Масса зерна - интегральный показатель адаптивности озимой пшеницы при селекции на засухоустойчивость
А.И. Грабовец, д.с-х.н., профессор, член-корр. РАСХН; М.А. Фоменко, к.с-х.н, Донской зональный НИИСХ
У озимой пшеницы свойство засухоустойчивости обусловливается наличием приспособительных и приобретённых признаков полигенного характера, которые задействованы на получение оптимального количества хозяйственно ценной биомассы на единице площади. Нельзя отрицать и значения проспективной адаптации, когда имеющиеся в наличии молчащие признаки при изменении условий среды начинают выполнять приспособительные функции [1].
Преобладающее число сортов с высокой засухоустойчивостью создано методом парных скрещиваний с использованием доноров этого признака [2]. Для усиления частоты проявления засухоустойчивости дополнительно к простым методам использовали беккросс на адаптированного в зоне родителя или с желаемыми свойствами третий сорт [3, 4, 13]. В исследованиях Mak Key J., Balla L. [14, 15] и др. показана перспективность
гибридизации по принципу максимальной рекомбинации. Для генерирования изменчивости с новыми признаками ряд исследователей использoвали мутагенез [5, 6].
Существует комплекс признаков, которые обусловливают устойчивость растений к засухе в течение летней вегетации. Особое значение при этом имеет жаростойкость, а также целый ряд моментов онтогенеза, определяющих общую засухоустойчивость. Р.А. Ричардс и др. подчёркивают важность таких признаков, как высота растений, время цветения, роль транспирации и листьев, уборочный индекс и др. [7].
Физиологами предложена целая группа весьма информативных показателей, позволяющих, по их мнению, оценить степень выраженности признака «засухоустойчивость». Это состояние листового аппарата, особенно в период налива и созревания зерна, водоудерживающая способность листьев [16], удлинённое колеоптиле, отношение надземной массы к количеству использованной воды и множество других показателей в основном
косвенного характера [7]. А.М. Алексеев выделяет ещё интенсивность водоотдачи надземной части растений, водонасасывающую способность листа и интенсивность транспирации, способность семян прорастать на растворе сахарозы с высоким осмотическим давлением и др. [8].
Однако в полевых условиях при ведении селекции в больших объёмах многие вышеперечисленные методы просто неприемлемы из-за своей трудоёмкости, громоздкости и недостаточной репрезентативности. По многим из них вследствие компенсационных взаимосвязей при онтогенезе вообще невозможно выявить реальную урожайность создаваемого генотипа. К примеру, у сорта Альбатрос одесский засухоустойчивость была обусловлена мощной корневой системой, у сорта Обрий корневая система была развита средне, но у листьев была высокой их водоудерживающая способность [9]. Не меньшее значение имеют и особенности накопления и реутилизации ас-симилянтов. У одних сортов они по количеству достигают пика к колошению и далее урожай формируется за счёт реутилизации. У других накопление продолжается до молочной спелости зерна [10]. Поэтому по этой проблеме важно разработать методы генерирования генетической изменчивости по засухоустойчивости и создать малозатратные, объективные и максимально доступные способы поиска высокоадаптивных форм для конкретных условий среды [11].
Условия и методика проведения исследований. Исследования проводили на Северном Дону (Россия) в 1971—2012 гг. Это степь с резко континентальным климатом. Гидротермический коэффициент составляет 0,8, коэффициент аридности — 0,4. За период с 1971 по 2012 г. среднегодовая температура воздуха повысилась на 2,3°С. Сумма осадков по годам варьировала в пределах 278—496 мм. Это зона с недостаточным и неустойчивым увлажнением. Основное количество осадков выпадает осенью и зимой. С начала XXI в. ежегодно отмечали почвенные и воздушные засухи со стрессами различной степени напряжённости на всех этапах онтогенеза. Урожай формировался в основном за счёт осенне-зимних запасов влаги.
В качестве исходного материала при гибридизации использовали собственный и зарубежный селекционный материал. Основным методом генерирования генетической изменчивости служила внутривидовая гибридизация, химический мутагенез. Схема ведения селекции (педигри и балк-метод) в основном общепринятая. Селекционный питомник закладывали необмолоченными колосьями специально сконструированной сажалкой. Это позволяло изучать на начальных этапах селекции очень большое число генотипов (до 45000), что существенно повышало её результативность.
Наряду с определением водоудерживающей способности листьев изучали динамику их состояния
в процессе вегетации. Проводили глазомерную оценку засухоустойчивости во время наибольшего проявления действия стрессора. Определяли биометрию элементов, обусловливающих урожай, количество накопленной биомассы, урожай зерна с единицы площади, индекс урожая. Находили коэффициент водопотребления новых линий. Учёты и оценку адаптивных свойств осуществляли по общепринятым методикам [12, 17].
Результаты исследований. Селекция на высокую адаптивность в условиях частых засух на Северном Дону базировалась на уточнении основных параметров модели сорта, на формировании гетерогенных популяций с длительной рекомбинацией. Это обусловливало интенсивный формообразовательный процесс с проявлением трансгрессивной изменчивости. Проведение ступенчатых скрещиваний совместно с последующими отборами усиливало взаимное приспособление взаимодействующих аллелей и повышало степень выраженности засухоустойчивости новых генотипов.
При работе с популяциями важно было выявить маркер для отбора на продуктивность в условиях дефицита влаги. Он должен носить интегральный характер, максимально воплощать в себе все признаки и свойства, обусловливающие адаптивность.
Изучение корреляционных взаимосвязей между значениями водоудерживающей способности листьев, состоянием листьев на отдельных этапах онтогенеза, общими визуальными оценками на засухоустойчивость на разных стадиях развития и урожаем не выявило значимых закономерностей (г = 0,07 + 0,01-0,12 ±0,030) (табл. 1). С их помощью можно было дать только весьма общую характеристику популяции или линии (типа ксероморфная или нет). Выделить с их помощью высокопродуктивные генотипы было невозможно.
Относительно достоверные сопряжённости были выявлены между величиной надземной массы и урожаем зерна. В среднем в 1985-1995 гг. вес воздушно-сухой массы составлял 1700 г/м2 при средней высоте стебля 95 см. В процессе селекции (2000-2013 гг.) она понизилась до 86 см, а масса — до 1460 г/м2. Коэффициенты корреляции соответственно в среднем были равны г = 0,67+0,03 и г = 0,56+0,04 при 1005. Среди новых рекомбинан-тов последних лет можно было найти формы с коэффициентом корреляции 0,68. Следовательно, этот признак при засухах может служить маркером при отборах.
Также была изучена взаимосвязь между массой зерна/колос и урожаем. Маркер масса зерна с колоса используется при селекции во многих странах (Россия, Югославия и др.). Исследования за 1985—1990 гг. показали, что в среднем коэффициент корреляции при п = 560 составлял г = 0,32+0,05. В последующие годы в связи с повышением интенсивности новых генотипов он увеличился до г = 0,53.
1. Корреляции между урожаем и его элементами структуры, средние значения (г + бг)
Показатель Годы
1985-1995 1996-2011 среднее за 1985-2011
Водоудерживающая способность листьев 0,05±0,01 0,12±0,02 0,09±0,02
Визуальная оценка засухоустойчивости 0,11±0,03 0,25±0,04 0,19±0,04
Количество стеблей/м2 0,38±0,06 0,21±0,05 0,25±0,04
Продуктивное кущение 0,40±0,05 0,31±0,05 0,30±0,04
Число семян/колос 0,18±0,06 0,28±0,05 0,26±0,04
Надземная биомасса, г/м2 0,67±0,04 0,56±0,03 0,55±0,03
Масса зерна/колос 0,32±0,06 0,53±0,04 0,48±0,03
Масса зерна/растение 0,57±0,04 0,71±0,02 0,65±0,02
Высота растений 0,25±0,06 0,41±0,04 0,47±0,03
Длина колоса 0,04±0,05 0,06±0,05 0,06±0,04
Уборочный индекс 0,14±0,06 0,57±0,03 0,36±0,03
2. Водопотребление сортов озимой пшеницы нового поколения
Сорт Урожай, т/га Водо-потребление, м3/га Коэффициент водопотребле-ния, м3/т
Дон 95, ст. 3,32 3457 1043
Донна 4,33 3595 830
Боярыня 4,66 3664 786
Донэра 4,17 3560 853
Донстар 4,48 3630 810
Донская лира 4,55 3647 802
В связи с суровыми условиями перезимовки, частыми засухами в структуре урожая на первом месте значилась способность генотипа к кущению, густота стеблестоя. Поэтому в процессе селекции на продуктивность при переходе на массу зерна с растения коэффициент корреляции увеличился до г = 0,57+0,04. В последующие годы (1995-2001) он стал равен г = 0,71. Таким образом, это третий значимый маркер при отборах, особенно при экстремальных условиях по увлажнению.
Подтверждено отмеченное многими исследователями наличие положительной взаимосвязи разной степени сопряжённости между уборочным индексом и урожаем. Среднее значение коэффициента корреляции за 1985-1995 гг. составило г = 0,14+0,06 при п = 245 и 1005. По мере снижения высоты стебля в процессе селекции эта закономерность стала более значимой. В 1995-2011 гг. она была равна в среднем г= 0,57+0,03 при п = 390 и 1005. Следует отметить, что довольно тесная взаимосвязь выявлена между массой зерна/растение и уборочным индексом (г = 0,78+0,06). Поэтому улучшение признака масса зерна/растение будет обусловливать и оптимизацию уборочного индекса.
В начале XXI в. в связи с усилением засух начали изучать характер водопотребления новыми константными линиями и сортами. При этом было выявлено наличие значимой, доступной отбору, генетической изменчивости по признаку транс-пирации, что подтверждается данными и других исследователей [7]. В одних и тех же условиях обеспеченности влагой новые сорта формировали больший вал урожая зерна (табл. 2). Это позволило
приступить к формированию более густых фито-ценозов (что существенно уменьшало испарение влаги с почвы), толерантных к загущению. В этой ситуации опять лидерство перешло к маркеру масса зерна с колоса, общему валу биомассы. Усилилась проблема устойчивости растений к полеганию.
На начальных этапах селекции при создании морфобиотипов для среднего уровня плодородия отбор вели по массе зерна с растения, при синтезе генотипов для интенсивных технологий - по массе зерна с колоса. Однако в последние годы при участившихся засухах, когда при вегетации пшеницы в течение 50-60 дней осадков нет, более тесная зависимость была выявлена между массой зерна с единицы площади и урожаем зерна. Все остальные маркеры стали носить вспомогательный характер при работе в селекционных питомниках.
При селекции на улучшение засухоустойчивости следует отметить значимую роль использованных местных генотипов с коадаптированными комплексами генов. При этом происходило усиление выраженности общей адаптивности к стрессорам различного типа. Конечно, идеализации их преобладания в программе исследований нет. Они ценны лишь в аспекте усиления экологической пластичности. Из всего объёма селекционного материала, созданного таким образом, примерно из 10% популяций были выделены перспективные линии, ставшие сортами (Арфа, Донна, Миссия, Тарасовская 70 и др.). Остальные 17 сортов созданы на основе ступенчатой гибридизации различной сложности с использованием как инорайонных морфобиотипов, так и генотипов местного происхождения. При этом на каждой «ступеньке» рекомбинации выделяли высокопродуктивные формы с более высоким уровнем засухоустойчивости. Пластичность генотипа не только зависела от наличия адаптивно значимой свободной генотипи-ческой изменчивости в популяции, но и от отбора, который влияет на её формирование. Полученные рекомбинанты вновь скрещивали на следующей «ступеньке» с другим сортом, и процесс повторялся, но уже с усилением выраженности селектируемых признаков. За годы изучения частота выщепления трансгрессивных генотипов у популяций по массе
3. Частота и степень трансгрессии проявления признака масса зерна с 1 м2 при отборах в F3—F7 (селекционные питомники, 2001—2007)
Поколение отбора Число Частота Степень трансгрессии, % Выделенные сорта
изученных семей трансгрессии, % среднее пределы варьирования
Северодонецкая юбилейная / Дон 95
F3 F5 396 288 2,5 5,0 42 17 13-83 2-44 Тарасовская 70
1099/97 DZ-21, Румыния // 9372/78 / Астра/// Одесская 133 //// Северодонецкая юбилейная
F3 396 2,5 45 13-83 Магия
F5 300 5,7 33 4-67
Северодонецкая юбилейная / Зерноградка 9
F3 492 3,9 33 13-83
F4 324 0 - - Миссия
F5 F6 426 600 6,0 4,0 23 22 8-52 8-42 Донэра
зерна с единицы площади достигала пика в F4—F6 (средний уровень в условиях Дона 3,9%). Каждый год изучали рекомбинанты из 250—300 популяций.
Установленную закономерность увеличения частоты проявления трансгрессий по признаку масса зерна с площади в условиях засух довольно успешно использовали в селекционном процессе путём повторных отборов в гетерогенных линиях. Отборы чередовались один за другим, что влияло на коадаптацию аллелей под давлением стрессоров и отборов (табл. 3).
В ряде работ с озимой пшеницей можно найти утверждение о перспективности скороспелых генотипов как одного из способов решения проблемы борьбы с засухой [4, 7]. Однако по озимой пшенице на основании наших многолетних исследований можно утверждать об отсутствии постоянной зависимости между урожаем и длиной вегетационного периода. То же можно найти у ^11у L. [18]. Для иллюстрации сказанного можно привести итоги исследований на эту тему в контрольном питомнике 1979 г. Колошение линий проходило со 2 по 13 июня. У пяти скороспелых форм (колошение 2 июня) урожай зерна с делянки составил 1,2—2,4 кг, у стандарта — 3,5 (колошение 8 июня). То есть перспективной была среднеспелая форма.
В методическом опыте (1972—1978) зависимость урожая зерна от продолжительности вегетационного периода изучали 7 лет. Лишь в двух случаях коэффициент корреляции был значимым: в засушливом 1974 г. он составил 0,42+0,26, в благоприятном 1976 г. - 0,28+0,13.
В то же время выявлена постоянная зависимость между урожаем зерна и продолжительностью периода колошение - созревание. В среднем за годы изучения коэффициент корреляции был 0,41+0,06. Размах варьирования признака составил 3952 дн. На основании регрессионного анализа этот признак был уточнён — 39-45 дн.
Таким образом, в условиях участившихся засух важно иметь должную надземную массу на
единице площади. При этом наибольший выход перспективных по продуктивности линий получали при проведении отборов вначале по массе зерна с растения или с колоса, а затем в контрольном питомнике по массе зерна с 1 м2. Таким образом, были созданы засухоустойчивые сорта озимой пшеницы Миссия, Магия, Тарасовская 70, Донэ-ра, Вестница, Боярыня, Славица, Прелюдия и др.
Литература
1. Проценко Н.Е., Недава В.Е., Веренко В.Д.. Генетический словарь. Киев: Изд-во УСХА, 1991. С. 6.
2. Рабинович С.В. Современные сорта и их родословные. Киев: Урожай, 1972. 352 с.
3. Ремесло В.Н. Методы создания высокопродуктивных сортов озимой пшеницы // Сборник научных трудов Мироновского НИИСиСП. 1978. Вып. 3. С. 3-6.
4. Бороевич С. Принципы и методы селекции растений. М.: Колос, 1984. 343 с.
5. Рапопорт И.А. Метод адаптивной селекции растений // Химический мутагенез в создании сортов с новыми свойствами. М.: Наука, 1986. С. 3-51.
6. Жогин А.Ф. Результаты и перспективы использования индуцированного мутагенеза в селекции пшеницы // Селекция и генетика пшеницы. Краснодар, 1982. С. 36-49.
7. Ричардс Р.А., Кондон А.Г., Ребецке Г.Дж. Признаки, по которым улучшают урожайность в условиях засухи // Применение физиологии в селекции пшеницы. Киев: Логос, 2007. С. 184-207.
8. Алексеев А.М. Основные представления о водном режиме растений и его показателях // Водный режим сельскохозяйственных растений. М.: Наука, 1969. С. 94-112.
9. Литвиненко Н.А., Гержов А.Ф., Гармашов В.Н. и др. Новый сорт озимой мягкой пшеницы Альбатрос одесский и особенности его возделывания. Одесса: ВСГИ, 1990. 19 с.
10. Грабовец А.И., Фоменко М.А. Озимая пшеница (монография). Ростов-на-Дону: Юг, 2007. 560 с.
11. Жученко А.А. Адаптивная система селекции растений (эколого-генетические основы). Т. 1. М.: ООО «Издательство Агрорус». С. 143-147.
12. Доспехов Б.А. Методика полевого опыта. М.: Колос. 1985. 415 с.
13. Rajki E.,Raiki S. Research on hybrid wheat at Martonvasar// Acta Agr. Acad. Science Hangery. 1970. 19. P. 216-218.
14. Mac-Key J. The 75 years development of Swedish plant breeding.// Hodowla Roslin. Aklimatyzacia i Nasiennictwo. 1962. № 6. P. 4-5.
15. Balla L.V. Wheat breeding for yeild and quality in Martonvasar// Fourth international wheat genetics symposium (Missouri). 1973. P. 483-488.
16. Clarke J.M, McCaig T.N. Excised-leaf water retention capability as an indicator of drought resistance of Triticum genotypes // Сanadian Journal Plant Science. 1982. № 62. Р. 571-578.
17. Eberhart S.A., Russel W.A. Yield and stability for 10-line dialed of single-cross and double cross maize hybrids//Crop Science. 1966. V. 9. № 6. P. 357-361.
18. Lelly J. Wheat breeding. Theory and practice. Akademial Riado. Budapest. 1976. 382 c.