, а основным аргументом в ее пользу было то, что при этом возникают "чудесные математические упрощения". В средние века одним из основополагающих принципов развития любой науки был принцип, сформулированный Уильямом Оккамом в начале XIV века, "бритва Оккама", который гласил, что "природа довольствуется простотой и не терпит пышного великолепия излишних причин". Коперник сам не дожил до признания учеными его гипотезы, но основным аргументом в ее пользу и сейчас является заметное упрощение уравнений движения планет.

Всесилие человеческого разума, неизменность законов природы, учение о протяженности и движении как сущностях физических объектов, различие между качествами, реально присущими объектам, и качествами, лишь кажущимися, а в действительности рожденными реакцией разума на чувственные данные, - все эти идеи, подробно развитые в сочинениях Декарта, оказали влияние на формирование современного мышления.

Галилей также предложил свою философию естествознания. Она имела немало общего с философией Декарта, но оказалась более радикальным и эффективным руководством к действию. Выдвинутый Галилеем грандиозный план прочтения "книги природы" провозгласил совершенно новую концепцию целей научного исследования и определил роль математики в достижении этих целей. "Именно с предложенного Галилеем плана исследования и постижения природы берет начало современная математическая физика."

Дерзкий новаторский подход Галилея, развитый его последователями, состоял в том, чтобы получить количественные описания явлений, представляющих научный интерес, независимо от каких бы то ни было физических объяснений. Т.Е. Галилей предлагает выводить формулы, описывающие поведение физических тел, не вдаваясь в причины такого поведения. Сама по себе эта идея поначалу не производит особого впечатления. Много ли проку в математических формулах? Ведь они ничего не объясняют. Они просто описывают происходящее на точном языке. Тем не менее именно эти формулы оказались наиболее ценным знанием, которое людям удалось получить о природе. Поразительные практические и теоретические достижения современной науки стали возможны вследствие того, что человечество накопило количественное описательное знание и научилось пользоваться им, а отнюдь не благодаря метафизическим, теологическим и даже механистическим объяснениям причин наблюдаемых

явлений.

Именно на плечах таких гигантов, как Декарт и Галилей и стоял Ньютон. Именно в соответствии с принципом Галилея, Ньютон открыл закон всемирного тяготения - закон количественный, а не качественный. Вопреки широко распространенному мнению о якобы полной "понятности" силы тяготения, никому еще не удалось объяснить ее физическую сущность. Но возможность получения математических следствий из количественного закона принесла столь богатые плоды, что эту процедуру стали считать неотъемлемой частью физики. Понимание физических причин явления было принесено в жертву математическому описанию и математическому предсказанию. Наша неспособность понять природу гравитации еще раз подчеркивает мощь математики.

Использованные источники:

1. Гнеденко Б.В. Введение в специальность математика, М.: Наука, 1991.

2. Клайн М. Математика. Поиск истины, М.: Мир, 1988.

3. Сухотин А.К. Философия в математическом познании, Томск: Издательство томского университета, 1977.

i Надоели баннеры? Вы всегда можете отключить рекламу.