Научная статья на тему 'МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЧНОСТНЫХ СВОЙСТВ ЛЁССОВ МЕТОДОМ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА'

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЧНОСТНЫХ СВОЙСТВ ЛЁССОВ МЕТОДОМ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА Текст научной статьи по специальности «Строительство и архитектура»

CC BY
9
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
лёсс / просадочность / уплотнение / удельное сцепление / угол внутреннего трения / корреляция / регрессия / loess / subsidence / compaction / specific cohesion / angle of internal friction / correlation / regression

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Тарасенко Елена Олеговна

Рассмотрены прочностные свойства просадочных лёссовых грунтов при математическом моделировании их уплотнения глубинными взрывами. Уплотнение грунтов производится с целью устранения их просадочных свойств. Проведены корреляционный и регрессионный анализы зависимостей прочностных от физических характеристик лёссов, на примере грунтов Северного Кавказа. Установлена корреляционная зависимость удельного сцепления и угла внутреннего трения от физических характеристик просадочного грунта. Коэффициенты корреляции получены для различных показателей значений влажности и плотности лёсса. Исследования проводились до и после уплотнения грунта указанным способом. Зафиксирована как положительная, так и отрицательная корреляционная зависимость между исследуемыми характеристиками просадочного лёссового грунта. С ростом влажности наблюдалась высокая корреляционная зависимость с прочностными характеристиками грунта до и после его уплотнения глубинными взрывами. Построены уравнения регрессии удельного сцепления и угла внутреннего трения от влажности и плотности грунта. Коэффициенты достоверности аппроксимации теоретических уравнений регрессий и экспериментальных данных демонстрируют высокие значения. Регрессионные уравнения удельного сцепления и угла внутреннего трения от влажности грунта показали, что значения прочностных характеристик увеличиваются при уменьшении значений влажности грунта. Исследована регрессионная зависимость удельного сцепления и угла внутреннего трения от плотности просадочного лёсса. Установлено, что рост значений прочностных характеристик фиксировался при увеличении плотности лёссового грунта до и после его уплотнения глубинными взрывами. Построенные регрессионные уравнения позволяют прогнозировать прочностные характеристики лёссов на этапе проектирования оснований и фундаментов объектов строительства.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Тарасенко Елена Олеговна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MATHEMATICAL MODELING OF THE STRENGTH PROPERTIES OF LESSES BY THE METHOD OF CORRELATION-REGRESSION ANALYSIS

The strength properties of subsiding loess soils are considered in the mathematical modeling of their compaction by deep explosions. Soil compaction is carried out in order to eliminate their subsidence properties. Correlation and regression analyzes of the dependences of strength on the physical characteristics of loess were carried out, using the soils of the North Caucasus as an example. The correlation dependence of the specific cohesion and the angle of internal friction on the physical characteristics of the subsidence soil is established. Correlation coefficients were obtained for various indices of moisture content and loess density. The studies were carried out before and after soil compaction in this way. Both positive and negative correlations between the studied characteristics of subsiding loess soil were recorded. With an increase in moisture, a high correlation was observed with the strength characteristics of the soil before and after its compaction by deep explosions. The equations of regression of specific cohesion and the angle of internal friction on soil moisture and density are constructed. The reliability coefficients of approximation of theoretical regression equations and experimental data demonstrate high values. The regression equations of specific adhesion and the angle of internal friction on soil moisture showed that the values of strength characteristics increase with decreasing values of soil moisture. The regression dependence of the specific cohesion and the angle of internal friction on the density of subsidence loess has been studied. It has been established that an increase in the values of strength characteristics was recorded with an increase in the density of loess soil before and after its compaction by deep explosions. The constructed regression equations make it possible to predict the strength characteristics of loess at the stage of designing the bases and foundations of construction objects.

Текст научной работы на тему «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЧНОСТНЫХ СВОЙСТВ ЛЁССОВ МЕТОДОМ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА»

DOI:10.22337/2587-9618-2024-20-1-171-181

MATHEMATICAL MODELING OF THE STRENGTH PROPERTIES OF LESSES BY THE METHOD OF CORRELATION-REGRESSION ANALYSIS

Elena O. Tarasenko

North Caucasus Federal University, Stavropol, RUSSIA

Abstract. The strength properties of subsiding loess soils are considered in the mathematical modeling of their compaction by deep explosions. Soil compaction is carried out in order to eliminate their subsidence properties. Correlation and regression analyzes of the dependences of strength on the physical characteristics of loess were carried out, using the soils of the North Caucasus as an example. The correlation dependence of the specific cohesion and the angle of internal friction on the physical characteristics of the subsidence soil is established. Correlation coefficients were obtained for various indices of moisture content and loess density. The studies were carried out before and after soil compaction in this way. Both positive and negative correlations between the studied characteristics of subsiding loess soil were recorded. With an increase in moisture, a high correlation was observed with the strength characteristics of the soil before and after its compaction by deep explosions. The equations of regression of specific cohesion and the angle of internal friction on soil moisture and density are constructed. The reliability coefficients of approximation of theoretical regression equations and experimental data demonstrate high values. The regression equations of specific adhesion and the angle of internal friction on soil moisture showed that the values of strength characteristics increase with decreasing values of soil moisture. The regression dependence of the specific cohesion and the angle of internal friction on the density of subsidence loess has been studied. It has been established that an increase in the values of strength characteristics was recorded with an increase in the density of loess soil before and after its compaction by deep explosions. The constructed regression equations make it possible to predict the strength characteristics of loess at the stage of designing the bases and foundations of construction objects.

Keywords: loess, subsidence, compaction, specific cohesion, angle of irternal friction, correlation, regression

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЧНОСТНЫХ

СВОЙСТВ ЛЁССОВ МЕТОДОМ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА

Е.О. Тарасенко

Северо-Кавказский федеральный университет, г. Ставрополь, РОССИЯ

Аннотация. Рассмотрены прочностные свойства просадочных лёссовых грунтов при математическом моделировании их уплотнения глубинными взрывами. Уплотнение грунтов производится с целью устранения их просадочных свойств. Проведены корреляционный и регрессионный анализы зависимостей прочностных от физических характеристик лёссов, на примере грунтов Северного Кавказа. Установлена корреляционная зависимость удельного сцепления и угла внутреннего трения от физических характеристик просадочного грунта. Коэффициенты корреляции получены для различных показателей значений влажности и плотности лёсса. Исследования проводились до и после уплотнения грунта указанным способом. Зафиксирована как положительная, так и отрицательная корреляционная зависимость между исследуемыми характеристиками просадочного лёссового грунта. С ростом влажности наблюдалась высокая корреляционная зависимость с прочностными характеристиками грунта до и после его уплотнения глубинными взрывами.

Построены уравнения регрессии удельного сцепления и угла внутреннего трения от влажности и плотности грунта. Коэффициенты достоверности аппроксимации теоретических уравнений регрессий и экспериментальных данных демонстрируют высокие значения. Регрессионные уравнения удельного сцепления и угла внутреннего трения от влажности грунта показали, что значения прочностных характеристик увеличиваются при уменьшении значений влажности грунта. Исследована регрессионная

зависимость удельного сцепления и угла внутреннего трения от плотности просадочного лёсса. Установлено, что рост значений прочностных характеристик фиксировался при увеличении плотности лёссового грунта до и после его уплотнения глубинными взрывами. Построенные регрессионные уравнения позволяют прогнозировать прочностные характеристики лёссов на этапе проектирования оснований и фундаментов объектов строительства.

Ключевые слова: лёсс, просадочность, уплотнение, удельное сцепление, угол внутреннего трения,

корреляция, регрессия

INTRODUCTION

Loess subsidence soils are widespread on the Earth's surface and have different origins. Loess covers more than 17% of Russia's territory. It is most common in the North Caucasian and Southern Federal Districts (about 80%). Loess is a dusty-clay soil containing at least 50% of dusty particles [1, 2]. Elimination of subsidence properties of such soils is an urgent task of contemporary engineering geology [3-6]. Correlation-regression analysis-based

mathematical modeling of soil compaction with deep explosions allows estimating the relationship between strength and physical properties of soils.

Realization of engineering calculations during design of bases and foundations of construction objects, various earthworks, slopes, etc. requires information about strength and physical characteristics of soils [3, 4, 7, 8]. This determines the necessity of their application to solve a number of scientific and applied problems of engineering geology [9-13]. Therefore, the engineering practical task of assessing changes in the strength properties of subsidence soils and their influence on the stability of buildings and structures depending on natural and anthropogenic conditions is of special importance [14-16]. The main strength characteristics of dispersed subsidence soils are specific cohesion and angle of internal friction. As a rule, their values are determined in laboratory conditions according to standards, e.g. [17]. Triaxial compression devices, stabilimeters, shear gauges, etc. can be used in practice. It should be noted that the test results of the different evaluation methods may differ slightly from each other. This is explained

by the difference in the stress state of soils [3, 18. 19].

RESEARCH METHODS

Let us describe the mathematical model of the problem of compaction of loess soils by deep explosions in the form [9]

£]q+u dq= K dq +

8t дх дх x дх

д

dq д dq

(1)

ду dy dz dz

t e[f0,T],

with initial and boundary conditions

q(i0, x, y, z) =

(2)

:QS(x - X0 )ö(y - / - z0), q (t, x, y, z)| = 0 = 0 ,t > t0. (3)

z dz

= 0,t > t0, (4)

where q (t, x, y, z) is the soil density attime unit t at the point with coordinates (x,y, z); U is the

vector of horizontal gas drift along the Ox axis; f is the source function; Q is the charge

(source) capacity; 8 is the unit impulse Dirac function; Kx, Ky, Kz is the diffusion

coefficients.

Problems (1) ... (3) correspond to the case of complete absorption of gas atoms by the surrounding soil in the borehole (consolidation

RESULTS AND DISCUSSIONS

This section provides a correlation-regression analysis of strength and physical properties of soils based on experimental data [3]. We study the construction site "Severny microdistrict in Budennovsk". At the construction site the thickness of subsidence soils reaches 20 m. According to the data the density of the soil before compaction is equal to q0 = 1.51 -1.542/cm3. The natural moisture content took values of co = 10% - 30%. 198 combined drainage-explosion wells with diameter of 180 mm and depth of 6 m were drilled. Through them soaking of the subsidence stratum was carried out in the excavation. As a result of compaction by the method of deep explosions of concentrated explosive charges, the density of the soil took the value of q = 1.56 -1.73 2 / cm3 .

Table 1 shows correlation dependence of specific adhesion and angle of internal friction of loess soil before and after its compaction on soil moisture and density. Pearson correlation coefficient was adopted as a measure of interdependence between soil characteristics.

Table 1. Correlation between strength and physical indices ofloess soil ofBudyonnovsk city

Strengthparameters Physicalparameters Before compaction After compaction

Specific adhesion C Moisture a, 10%±2%; Density q, g/cm3 -0.055 0.189 -0.155 0.094

Moisture 20%±2%; Density q, g/cm3 -0.363 0.272 -0.191 0.146

Moisture 30%±2%; Density q, g/cm3 -0.809 0.837 -0.911 0.890

Angle of internal friction ç Moisture a, 10%±2%; Density q, g/cm3 -0.040 0.086 -0.159 0.249

Moisture 20%±2%: Density q, g/cm3 -0.363 0.220 -0.230 0.578

Moisture 30%±2%: Density q, g/cm3 -0.848 0.848 -0.846 0.846

of the subsidence soil occurs). Problems (1), (2) and (4) describe the case of complete reflection of gas atoms from the surrounding ground (ground ejection to the surface occurs). The solutions of problems (1) - (3) and (1), (2), (4) are [9]

q (t, x, y, z ) =

Q

x exp

(x - Ut )

KxKyKzt3

y

2 K2xt 2 Kjt

exp<

(z - H )2

2 Kl t

± exp<

(z + Hf 2 K11

where H is the depth of charge embedment Values of diffusion coefficients Kx, Ky, Kz

depend on physical characteristics of soils. Let us investigate the correlation between strength and physical properties of soils, which include density and moisture content. Let us construct regression equations of strength characteristics of loess in order to predict their condition [10,16, 20].

Correlation is recorded between strength (specific adhesion, angle of internal friction) and physical (moisture, density) characteristics of loess. Both positive and negative linear correlation is observed. In the first case, higher (low) values of specific adhesion and angle of internal friction correspond to higher (lower) values of soil moisture. In the second case, higher (low) values of strength characteristics correspond to lower (high) values of physical characteristics [20].

The values of Pearson correlation coefficient more than 0.8 module demonstrate high correlation of investigated strength and physical characteristics of loess soil. The proximity to

unity ofPearson's coefficient is observed mainly at high moisture values, 30%±2%. Approximation to zero modulus of the values of correlation coefficients indicate not the absence of correlation relationship between the studied characteristics, but the presence of unknown factors affecting these relationships. The modulus value ofPearson correlation coefficient less than 0.5 shows weak correlation of loess soil characteristics.

Figures 1 and 2 show regression correlations of specific cohesion C with moisture co before and after compaction of subsidence soils by I.M. Litvinov's deep explosions [4], respectively.

Before compaction

0,033

0,031

c 0,029 o

OJ 0,027

JZ

™ 0,025

u

u 0,023 û;

<" 0,021 0,019 0,017

•V • ^ m y =-0,0029x +0,1141

.......................

28,5

29

29,5

30

30,5

31

31,5

32

Humidity

Figure 1. Regression correlation between specific cohesion and soil moisture before compaction

After compaction

28,5

29,5

30,5

31,5

Humidity

Figure 2. Regression correlation between specific cohesion and soil moisture after compaction

The equations of the regressions presented in Figures 1 and 2 have the following form

C = -0.0029 •© + 0.1141, (5) C = -0.0042 •© + 0.1599. (6)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The approximation confidence factor for equation (5) is 0.6543. For equation (6), the approximation reliability coefficient is 0.8301. The closeness of the coefficients to unity indicates a significant degree of dependence of the regression model on the experimental data [3]. It is noted that with the increase in the moisture content of the subsidence soil, there is a decrease in the values of specific cohesion. This feature is characteristic of the corresponding regression dependences both before and after soil compaction.

Regression dependences of specific cohesion C on density q of loess soil are shown in Figures 3 and 4. The corresponding graphs both before and after realization of compaction of subsidence soils by the method of deep explosions are depicted. The regression lines are given by the following equations, respectively

C = 0.2684• q-0.3835, (7)

C = 0.0927 • q - 0.1196. (8)

Before compaction

Figure 3. Regression correlation between specific cohesion and soil density before compaction

After compaction

0,042

c 0,037

ra 0,032

0,027

0,022

*

i y = 0,0927x- 0,1196

1,56 1,58 1,6 1,62 1,64 1,66 1,68 1,7 1,72 Density

Figure 4. Regression correlation between specific cohesion and soil density after compaction

A positive regression correlation between specific cohesion and soil density was observed before and after compaction of loess soils by deep explosions. The increase in soil density leads to an increase in its strength characteristic, specific cohesion. Thus, for the regression

equation before soil compaction (7) the approximation reliability coefficient is equal to 0.7003. After compaction of the subsidence soil for the regression equation (8) this indicator takes the value 0.7929 .

According to Table 1, the angle of internal friction of the soil correlates with the indicators of physical characteristics of soils. Correlation between moisture content a and density p of loess soil is assessed by regression analysis.

Graphs of regression correlations of the angle of internal friction with soil moisture a are presented in Figures 5 and 6. The regression equations show the dependences of the strength characteristic on the physical index for the state of the soil before and after its compaction by I.M. Litvinov's method of deep explosions [4].

8,5

° 7

< 6,5

Before compaction

• • • •

y =-0,3909x+19,328 - •

* - •• •

♦ •

28,5 29 29,5

30 30,5

Humidity

31

31,5

32

Figure 5. Regression correlation between the angle of internalfriction and the moisture content of

loess soil before compaction

After compaction

6,8

28,5 29 29,5

30 30,5

Humidity

Figure 6. Regression correlation between the angle of internalfriction and the moisture content of

loess soil after compaction

The regression equations corresponding to Figures 5 and 6 have analytical representations of the following form

(¡9 = -0.3909 •© +19.328, (9) (¡9 = -0.3404•© +18.25. (10)

Analysis of the results showed the following. The regression equation (9) shows the degree of approximation to the experimental data with the approximation confidence coefficient 0.719. The approximation reliability coefficient of equation (10) is equal to 0.7157 . The change of coefficient values is observed at realization of elimination of subsidence properties of soils by

depth explosions. Measurements of strength and physical characteristics of soil were carried out before and after engineering and production works.

The graphs of regression equations (Fig. 5, 6) show that the value of the angle of internal friction increases with decreasing values of loess soil moisture index co. Table 1 also notes

the negative linear correlation of the investigated soil characteristics. The study of regression dependences of the angle of internal friction on the density of loess soil is presented in Figures 7 and 8. The graph of Figure 7 shows the dependence before soil compaction, and in Figure 8 after compaction.

Before compaction

8,5

Density

Figure 7. Regression correlation between the angle of internalfriction and density of loess soil

before compaction

After compaction

8,6 8,4 8,2 8 7,8 7,6 7,4 7,2 7

y = 7,6499x-4,5703

•__ —' ■

• ---

»

• ■ •

1,55 1,57 1,59 1,61

1,63 1,65 Density

1,67 1,69

1,71

Figure 8. Regression correlation between the angle of internalfriction and density of loess soil

after compaction

The regression equations (Figs. 7, 8) are Regression equations (11) and (12) have a high described by analytical relations, respectively degree of approximation to the experimental

data. The approximation confidence coefficient cp = 34.981-q-45.923, (11) for equation (11) is equal to 0.7192. For ^ = 7.6499-g-4.5703. (12) equation (12), the approximation confidence

factor takes the value 0.7156. With increasing values of the angle of internal friction, there is

an increase in the density values of loess soil both before and after its compaction by deep explosions.

CONCLUSION

The article provides a mathematical modeling of the compaction of subsidence soils by explosion and studies the strength properties of loess by correlation and regression analysis. Specific cohesion and angle of internal friction correlate with moisture content and density of loess. Pearson correlation coefficients of strength and physical characteristics of soil showed that at soil moisture of 30%±2% their high intercorrelation is observed. This is characteristic of loess soils before and after elimination of their subsidence properties by depth explosions. Regression equations of specific adhesion, angle of internal friction and humidity, density, respectively, of subsidence soils before and after their compaction have been constructed. It is established that with the increase of soil moisture the values of indicators of soil strength characteristics decrease. With increasing density of loess the growth of values of specific cohesion and angle of internal friction is fixed. Regression equations can be used in calculation mathematical models of engineering-geological systems in the design of construction objects on subsidence loess soils. They allow predicting indicators of soil strength characteristics on the basis of their physical characteristics.

The author is grateful to the Doctor of Geological and Mineralogical Sciences, Professor, Professor of the Department of Construction of the North Caucasus Federal University, Boris Fedorovich Galai, for his assistance in writing the article.

REFERENCES

1. Sergeyev Ye.M., Larionov A.K., Komissarova N.N. (1986) Lossovyye

porody SSSR. Inzhenerno-geologicheskiye osobennosti i problemy ratsional'nogo ispol'zovaniya [Loess rocks of the USSR. Engineering-geological features and problems of rational use], Moscow: Nauka, vol.1 (inRussian)

2. Sergeev E.M., Bykov V.S., Komissarov N.N. (1986) Lossovyye porody SSSR. Regional'nyye osobennosti [Loess rocks of the USSR. Regional features], Moscow: Nauka, vol.2 (in Russian)

3. Galay B.F. (2016) Posobiye po uplotneniyu prosadochnykh lessovykh gruntov glubinnymi vzryvami v usloviyakh Severnogo Kavkaza (izyskaniya, proyektirovaniye, proizvodstvo rabot) [Manual on compaction of subsident loess soils by deep explosions in the conditions of the North Caucasus (research, design, production of works)]. Stavropol: NCFU (in Russian)

4. Litvinov I.M. (1969) Glubinnoye ukrepleniye i uplotneniye prosadochnykh gruntov [Deep strengthening and compaction of subsiding soils], Kyiv: Budivelnik (in Russian)

5. Pantyushina E.V. (2011) Lossovyye grunty i inzhenernyye metody ustraneniya ikh prosadochnykh svoystv [Loess soils and engineering methods for eliminating their subsidence properties], Polzunovsky vestnik, vol. l,pp. 127-130.

6. Zhilenkov V.N. (2010) Kharakternaya osobennost' konsolidirovannogo lineynogo uplotneniya vodonasyshchennykh glinistykh gruntov i torfa pod vozdeystviyem vneshnikh nagruzok [A characteristic feature of the consolidated linear compaction of water-saturated clay soils and peat under the influence of external loads], Izvestiya VNIIG im. B.E. Vedeneeva, vol. 258, pp. 87-92.

7. Nguyen P.D. (2012) Issledovaniye zavisimosti prochnostnykh svoystv grunta ot yego fizicheskogo sostoyaniya [Investigation of the dependence of the strength properties of the soil on its

physical state], Inzhenerno-stroitel'nyi zhurnal, vol. 9(35), pp. 23-28. DOI: 10.5862/MCE.35.3

8. Braja M.D. (2008) Advanced Soil Mechanics. New York: Taylor & Francis Group.

9. Tarasenko E.O., Tarasenko V.S., Gladkov A.V. (2019) Matematicheskoye modelirovaniye uplotneniya prosadochnykh lossovykh gruntov Severnogo Kavkaza glubinnymi vzryvami [Mathematical modeling of compaction of subsiding loess soils of the North Caucasus by deep explosions]. Bulletin of the Tomsk polytechnic university. Geo assets engineering, vol. 330, no 11, pp. 94-101. https://doi.org/10.18799/24131830/2019/11 /2352

10. Tarasenko E.O. (2023) Numerical simulation of gas atom coordinate dispersion in a mathematical model of deep blast compaction for subsidence soils. International Journal for Computational Civil and Structural Engineering, vol. 19, Issue 1, pp. 147-154. https://doi.org/10.22337/2587-9618-2023-19-1-147-154.

11. Tarasenko E.O. (2023) Chislennaya otsenka plotnosti grunta metodom konechno-raznostnykh setok pri matematicheskom modelirovanii uplotneniya prosadochnykh gruntov glubinnymi vzryvami [Numerical estimation of soil density by the method of finite difference grids in mathematical modeling of compaction of subsible soils by deep explosions]. Bulletin of the Tomsk polytechnic university. Geo assets engineering. vol. 334, no 5, pp. 103-108. https: //doi.org/10.18799/24131830/2023/5/4022.

12. Tarasenko E.O., Gladkov A.V. (2022) Chislennoye resheniye obratnykh zadach pri matematicheskom modelirovanii geologicheskikh sistem [Numerical solution of inverse problems in mathematical modeling of geological systems]. Bulletin of the Tomsk polytechnic university. Geo assets engineering, vol. 333, no 1, pp. 105-112.

https://doi.Org/10.18799/24131830/2022/l/32 08.

13. Tarasenko E.O., Gladkov A.V., Gladkova N.A. (2022) Solution for Inverse Boundary Value Problems on the Power of a Concentrated Charge in a Mathematical Model of Subsidence Soils Compaction. Mathematics and its Applications in New Computer Systems. MANCS 2021. Lecture Notes in Networks and Systems, Springer, Vol 424, pp. 537-545. https://link.springer.com/book/10.1007/978 -3-030-97020-8.

14. Petrakov A.A., Prokopov A.Yu., Petrakova N.A., Panasyuk M.D. (2021) Interpretatsiya prochnostnykh kharakteristik grunta dlya chislennykh issledovaniy [Interpretation of the strength characteristics of the soil for numerical research], Izvestiya TulGU. Earth sciences, vol. 1, pp. 225-236.

15. Prokopova M.V., Prokopov A.Yu., Zhur V.N. (2017) Issledovaniye svoystv lessovykh prosadochnykh gruntov Vostochnogo Donbassa [Study of the properties of loess subsidence soils of the Eastern Donbass], Proceedings of the International scientific and practical conference "Transport: science, education, production", Rostov-on-Don, RSTU, pp. 354-358.

16. Sukhoruchenko S.K. (2012) Uravneniya regressii prochnostnykh kharakteristik lossovykh prosadochnykh gruntov ravninnogo Kryma [Regression equations for the strength characteristics of loess subsidence soils of the flat Crimea], Construction and technogenic safety, vol. 44, pp. 58-63.

17. Russian State Standard GOST 12248.32020 (2020) Opredeleniye kharakteristik prochnosti i deformiruyemosti metodom trekhosnogo szhatiya [Determination of strength and deformability characteristics by the triaxial compression method], Moscow, Standartinform (in Russian)

18. Shvets V.B., Ginzburg L.K., Goldstein V.M. and others (1987) Spravochnik po mekhanike i dinamike gruntov [Handbook of soil mechanics and dynamics], Kyiv: Budivelnik (in Russian)

19. Sergeyev E.M. (1986) Teoreticheskiye osnovy inzhenernoy geologii. Mekhaniko-matematicheskiye osnovy [Theoretical foundations of engineering geology. Mechanical and mathematical foundations], Moscow: Nedra (in Russian)

20. Draper N. (2019) Prikladnoy regressionnyy analiz [Applied regression analysis], Moscow: Williams Publishing House (in Russian)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

СПИСОК ЛИТЕРАТУРЫ

1. Лёссовые породы СССР. Т. 1. Инженерно-геологические особенности и проблемы рационального использования / Под ред. Сергеева Е.М., Ларионова А.К., Комиссаровой Н.Н. -Москва: Наука, 1986. - 273 с.

2. Лёссовые породы СССР. Т. 2. Региональные особенности / Под ред. Сергеева Е.М., Быковой B.C., Комиссаровой Н.Н. - Москва: Наука, 1986.-276 с.

3. Галай Б.Ф. Пособие по уплотнению просадочных лессовых грунтов глубинными взрывами в условиях Северного Кавказа (изыскания, проектирование, производство работ). -Ставрополь: Изд-во СКФУ, 2016. - 142 с.

4. Литвинов И.М. Глубинное укрепление и уплотнение просадочных грунтов. -Киев: Буд1вельнпк, 1969. - 188 с.

5. Пантюшина Е.В. Лёссовые грунты и инженерные методы устранения их просадочных свойств // Ползуновский вестник, 2011, №1.С. 127-130.

6. Жиленков В.Н. Характерная особенность консолидированного линейного уплотнения водонасыщенных глинистых грунтов и торфа под

воздействием внешних нагрузок // Известия ВНИИГ им. Б.Е. Веденеева, 2010, №258. С. 87-92.

7. Нгуен Ф. Зунг. Исследование зависимости прочностных свойств грунта от его физического состояния // Инженерно-строительный журнал, 2012, №9(35). С. 23-28. https://doi.Org/10.5862/MCE.35.3

8. Braja М. Das. Advanced Soil Mechanics. New York: Taylor & Francis Group, 2008, 567 pages.

9. Тарасенко E.O., Тарасенко B.C., Гладков A.B. Математическое моделирование уплотнения просадочных лёссовых грунтов Северного Кавказа глубинными взрывами // Известия Томского политехнического университета. Инжиниринг георесурсов, 2019, Т. 330, № 11. С. 94-101. https://doi.org/10.18799/24131830/2019/11 /2352

10. Tarasenko Е.О. Numerical simulation of gas atom coordinate dispersion in a mathematical model of deep blast compaction for subsidence soils // International Journal for Computational Civil and Structural Engineering, 2023, Volume 19, Issue 1, pp. 147-154. https://doi.org/10.22337/2587-9618-2023-19-1-147-154.

11. Тарасенко Е.О. Численная оценка плотности грунта методом конечно-разностных сеток при математическом моделировании уплотнения просадочных грунтов глубинными взрывами // Известия Томского политехнического университета. Инжиниринг георесурсов, 2023, Т. 334, № 5. С. 103-108. https://doi.Org/10.18799/24131830/2023/5/ 4022.

12. Тарасенко Е.О., Гладков А.В.

Численное решение обратных задач при математическом моделировании

геологических систем // Известия Томского политехнического

университета. Инжиниринг георесурсов, 2022, Т. 333, № 1. С. 105-112. https://doi.Org/10.18799/24131830/2022/l/ 3208.

13. Tarasenko Е.О., Gladkov A.V., Gladkova N.A. Solution for Inverse Boundary Value Problems on the Power of a Concentrated Charge in a Mathematical Model of Subsidence Soils Compaction // Mathematics and its Applications in New Computer Systems. MANCS 2021. Lecture Notes in Networks and Systems, Springer, 2022, Vol 424, pp. 537-545. https://link.springer.com/book/10.1007/978 -3-030-97020-8.

14. Петраков A.A., Прокопов А.Ю., Петракова H.A., Панасюк М.Д. Интерпретация прочностных характеристик грунта для численных исследований // Известия ТулГУ. Науки о Земле, 2021, Вып. 1. С. 225-236.

15. Прокопова М.В., Прокопов А.Ю., Жур В.Н. Исследование свойств лёссовых просадочных грунтов Восточного Донбасса // Сборник научных трудов

Международной научно-практической конференции «Транспорт: наука, образование, производство», Ростов-на-Дону: РГУПС, 2017. С. 354-358.

16. Сухорученко С.К. Уравнения регрессии прочностных характеристик лёссовых просадочных грунтов равнинного Крыма // Строительство и техногенная безопасность, 2012, №44. С. 58-63.

17. ГОСТ 12248.3-2020. Определение характеристик прочности и деформируемости методом трехосного сжатия. - Москва, Стандартинформ, 2020. - 33 с.

18. Справочник по механике и динамике грунтов / В.Б. Швец, Л.К. Гинзбург, В.М. Гольдштейн и др. / Под ред. В.Б. Швеца. - Киев: Буд1вельник, 1987. - 232 с.

19. Теоретические основы инженерной геологии. Механико-математические основы / Под ред. Е.М. Сергеева. - М.: Недра, 1986.-254 с.

20. Дрейпер Н. Прикладной регрессионный анализ. - М.: Вильяме И.Д., 2019. - 912с.

Tarasenko Elena Olegovna, Associate Professor of the Department of Computational Mathematics and Cybernetics of the Faculty of Mathematics and Computer Sciences named after Professor N.I. Chervyakov, Candidate of Physical and Mathematical Sciences, Associate Professor, Russia, 355009, Stavropol, Pushkin str., 1, building 2, auditorium 308. e-mail: galail@mail.ru

Тарасенко Елена Олеговна, доцент кафедры Вычислительной математики и кибернетики факультета Математики и компьютерных наук имени профессора П.И. Червякова, кандидат физико-математических наук, доцент, SPIN-код 7730-0157, Россия, 355009, г. Ставрополь, ул. Пушкина, д. 1, корпус 2, аудитория 308. e-mail: galail@mail.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.