Наука та прогрес транспорту. Вкник Дшпропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
1НФОРМАЦШНО-КОМУШКАЦШШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
УДК 621.436:631.37
А. Ф. ГОЛОВЧУК1*
1 Каф. «АвтомобЫ», Запор1зький нац1ональний техшчний ушверситет, вул. Жуковського, 64, Запор1жжя, Украша, 69063, тел. +38 (061) 764 26 47, ел. пошта [email protected], ORCID 0000-0003-0562-2629
МАТЕМАТИЧНА МОДЕЛЬ ДЛЯ ВИЗНАЧЕННЯ ПОКАЗНИК1В ТЯГОВО-ТРАНСПОРТНИХ ЗАСОБ1В
Мета. В науковш статл необхщно виршити наступш задача 1) уточнения математично! модел для ви-значення тягово-динам1чних, паливно-економ1чних та еколопчних показнишв мобшьних енергетичних за-соб1в; 2) розробку методики теоретичних дослщжень системи автоматичного регулювання, статичних та динам1чних характеристик автотракторного дизеля з газотурбшним наддувом та моб1льного енергетичного засобу. Методика. У робот дослщжуються робоч1 процеси автотранспортних засоб1в та машинно-тракторних агрегапв шляхом математичного моделювання та розробки ввдповщних алгоритмш i програм для розрахункiв цих процеав в умовах реально! експлуатацп. Для теоретичних дослвджень розроблена система рiвиянь, яка описуе нелiнiйну математичну модель системи автоматичного регулювання частоти обер-тання автотракторного дизеля. О^м диференцiйних рiвиянь першого та другого порядку, в математичному моделюваннi робочих процесiв тягово-транспортних засобiв використанi рiвняння, якi описують експериме-нтальнi характеристики автоматичного регулятора, паливного насоса високого тиску, турбокомпресора i дизеля, а також механiчнi втрати двигуна та зовшшне наваитажения енергетичного засобу. Результата. Розроблена математична модель дае можливють визначити ефективнiсть нових конструктив-них, експлуатацшних та технологiчних впроваджень, а також рiзних заходiв щодо покращення паливно-економiчних та екологiчних показнишв автотранспортних засобiв та машинно-тракторних агрегапв в екс-плуатацiйних умовах. Наукова новизна. Вперше розроблена математична модель «Тракторист-машинно-тракторний агрегат-дорога (поле)», яка дозволяе проводити досл1дження тракторних транспортних агрегапв за 1'здовим циклом iз урахуванням процесу вирушення, розгону та сталого руху мобiльного енергетичного засобу з переключенням передач. Практична значимкть. В умовах затяжно! економiчноl кризи, при ввдсу-тностi необхвдного обладнання, приладiв та паливно-мастильних матерiалiв, порiвняльнi дослвдження мобь льних енергетичних засобiв можна провести завдяки розробленим математичним моделям iз вiдповiдними алгоритмами та програмами, як1 доведенi до практичного використання. На цi комп'ютернi програми Укра!-нський iнститут штелектуально! власносп видав свiдоцтва про реестрацш авторського права за № 49285, № 49286 та № 49287 вщ 22 травня 2013 року.
Ключовi слова: мобшьш енергетичш засоби; математичш модел1; алгоритми та програми; статичш й тя-гово-динамiчнi характеристики; паливна економiчнiсть; токсичнiсть; автотраиспортнi засоби; машинно-тракторнi агрегати
Вступ
Проблеми економи паливно-мастильних ма-тер1атв та захисту довкшля вщ забруднення токсичними продуктами згоряння пального ав-тотракторних двигушв сьогодш дуже актуаль-
rn. При зниженш витрати пального тягово-транспортними засобами зменшуються викиди шюдливих речовин в атмосферу, що покращуе еколопчну ситуащю в держава Щцвищення економ1чносп мобшьних енергетичних засоб1в - важливе завдання по економи паливно-енергетичних ресурс1в Укра!ни. Одним з на© А. Ф. Головчук, 2017
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЩИШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
прямiв зниження експлуатацшно! витрати паль-ного двигунами автотракторних засобiв i ма-шинно-тракторних агрегатiв е оптимiзацiя сис-теми автоматичного регулювання швидкостi в залежносп вiд умови роботи мобшьних енер-гетичних засобiв.
Для проведення дослiджень статичних, тя-гово-динамiчних, паливно-економiчних та еко-логiчних показникiв мобшьних енергетичних засобiв нами запропонована нелшшна матема-тична модель з розробленими алгоритмами та програмами.
Мета i задачi
Метою роботи е виршення актуально! про-блеми паливно! економiчностi i зниження димоутворення автотранспортних засобiв (АТЗ) i машинно-тракторних агрегатiв (МТА) шляхом правильного вибору способу регулювання швидкост дизеля i в залежностi вщ умов роботи мобiльно-енергетичного засобу (МЕЗ).
Для досягнення ще! мети необхщно було розробити математичнi модел^ алгоритми i програми для розрахункових дослiджень статичних, тягово-динамiчних, технiко-економiчних та екологiчних показникiв МЕЗ в експлуатацш-них умовах.
Результати
Покращення паливно! економiчностi автотракторних двигунiв внутрiшнього згоряння (ДВЗ) - важлива задача економп паливно-енергетичних ресурсiв. Одним з напрямюв зниження експлуатацiйно! витрати палива ДВЗ мобiльних енергетичних машин вважаеться оп-тимiзацiя системи автоматичного регулювання швидкост в залежностi вiд умов роботи автотранспортних засобiв чи машинно-тракторних агрега^в [4, 14, 16-18].
Правильний вибiр способу регулювання швидкосп дизеля в залежностi вiд умов роботи автомоб^ чи машинно-тракторного агрегату дозволить покращити !х тягово-динамiчнi, па-ливо-економiчнi та токсичнi характеристики.
Для дослщження статичних, тягово-динамiчних, технiко-економiчних та еколопч-них показникiв мобшьних енергетичних засобiв (МЕЗ) нами розроблено три математичш моделi
та алгоритми i програми для розрахункiв цих показникiв.
Перша математична модель системи автоматичного регулювання частоти (САРЧ) обер-тання дизеля з газотурбiнним наддувом розроб-лена для побудови i аналiзу швидкiсних характеристик паливного насосу високого тиску (ПНВТ) i САРЧ дизеля [11], друга - для розра-хунюв динамiчних характеристик САРЧ дизеля [12], третя модель «Водш (тракторист) - МЕЗ -дорога (поле)» дае змогу проводити дослщжен-ня системи автоматичного регулювання дизелiв з урахуванням процесiв рушання, розгону i ру-ху мобiльного енергетичного засобу з переклю-ченням передач по !здовому циклу [3, 10, 13].
Для математичного моделювання процешв рушання, розгону та сталого руху мобiльного енергетичного засобу, розроблена функщональ-на блок-схема, яка складаеться з трьох блоюв: водiй (тракторист); тягово-транспортний зашб; дорога (поле). У першому блоцi - водiй (тракторист) - визначаеться режим руху МЕЗ та ке-руюча дiя оператора тягово-транспортного за-собу. Другий блок - тяговий транспортний за-шб - складаеться з п'яти ланок, яю описуються вiдповiдними рiвняннями, а саме: ушверсаль-ний регулятор частоти обертання колiнчатого вала двигуна; паливний насос високого тиску; дизель; трансмюя, яка об'еднуе в собi зчеплен-ня, коробку передач (КП), головну i кшцеву передачi; ходову частину трактора та причшно! машини. У третьому блощ - дорога (поле) -визначаеться покриття дороги та його стан, фь зико-механiчнi властивостi грунту та отр руху тягово-транспортного засобу в залежносп вiд навантаження i режиму руху.
Оператор тягово-транспортного засобу дiе на педаль управлшня регулятором ПНВТ, на педаль управлiння зчепленням i на важiль пе-ремикання передач КП у залежносп вiд поточного значення частоти обертання вала дизеля, вала зчеплення i поточного значення часу ви-конання робочого процесу.
У момент включення трактористом (водiем) вищо! передачi (I = 1поч + Ы;) частота обертання колiнчатого вала дизеля бiльша частоти обертання веденого валу зчеплення, i при цьо-му зчеплення починае включатися плавно за залежшстю:
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЩИШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
Ф =
t -1 -At
поч пер
At„,
(1)
де ф - положення педал1 управл1ння зчеплен-ням, яке характеризуеться безрозм1рним параметром, що змшюегься у межах вщ 0 до 1; ^ -поточне значення часу; tпоч - початкове зна-чення часу, А1пер - час переключення передач! КП; А1ЗЧ - час робочого ходу педал1 управлшня зчепленням, тобто час повного включення зче-плення.
Положення педал1 зчеплення при двох крайшх положеннях визначаеться за умови Ф= 0, що вщповщае повшстю розведеним дискам зчеплення, крутний момент при цьому не передаеться; ф= 1 - вщповщае повшстю зведе-ним дискам зчеплення, при цьому момент тертя зчеплення максимальний.
Система р1внянь, яка описуе нелшшну ма-тематичну модель САРЧ дизеля з турбонадду-вом, мае п'ять диференцшних р1внянь, з яких чотири - першого порядку { одне - другого порядку, а також алгебра!чш р1вняння, яю опису-ють статичш характеристики дизеля { його аг-регати. Частина алгебра!чних р1внянь являеться аналггичними залежностями м1ж параметрами, а частина - описуе опитш характеристики регулятора, ПНВТ, турбокомпресора I двигуна, яю апроксимоваш методами найменших квад-рат1в полшомами друго! 1 третьо! степеш [1, 6, 8, 9, 15].
Математична модель для розрахунюв дина-м1чних характеристик дизеля з ушверсальним регулятором описуеться системою р1внянь. Рь вняння руху дизеля як динам1чно! ланки приведено до виду Кош1 { можна записати:
&пд = 30 & п1д
х[Иг (дц,рк) -Им (Пд) -Мт (Пд,Инв)], (2)
де 1д - момент шерцп двигуна; пд - частота обертання колшчастого валу двигуна; Mi - ш-дикаторний крутний момент; дц - циклова подача пального; рк - тиск надувного пов1тря; Мм - момент мехашчних затрат; Мт _ момент
зовнiшнього навантаження; Ннв - координата задатчика навантаження.
1ндикаторний крутний момент дизеля описуеться рiвнянням:
^ H ni
KT
(3)
де Нн - нижча теплота згоряння пального; i -кшьюсть цилiндрiв; т - тактнють дизеля; к = 3,14; r - шдикаторний ККД дизеля. Крутний момент двигуна визначаеться як
Me = Mt - MM . (4)
Момент мехашчних затрат Мм визначаеться експериментально i описуеться рiвнянням:
Mм = «м1 + «м 2 • nd , (5)
де ам1, ам2 - постiйнi коефiцiенти; пд - частота обертання колшчастого вала дизеля.
Момент зовшшнього навантаження Mm при стендовому дослщженш двигуна описуеться рiвнянням:
Mua = «наНна (Пд - «на2Н на f , (6)
а при рус мобiльного енергетичного засобу:
Mna =(«не1 + «не2 + ^ ) Нт , (7)
де ане1, ана2 - постшш коефiцiенти; Нна - координата задатчика навантаження.
Рiвняння динaмiчноï рiвноваги ротора турбокомпресора описуеться в такому виглядк
dnm„ 30
dt к1тк
х[Mm (Огт,L
та , Птк , КЕ )-M к {°к , LKa , птк , Пка )] ,
(8)
де Mm , MK - крутнi моменти турбши i комп-ресора вiдповiдно;
M т =
30GrmLma4mКЕ .
KU„
M =
КПтк Пк
(9) (10)
Наука та прогрес транспорту. Вкник Днiпропетровського нацiонального унiверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЩИШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
де Ьта - ад1абатична робота розширення одного кг вщпрацьованих газ1в у турбш, Дж/кг; Ька - ад1абатична робота стискування 1 кг пов1тря в компресор1, Дж/кг; цт - ККД турбши; КЕ -поправочний коефщент; птк - частота обер-тання вала турбокомпресора; 1тк - момент ше-рци турбокомпресора; Огт - витрата вщпра-цьованих газ1в через турб1ну; Ок - подача пов> тря компресором; цка - ад1абатичний ККД
компресора.
Р1вняння динам1чно! р1вноваги муфти чут-ливого елемента регулятора записусться в такому виглядк
тг
+ ^ + Е1 (,г) = РЦ (П",Z), (11)
н = Ьла + Ьк 2
а + Ь„
Ов
а =-
* <0
О = 60Пд/ иН Ц ,
п о ц Н1ц?
(14)
(15)
(16)
де Ьк
Ьк3 - коефщенти апроксимацп;
Ов - витрата пов1тря; а - коефщ1ент лишку пов1тря; * 0 - кшьюсть повпря теоретично не-обхщного для повного згоряння 1 кг пального; Оп - погодинна витрата пального; 1ц - число
цилшдр1в дизеля; ин - передавальне число.
Масовий викид саж1 з вщпрацьованими газами розраховуеться за формулою [5]:
де тр, ир - приведет до муфти регулятора маса 1 коефщ1енти тертя регулятора.
Пщтримуюча сила регулятора Рц = Рц (пн, 2 ) описуеться р1внянням:
Рч =(ащ +ац2 • 2)п\, (12)
де ац1, ац 2 - постшш коефщенти апроксимацп; пн - частота обертання кулачного валу ПНВТ; 2 - координата муфти регулятора.
Вщновлююча сила Е}. = Е}. (2) зале-
жить вщ попередньо! деформаци пружини регулятора 1 координати муфти регулятора \ розраховуеться в залежносп вщ штервалу швидкь сно! характеристики, у межах якого находиться муфта регулятора.
Р1вняння циклово! подач1 ПНВТ описуеться р1внянням, яке апроксимоване за експеримен-тальними залежностями:
' = Ь, + Ь2 • п + Ь3 • И + Ь. • п +
1 2 н 3 н 4 н
+Ь5 • И2 + Ь6 • п- И, (13)
5 н 6 н н ' V/
де Ь1,..., Ь6 - постшш коефщ1енти апроксимацп; Ин - осьова координата дозатор1в ПНВТ.
Димнють (оптична щшьшсть) вщпрацьова-них газ1в визначаеться як
О„ = а • Ы2
1 --
Ь • Оп
\
3600• О„
3600• О„
(17)
де а , Ь - постшш коефщенти; рп - щшьшсть пов1тря.
Крутний момент двигуна Ме, який перетво-рюеться в трансм1сп \ передаеться безпосеред-ньо на ос ведучих колю енергетичного засобу визначаеться як
М к = М„ • ит
(18)
де Мк - ведучий момент вщ двигуна; Ме -крутний момент двигуна; итр ^ - загальне передавальне число трансмюи на 1Ш -й включенш передач1 коробки передач; цпрр - мехашчний
ККД трансмюи МЕЗ.
Визначення моменту зовшшнього наванта-ження { моменту шерцп мобшьного енергетичного засобу проводиться в такш послщовность
Момент зовн1шнього навантаження, який передаеться на колшчастий вал двигуна при рус1 тягово-транспортного засобу визначаеться за [5]:
М „в =-
Мо
У Р г
^^ оп к
и т
и т
(19)
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЩИШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
де I Роп - сумарна сила; Mon - момент опору АТЗ чи МТА; rK - рад1ус колеса тягово-транспортного засобу.
Сумарна сила опору руху МТА чи АТЗ з причепом визначаеться за формулою:
I Роп = Pf ± P ± Pj + Pw + Pkp , (20)
де Рf = Pf 1 ± Pf 2 - сила опору перекочування
автомобшя чи трактора з причшною машиною; Pi - сила опору шдйому; Рj - сила опору
розгону (сила шерцп); Pw - сила опору повпря; P - сила тяги на гащ, яка паралельна поверхш шляху.
При буксировщ автомобшем чи трактором причепа PKp = Pf 2. При математичному моде-
люванш рушання, розгону i сталого руху МТА приймалося, що при V < 10 Pw = 0, крiм того, кожен причш збiльшуе коефiцiент опору повн-ря на 25 %.
При виконанш МТА польових робгт момент зовшшнього навантаження транспортного агрегату змшюеться на момент навантаження вiд сили опору робочих оргашв грунтообробних машин i силу опору кочення трактора i причш-но1 машини:
M = Мю + М
f
(21)
де Ммю - момент, який створюеться силою опору робочих оргашв грунтообробно! машини, який приведений до колiнчастого валу двигуна; Mf - момент опору коченню трактора i причь
пно1 машини, який приведений до колiнчастого валу двигуна.
При цьому рiвняння (19) через момент зовшшнього навантаження можна виразити:
M о
(( +Рf )r
U ■ л U ■ л
тр.гКп *тр тр.1ки I
(22)
трлКП Утр
де P'кр - сила опору грунтообробно! машини
(сила тяги на крюку трактора); Р f - сила опору
коченню машинно-тракторного агрегату.
Сила опору грунтообробно! машини визначаеться за рiвнянням:
P = Кс ■ В •
(23)
де Кс - питомий опiр робочого органу грунто-обробно! машини; В - ширина захвату робочого органу машини; h - глибина обробки грунту; Г - кшькють робочих оргашв грунтооброб-но1 машини.
Швидкють руху мобiльного енергетичного засобу
V = 3,6л-пк •r = 0377(1 _S), (24)
30
Uт
де пк - частота обертання колеса автомобiля чи трактора; пч - частота обертання вала зчеп-лення; ô - коефщент буксування ведучих колю МЕЗ.
Витрата пального на 100 км шляху:
G = G
n100 v '
Викиди сажi на 100 км шляху:
G
S^ _ с
с100 V '
(25)
(26)
Диференцiйне рiвняння трансмюп тягово-транспортного засобу описуеться як
dn 30
dt л/
(( _ Мнав ),
(27)
де 1ч - момент iнерцiï зчеплення; Мзч - момент на валу зчеплення.
При математичному моделюванш системи «Тракторист - МТА - поле» при виконанш тра-кторним агрегатом грунтообробних операцш, наприклад, оранки, важливо врахувати випад-ковi коливання моменту навантаження Мнае. Для врахування випадкових процесiв змiнних Мнае при розрахунках на математичнiй моделi доцiльно використати методику математичного моделювання псевдовипадкового процесу ко-ливань моменту навантажень, який передаеться на колiнчастий вал двигуна [7].
Момент шерцп двигуна, трансмюп енергетичного засобу з причшною машиною, яю приведет до колшчастого вала дизеля 1в, визна-чаються з умов рiвностi кiнетичноï енергп всiх
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЩИШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
обертових i поступально рухомих мас тягово-транспортного засобу:
h = I д,
Ом,
U .
V тр.'кл У
=1U2
4 I
пр
i=1 mv.iry
( V
r
V пР У
, (28)
де 1д - момент шерци Boix обертових i поступально рухомих мас мобшьного енергетичного засобу, який приведений до колiнчастого валу двигуна; Омез - експлуатацшна маса мобшьно-го енергетичного засобу; 1к - момент шерци колеса МЕЗ; Inp - момент шерци причепа чи
причшно! машини; Umpin - загальне переда-
вальне число трансмюи на i^p-й включенш пе-редачi коробки передач; гк - радiус колеса МЕЗ; rnp - радiус колеса причепа.
Для проведення обчислювальних досл> джень статичних i тягово-динамiчниx характеристик автотракторних дизелiв, паливно-економiчниx, динамiчниx i екологiчниx показ-никiв МЕЗ з ушверсальним регулятором розро-бленi вщповщш алгоритми i програми. Ц ма-тематичнi моделi дозволяють проводити з ви-сокою точнiстю порiвняльнi дослщження рiз-них варiантiв систем автоматичного регулювання дизеля з однаковою повторюваш-стю режимiв роботи двигуна i автотранспортного засобу або машинно-тракторного агрегату.
Це дуже важливо сьогодш, коли порiвняльнi дослiдження мобiльниx енергетичних засобiв в експлуатацiйниx умовах по паливнш економiч-ностi, динамiчним i екологiчним показникам являються складним оргашзацшно-техшчним завданням з причини вiдсутностi необхщного обладнання, приладiв i паливно-мастильних матерiалiв. Розроблена математична модель системи «водш - мобiльний енергетичний засiб - дорога (поле)» дае змогу проводити досл> дження системи автоматичного регулювання (САР) дизелiв мобiльного енергетичного засобу по !здовому циклу.
Адекватнiсть математично! моделi шдтвер-джуеться збiгом розрахункових та експеримен-тальних характеристик i кривих переxiдниx процесiв дизелiв i машинно-тракторного агре-
гату при виконанш польових 1 транспортних робгг. Дослщжуваний ушверсальний регулятор на транспортних роботах дозволяе економити 6-8 % пального.
Таким чином, математична модель тягово-динам1чних процешв мобшьних енергетичних засоб1в для дослщжень системи автоматичного регулювання частоти обертання дизеля з газо-турбшним наддувом складаеться з системи ди-ференцшних та алгебра!чних р1внянь у вигляд! функцюнальних залежностей, яю дають мож-ливють дослщжувати АТЗ чи МТА в умовах реально! експлуатаци та по !здовому циклу.
Наукова новизна та практична значимкть
Наукова новизна полягае у розробщ методики дослщницького !здового циклу з ураху-ванням найб!льш характерних режим!в руху машинно-тракторного агрегату в умовах реально! експлуатаци. На розроблеш математичш модел!, алгоритми ! програми для теоретичних досл!джень статичних, динам!чних, паливно-економ!чних показник!в МТА ! АТЗ державна служба штелектуально! власност! Укра!ни видала свщоцтва про реестрац!ю авторського права [11-13].
Висновки
1. Для дослщження статичних, тягово-динам!чних, техн!ко-економ!чних та еколопч-них показник!в моб!льних енергетичних засоб!в розроблено три математичн! модел! та алгоритми ! програми, як! доведен! до практичного використання. Першою математичною модел-лю [11] розраховуються швидк!сн! характеристики ПНВТ з ушверсальним регулятором ! дизеля з газо-турбшним наддувом, другою [12] -розраховуються динам!чш показники перехвд-них процес!в у дизел! з турбонаддувом, а завдя-ки третш модел! [13] проводяться розрахунки процеав рушання, розгону та сталого руху машинно-тракторного агрегату з переключенням передач по !здовому циклу.
2. Удосконалена математична модель для визначення паливно! економ!чност! та еколоп-чних показник!в АТЗ ! МТА за !здовим циклом враховуе статичш ! динам!чн! характеристики
Наука та прогрес транспорту. Вкннк Дншропетровського нацюнального ушверснтету зaлiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЩИШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
автотракторного ДВЗ та його aгрегaтiв, а також МЕЗ в умовах реaльноï експлуатаци.
3. Розроблена математична модель дае мож-ливють визначити ефективнють нових констру-ктивних, експлуaтaцiйних та технолопчних впроваджень, а також рiзних зaходiв щодо по-кращення пaливно-економiчних та екологiчних
покaзникiв АТЗ i МТА в експлуатацшних умо-вах.
4. Використання розроблених математичних моделей сьогодш е актуальним i перспектив-ним при вирiшеннi нагальних проблем економи паливно-енергетичних ресурсiв та екологiчноï безпеки Укрaïни.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. Андрусенко, С. И. К расчету переходных процессов в САР дизелей на ЭЦВМ / С. И. Андрусенко, К. Е. Долганов // Тр. цНиТА. - Ленинград, 1974. - Вып. 61. - С. 27-31.
2. Гутаревич, Ю. Ф. Охрана окружающей среды от загрязнения выбросами двигателей / Ю. Ф. Гутаревич. - Киев : Урожай, 1989. - 224 с.
3. Ковбасенко, С. В. До питання дослщження показнишв руху легкових та вантажних автомобшв за 1здо-вими циклами за допомогою мaтемaтичноï' модел1 / С. В. Ковбасенко, О. С. Андрюхша, С. Ю. Гутаревич // В1сн. нац. трансп. ун-ту : наук.-техн. зб. / Нац. трансп. ун-т. - Кшв, 2012. - Вип. 25. - С. 221-225.
4. Крутов, В. И. Двигатель внутреннего сгорания как регулируемый объект / В. И. Крутов. - Москва : Машиностроение, 1978. - 472 с.
5. Кутьков, Г. М. Тяговая динамика тракторов / Г. М. Кутьков. - Москва : Машиностроение, 1989. - 215 с.
6. Лукьянченко, Б. С. Метод расчёта на ЭЦВМ разгона дизелей с газотурбинным наддувом / Б. С. Лукья-нченко // Двигателестроение. - 1987. - № 11. - С. 13-15.
7. Математическое моделирование псевдослучайного процесса колебаний момента сопротивления, действующего на коленчатый вал тракторного дизеля / К. Е. Долганов, А. С. Бурко, В. И. Романюк, С. А. Ковалев // Двигателестроение. - 1986. - № 2. - С. 21-24.
8. Математическая модель двигателя 6 ЧН 13/14 как объекта регулирования по частоте вращения коленчатого вала / В. В. Минцев, А. И. Зайцев, А. Б. Ландышев, А. Н. Маслов // Двигателестроение. - 1990. -№ 12. - С. 21-24.
9. Назаренко, О. О. Теоретичне дослщження режим1в роботи машинно-тракторних агрегапв / О. О. Наза-ренко, О. С. Пушка // Конструювання, виробництво та експлуатащя сшьськогосподарських машин : за-гальнодерж. м1жв1д. наук.-техн. зб. / Юровоград. нац. техн. ун-т. - Юровоград. 2015. - Вип. 45, ч. 1. -С. 232-239.
10. Сахно, В. П. Математична модель для визначення показнишв паливно! економ1чност1 автомобшя з дви-гунами р1зно1 потужносп при виконанш м1ського 1здового циклу / В. П. Сахно, О. А. Копач // В1сн. нац. трансп. ун-ту : наук.-техн. зб. / Нац. трансп. ун-т. - Кшв, 2012. - Вип. 25. - С. 181-185.
11. Сввдоцтво про реестрацш авторського права на тв1р № 49285 (Украша). Комп'ютерна програма «Математична модель розрахунку динам1чних показнишв перехвдних процеав дизеля з турбшним наддувом» / А. Ф. Головчук ; заявл. 22.05.13. - 1 с.
12. Сввдоцтво про реестрацш авторського права на тв1р № 49286 (Украша). Комп'ютерна програма «Математична модель розрахунку параметр1в зовшшньо1 швидшсно1 характеристики дизеля з газотурбш-ним наддувом» / А. Ф. Головчук ; заявл. 22.05.13. - 1 с.
13. Сввдоцтво про реестрацш авторського права на тв1р № 49287 (Украша). Комп'ютерна програма «Математична модель розрахунку процеав рушання, розгону та руху машинно-тракторного агрегату» / А. Ф. Головчук ; заявл. 22.05.13. - 1 с.
14. Топливная экономичность и динамика автобуса с регуляторами различных типов / Л. В. Крайнык, Р. В. Пелехатый, А. А. Токарев [и др.] // Автомобильная промышленность. - 1982. - № 2. - С. 13-15.
15. Третяк, М. В. Ушверсальна модель пбридного тягово-транспортного засобу (ТТЗ) сшьськогосподарсь-кого призначення / М. В. Третяк // Техн. електродинам1ка. - 2013. - № 3. - С. 57-60.
16. Экспериментальная оценка скоростных и топливно-экономических свойств большегрузного автопоезда с двумя вариантами топливного насоса / Ю. Г. Котиков, А. Э. Горев, Б. В. Мамин, А. А. Шестаков // Двигателестроение. - 1982. - № 10. - С. 46-47.
17. Gross, R. Is diesel exhaust deadly / R. Gross // Commercial Carrier J. - 1985. - No. 8. - P. 63-67.
18. Jante, A. Uber Verbrennungsmotoren und Kraftfahrwessen. Band 2 / A. Jante, K. Hofman. - Berlin : VEB Verlag Technik, 1959. - 740 p.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЦШН1 ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
А. Ф. ГОЛОВЧУК1*
1 Каф. «Автомобили», Запорожский национальный технический университет, ул. Жуковского, 64, Запорожье, Украина, 69063, тел. +38 (061) 764 26 47, эл. почта [email protected], ORCID 0000-0003-0562-2629
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДЛЯ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ ТЯГОВО-ТРАНСПОРТНЫХ СРЕДСТВ
Цель. В научной статье необходимо решить следующие задачи: 1) уточнение математической модели для определения тягово-динамических, топливно-экономических и экологических показателей мобильных энергетических средств; 2) разработку методики теоретических исследований системы автоматического регулирования, статических и динамических характеристик автотракторного дизеля с газотурбинным наддувом и мобильного энергетического средства. Методика. В работе исследуются рабочие процессы автотранспортных средств и машинно-тракторных агрегатов путем математического моделирования и разработки алгоритмов и программ для расчетов этих процессов в условиях реальной эксплуатации. Для теоретических исследований разработана система уравнений, которая описывает нелинейную математическую модель системы автоматического регулирования частоты вращения автотракторного дизеля. Кроме дифференциальных уравнений первого и второго порядка, в математическом моделировании рабочих процессов тягово-транспортных средств использованы уравнения, которые описывают опытные характеристики автоматического регулятора, топливного насоса высокого давления, турбокомпрессора и двигателя, а также моменты механических потерь двигателя и внешнюю нагрузку. Результаты. Разработанная математическая модель позволяет определить эффективность новых конструктивных, эксплуатационных и технологических разработок, а также различных мероприятий по улучшению топливно-экономических и экологических показателей автотранспортных средств и машинно-тракторных агрегатов в эксплуатационных условиях. Научная новизна. Впервые разработана математическая модель «Тракторист-машинно-тракторный агрегат-дорога (поле)», которая позволяет проводить исследования транспортных тракторных агрегатов по ездовым циклам с учетом процессов трогания и разгонов мобильно-энергетического средства с переключением передач. Практическая значимость. В условиях затяжного экономического кризиса, при отсутствии необходимого оборудования, приборов и топливно-смазочных материалов, сравнительные исследования мобильных энергетических средств возможно провести благодаря разработанным математическим моделям с соответствующими алгоритмами и программами, которые доведены до практического использования. На эти компьютерные программы Укрпатент выдал свидетельства
0 регистрации авторских прав № 49285, № 49286 и № 49287 от 22 мая 2013 года.
Ключевые слова: мобильные энергетические средства; математические модели; алгоритмы и программы; статические и тягово-динамические характеристики; топливная экономичность; токсичность; автотранспортные средства; машинно-тракторные агрегаты
A. F. GOLOVCHUK1*
1 Dep. «Automobiles», Zaporizhzhia National Technichal University, Zhukovskyi St., 64, Zaporizhzhia, Ukraine, 69063, tel. +38 (061) 764 26 47, e-mail [email protected], ORCID 0000-0003-0562-2629
MATHEMATICAL MODEL FOR DETERMINING THE INDICATORS OF TRACTIVE VEHICLES
Purpose. The research paper involves solving of the following tasks: 1) refinement of the mathematical model for determining the traction and dynamic, fuel and economic, environmental indicators of mobile energy facilities; 2) methodology development of theoretical studies of automatic control systems, static and dynamic characteristics automotive-tractor diesel with a gas turbine supercharger and a mobile power facility. Methodology. The work studies the working processes of vehicles and machine-tractor aggregates by mathematical simulation and the development of algorithms and programs for the calculation of these processes in actual operational conditions. The system of equations has been developed for theoretical research. It describes a nonlinear mathematical model of the automatic control system of an automotive-tractor diesel rotating frequency. In addition to the differential equations
HayKa Ta nporpec TpaHcnopTy. BicHHK .OHmponeTpoBCLKoro Ha^oH&ntHoro ymBepcureTy 3&ni3HHHHoro TpaHcnopTy, 2017, № 3 (69)
IHOOPMAqiHHO-KOMYMKAqiHffl TEXHO-HOnl TA MATEMATHHHE MOflE.nroBAHHfl
of the first and second order, equations are used in mathematical simulation of working processes of traction vehicles. These equations describe experimental characteristics of an automatic regulator, a high-pressure fuel pump, a turbocharger and an engine, as well as moments of engine mechanical losses and an external load. Findings. The developed mathematical model allows determining the effectiveness of new design, operational and technological developments, as well as various measures in order to improve the fuel-economic and environmental performances of vehicles and machine-tractor aggregates in operating conditions. Originality. For the first time, the mathematical model "Tractor driver - machine-tractor aggregate - road (field)" was developed. It allows conducting research of transport tractor aggregates by driving cycles, taking into account the processes of starting and speeding up the mobile-power sources with gear shift. Practical value. In conditions of a protracted economic crisis, in the absence of the necessary equipment, instruments, combustible and lubrication materials, comparative research of mobile power sources can be carried out thanks to the developed mathematical models with corresponding algorithms and programs that are brought to practical use. For these computer programs State Intellectual Property Service of Ukraine issued Certificates on registration of copyright No. 49285, No. 49286, No. 49287 of May 22, 2013.
Keywords: mobile power sources; mathematical models; algorithms and programs; static and traction-dynamic characteristics; fuel economy; toxicity; motor vehicles; machine and tractor aggregate
REFERENCES
1. Andrusenko, S. I., & Dolganov, K. Y. (1974). K raschetu perekhodnykh protsessov v SAR dizeley na ETsVM.
Trudy TsNITA, 61, 27-31.
2. Gutarevich, Y. F. (1989). Okhrana okruzhayushchey sredy ot zagryazneniya vybrosami dvigateley. Kyiv: Urozhay.
3. Kovbasenko, S. V., Andriukhina, O. S., & Hutarevych, S. Y. (2012). Do pytannia doslidzhennia pokaznykiv rukhu lehkovykh ta vantazhnykh avtomobiliv za yizdovymy tsyklamy za dopomohoiu matematychnoi modeli.
The National Transport University Bulletin, 25, 221-225.
4. Krutov, V. I. (1978). Dvigatel vnutrennego sgoraniya kak reguliruemyy obekt. Moscow: Mashinostroenie.
5. Kutkov, G. M. (1989). Tyagovaya dinamika traktorov. Moscow: Mashinostroenie..
6. Lukyanchenko, B. S. (1987). Metod rascheta na ETsVM razgona dizeley s gazoturbinnym nadduvam. Dvigatelestroyeniye, 11, 13-15.
7. Dolganov, K. Y., Burko, A. S., Romanyuk, V. I., & Kovalev, S. A. (1986). Matematicheskoye modelirovaniye psevdosluchaynogo protsessa kolebaniy momenta soprotivleniya, deystvuyushchego na kolenchatyy val traktornogo dizelya. Dvigatelestroyeniye, 2, 21-24.
8. Mintsev, V. V., Zaytsev, A. I., Landyshev, A. B., & Maslov, A. N. (1990). Matematicheskaya model dvigatelya 6 ChN 13/14 kak obekta regulirovaniya po chastote vrashcheniya kolenchatogo vala. Dvigatelestroyeniye, 12, 21-24.
9. Nazarenko, O. O., & Pushka, O. S. (2015). Theoretical research of operating modes of machine-tractor aggregates. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn, 45 (1), 232-239.
10. Sakhno, V. P., & Kopach, O. A. (2012). Matematychna model dlia vyznachennia pokaznykiv palyvnoi ekonomichnosti avtomobilia z dvyhunamy riznoi potuzhnosti pry vykonanni miskoho yizdovoho tsyklu. The National Transport University Bulletin, 25, 181-185.
11. Golovchuk, A. F. (2013). UA Registration Certificate of copyright for a work No. 49285. State Intellectual Property Service of Ukraine.
12. Golovchuk, A. F. (2013). UA Registration Certificate of copyright for a work No. 49286. State Intellectual Property Service of Ukraine.
13. Golovchuk, A. F. (2013). UA Registration Certificate of copyright for a work No. 49287. State Intellectual Property Service of Ukraine.
14. Kraynyk, L. V., Pelekhatyy, R. V., Tokarev, A. A., Smirnov I. V., & Nagornyak G. A. (1982). Toplivnaya ekonomichnost i dinamika avtobusa s regulyatorami razlichnykh tipov. Avtomobilnaya promyshlennost, 2, 1315.
15. Tretiak, M. V. (2013). Universal model of hybrid vehicle for agricultural purposes. Tekhnichna Elektrodynamika, 3, 57-60.
16. Kotikov, Y. G., Gorev, A. E., Mamin, B. V., & Shestakov, A. A. (1982). Eksperimentalnaya otsenka skorostnykh i toplivno-ekonomicheskikh svoystv bolshegruznogo avtopoyezda s dvumya variantami toplivnogo nasosa. Dvigatelestroyeniye, 10, 46-47.
17. Gross, R. (1985). Is diesel exhaust deadly. Commercial Carrier Journal, 8, 63-67.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2017, № 3 (69)
ШФОРМАЦШНО-КОМУШКАЦШШ ТЕХНОЛОГИ ТА МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
18. Jante, A., Hofman K. (1959). Uber Verbrennungsmotoren und Kraffahrwessen. Band 2. Berlin: VEB Verlag Technik.
Стаття рекомендована до друку д.т.н., проф. В. I. Шинкаренком (Украта), д.т.н., проф. Г. Ф. Бабушюним (Украта)
Надшшла до редколеги: 17.02.2017 Прийнята до друку: 18.05.2017