Научная статья на тему 'MASS CONDUCTIVITY OF FLAT FIBROUS MATERIALS DURING THEIR CONVECTIVE DRYING'

MASS CONDUCTIVITY OF FLAT FIBROUS MATERIALS DURING THEIR CONVECTIVE DRYING Текст научной статьи по специальности «Технологии материалов»

CC BY
28
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CONVECTIVE DRYING / DENSE WOOLEN FABRIC / KINETICS / MASS CONDUCTIVITY / MASS CONDUCTIVITY COEFFICIENTS

Аннотация научной статьи по технологиям материалов, автор научной работы — Kosheleva Maria K., Rudobashta Stanislav P., Dornyak Olga R., Dmitriev Viacheslav M.

The kinetics of drying dense woolen fabric under various temperature conditions was experimentally investigated. The mass-conducting properties of the fabric were determined depending on its moisture content and the temperature of the drying agent. Data on the thermophysical characteristics of drying objects, including mass conductivity coefficients, are necessary for calculating the kinetics of the drying process. Information on mass conductivity coefficients is not available for many materials, including fabrics, since their experimental determination is difficult. Experimental studies of the kinetics of convective drying of dense woolen fabric were carried out on a specially created installation under conditions excluding external diffusion resistance. To calculate the mass conductivity coefficients, a zonal method was used to determine the concentration dependence of the mass conductivity coefficient from the drying kinetics curves obtained at different temperatures. The nonlinear nature of the dependence of the mass conductivity coefficient on the moisture content of the material and the temperature of the drying agent is established. For the convenience of engineering calculations, the obtained data on the mass conductivity coefficients are approximated by formulas expressing their dependence on the moisture content of the material and temperature. The coefficients of mass conductivity calculated by the zonal method using experimental curves of drying kinetics are compared with the coefficients of mass conductivity calculated using the obtained dependence of the coefficients on the moisture content of the material and the temperature of the drying agent. The good quality of the approximation of the experimental curves obtained for the mass conductivity coefficient in this study and the applicability of the latter for calculations are shown. The obtained data on the kinetic coefficients of mass conductivity can be used to calculate the kinetics of the drying process of various dense woolen fabrics.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MASS CONDUCTIVITY OF FLAT FIBROUS MATERIALS DURING THEIR CONVECTIVE DRYING»

DOI: 10.6060/ivkkt.20236601.6683 УДК: 66.047.7

МАССОПРОВОДНОСТЬ ПЛОСКИХ ВОЛОКНИСТЫХ МАТЕРИАЛОВ ПРИ ИХ КОНВЕКТИВНОЙ СУШКЕ

М.К. Кошелева, С.П. Рудобашта, О.Р. Дорняк, В.М. Дмитриев

Мария Константиновна Кошелева (ORCID 0000-0002-3774-1510)*

Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство), Садовническая ул., 33 с. 1, Москва, Российская Федерация, 115035 E-mail: oxtpaxt@yandex.ru *

Станислав Павлович Рудобашта (ORCID 0000-0002-3129-8562)

Российский государственный аграрный университет - МСХА им. К. А. Тимирязева, ул. Тимирязевская, 49, Москва, Российская Федерация, 127550 E-mail: rudobashta@mail.ru

Ольга Роальдовна Дорняк (ORCID 0000-0003-3714-8167)

Воронежский государственный лесотехнический университет им. Г.Ф. Морозова, ул. Тимирязева, 8, Воронеж, Российская Федерация, 394087 E-mail: ordornyak@mail.ru

Вячеслав Михайлович Дмитриев (ORCID 0000-0002-7746-2217)

Тамбовский государственный технический университет, ул. Советская, 106, Тамбов, Российская Федерация, 392000

E-mail: dmitriev_tstu@mail.ru

Экспериментально исследована кинетика сушки плотной шерстяной ткани при различных температурных режимах, определены массопроводные свойства ткани в зависимости от ее влагосодержания и температуры сушильного агента. Данные по теплофи-зическим характеристикам объектов сушки, в том числе по коэффициентам массопро-водности, необходимы для расчета кинетики процесса сушки. Сведения о коэффициентах массопроводности отсутствуют для многих материалов, в том числе для тканей, поскольку их экспериментальное определение затруднительно. Экспериментальные исследования кинетики конвективной сушки плотной шерстяной ткани проводились на специально созданной установке в условиях, исключающих внешнее диффузионное сопротивление. Для расчета коэффициентов массопроводности использовался зональный метод определения концентрационной зависимости коэффициента массопроводности из кривых кинетики сушки, полученных при различных температурах. Установлен нелинейный характер зависимости коэффициента массопроводности от влагосодержания материала и температуры сушильного агента. Для удобства инженерных расчетов полученные данные по коэффициентам массопроводности аппроксимированы формулами, выражающими их зависимость от влагосодержания материала и температуры. Проведено сопоставление коэффициентов массопроводности, рассчитанных зональным методом по экспериментальным кривым кинетики сушки, с коэффициентами массопроводности, рассчитанными с применением полученной зависимости коэффициентов от влагосодержа-ния материала и температуры сушильного агента. Показано хорошее качество аппроксимации экспериментальных кривых, полученных для коэффициента массопроводности в данном исследовании, и применимость последней для расчетов. Полученные данные по кинетическим коэффициентам массопроводности могут использоваться при расчете кинетики процесса сушки различных плотных шерстяных тканей.

Ключевые слова: конвективная сушка, плотная шерстяная ткань, кинетика, массопроводность, коэффициенты массопроводности

MASS CONDUCTIVITY OF FLAT FIBROUS MATERIALS DURING THEIR CONVECTIVE DRYING

M.K. Kosheleva, S.P. Rudobashta, O.R. Dornyak, V.M. Dmitriev

Maria K. Kosheleva (ORCID 0000-0002-3774-1510)*

Kosygin Russian State University (Technology. Design. Art), Sadovnicheskaya st., 33 s. 1, Moscow, 115035, Russia

E-mail: oxtpaxt@yandex.ru *

Stanislav P. Rudobashta (ORCID 0000-0002-3129-8562)

Russian State Agrarian University - Timiryazev Moscow Agricultural Academy, Timiryazevskaya st., 49, Moscow,

127550, Russia

E-mail: rudobashta@mail.ru

Olga R. Dornyak (ORCID 0000-0003-3714-8167)

Voronezh State Forestry Engineering University named after G.F. Morozov, Timiryazev st., 8, Voronezh,

394087, Russia

E-mail: ordornyak@mail.ru

Viacheslav M. Dmitriev (ORCID 0000-0002-7746-2217)

Tambov State Technical University, Sovetskaya st., 106, Tambov, 392000, Russia E-mail: dmitriev_tstu@mail.ru

The kinetics of drying dense woolen fabric under various temperature conditions was experimentally investigated. The mass-conducting properties of the fabric were determined depending on its moisture content and the temperature of the drying agent. Data on the thermophysical characteristics of drying objects, including mass conductivity coefficients, are necessary for calculating the kinetics of the drying process. Information on mass conductivity coefficients is not available for many materials, including fabrics, since their experimental determination is difficult. Experimental studies of the kinetics of convective drying of dense woolen fabric were carried out on a specially created installation under conditions excluding external diffusion resistance. To calculate the mass conductivity coefficients, a zonal method was used to determine the concentration dependence of the mass conductivity coefficient from the drying kinetics curves obtained at different temperatures. The nonlinear nature of the dependence of the mass conductivity coefficient on the moisture content of the material and the temperature of the drying agent is established. For the convenience of engineering calculations, the obtained data on the mass conductivity coefficients are approximated by formulas expressing their dependence on the moisture content of the material and temperature. The coefficients of mass conductivity calculated by the zonal method using experimental curves of drying kinetics are compared with the coefficients of mass conductivity calculated using the obtained dependence of the coefficients on the moisture content of the material and the temperature of the drying agent. The good quality of the approximation of the experimental curves obtained for the mass conductivity coefficient in this study and the applicability of the latter for calculations are shown. The obtained data on the kinetic coefficients of mass conductivity can be used to calculate the kinetics of the drying process of various dense woolen fabrics.

Key words: convective drying, dense woolen fabric, kinetics, mass conductivity, mass conductivity coefficients Для цитирования:

Кошелева М.К., Рудобашта С.П., Дорняк О.Р., Дмитриев В.М. Массопроводность плоских волокнистых материалов при их конвективной сушке. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 1. С. 120-125. DOI: 10.6060/ivkkt.20236601.6683. For citation:

Kosheleva M.K., Rudobashta S.P., Dornyak O.R., Dmitriev V.M. Mass conductivity of flat fibrous materials during their convective drying. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 120-125. DOI: 10.6060/ivkkt.20236601.6683.

INTRODUCTION

The drying process of textile materials is one of the main processes in the chemical technology of their finishing, including the finishing of dense woolen fabrics. Drying of dense woolen fabrics is carried out mainly by convective method in continuous dryers [1]. Increasing the efficiency and calculation of the energy-intensive drying process in the chemical technology of finishing production of the textile industry is one of the urgent tasks [2-3]. To calculate the kinetics of the drying process, data on the thermo physical characteristics of drying objects are needed, including data on mass conductivity coefficients (moisture diffusion), depending on the moisture content of the material and on the drying temperature [4-7]. Due to the difficulty of experimentally determining the mass conductivity coefficients, there is no information about them for many materials, including fabrics.

RESULTS AND DISCUSSION

The purpose of this work is an experimental study of the kinetics of the drying process of a typical dense woolen fabric and the determination of mass conductivity (diffusion) coefficients depending on the moisture content of the material and the temperature of the drying agent.

The object of the study was a dense woolen cloth - technical instrument cloth with a surface density of M = 445 g/m2. The fabric consists of 100% merino wool fiber not lower than the 64th quality, the thickness of the fabric is 1.2 mm, the weave is plain, the normalized conditioned humidity is 13.0%. Drying in industrial conditions is carried out byit is carried out by the convective method in continuous drying and drying machines. During drying, it is not allowed to extract the fabric and shrink it in width.

Experimental studies of the kinetics of convec-tive drying were carried out on a laboratory installation, shown in Fig. 1, under conditions excluding external diffusion resistance, to determine the mass conductivity coefficient at different temperature regimes.

The installation includes an air thermostat (drying chamber) 1, inside which there is a working channel 2, a measuring cell 3 with a fabric sample, a centrifugal fan 4 that creates a recirculating air flow within its speeds of 0.5-10 m/s, an electric heater 5 for heating the air to a certain temperature (in the limits of 30-200 °C), thermostat 6, electronic scales 7 brand PRLT company Techniport for weighing tissue samples with an error of 1 mg. Bypass air ducts 8 with adjustable air flow serve (if necessary) for partial air renewal inside the thermostat. The air velocity blowing

through the tissue sample is measured by a thermoan-emometer with an error of 0.05 m/s), the temperature is measured by a thermocouple of the HC brand with a secondary device 2 TRMOA (error - 0.2 °C).

Fig. 1. Diagram of a laboratory installation for convective drying: 1 - air thermostat; 2 - working channel; 3 - measuring cell; 4 - fan; 5 - heater; 6 - temperature controller; 7 - electronic scales Рис. 1. Схема лабораторной установки для конвективной сушки: 1 - воздушный термостат; 2 - рабочий канал; 3 - измерительная ячейка; 4 - вентилятор; 5 - калорифер; 6 - терморегулятор; 7 - электронные весы

The initial moisture content in the experiments for all tissue samples was the same uo = 2.12 kg/kg. The initial temperature of the material was 25 °C. The temperature of the drying agent tc varied in accordance with the experiments in the range of 60-150 °C. The prepared tissue samples were subjected to longitudinal blowing by a recirculating closed-loop air flow at a speed of Vc = 10 m/s, at which the external diffusion resistance is removed. The air in the working chamber was continuously drained using silica gel. The tissue samples were oriented in a cell for longitudinal blowing with a flow of coolant (air). During the measurements, the coolant was cut off by a flap and the weight of the sample was determined for 3-4 s on electronic scales with an accuracy of 0.001 g.

Fig. 2 shows experimental kinetics curves of drying technical instrument cloth at different temperatures.

In the work, to determine the mass conductivity coefficient, a method was used to determine the concentration dependence of the mass conductivity coefficient from the drying kinetics curve [7-10], using which the dependences к = f(u,t) were obtained. In [9], a modernized method for determining the concentration dependence of the mass conductivity coefficient was developed, which does not require the exclusion of external diffusion resistance, which greatly simplifies the experiment.

Fig. 2. Experimental drying curves of a sample of technical instrument cloth with dimensions of 50 x 80 mm. The blowout is longitudinal along the long side of the sample. The temperature of the coolant is 1 - 150 °C, 2 - 130 °C; 3 - 110 °C; 4 - 90 °C; 5 - 60 °C.

The speed of the coolant is 10 m/s Рис. 2. Экспериментальные кривые сушки образца технического приборного сукна с размерами 50 x 80 мм. Обдув продольный по длинной стороне образца. Температура теплоносителя 1 - 150 °С, 2 - 130 °С; 3 - 110 °С; 4 - 90 °С; 5 - 60 °С.

Скорость теплоносителя - 10 м/с

The sum of the squared deviations of the calculated data from the experimental data was < 0.02 for normalized values.

Fig. 3 illustrates the good quality of the approximation of the family of curves obtained for the mass conductivity coefficient k in this study.

Fig. 4 illustrates a decrease in the mass conductivity coefficient with a decrease in the moisture content of the fabric, which is most significantly manifested at higher temperatures of the drying agent.

0.5 1 1.5

u, кг/кг

Fig. 3. Dependence of the mass conductivity coefficient on the moisture content during convective drying of a sample of technical instrument cloth with dimensions 50x80x2 mm for the speed of the drying agent vc = 10 m/s at different values of its temperature: tc = 150 °C - 1; 130 °C - 2; 110 °C - 3; 90 °C - 4; 60 °C - 5. Markers - experiment, continuous lines - calculation

according to the approximating formula (1) Рис. 3. Зависимость коэффициента массопроводности от вла-госодержания при конвективной сушке образца технического приборного сукна с размерами 50x80x2 мм для скорости сушильного агента v=10 м/с при различных значениях его температуры: tc = 150 °C - 1; 130 °C - 2; 110 °C - 3; 90 °C - 4; 60 °C - 5. Маркеры - эксперимент, непрерывные линии - расчет по аппроксимирующей формуле (1)

The nonlinear nature of the dependence of the mass conductivity coefficient k on the moisture content of the material and the temperature of the drying agent ec is established. Using the least squares method, the functional dependence k (u, tc) is obtained:

k (u, tc ) = 0.00439 • exp(0.02448 • tc + + 0.8069 • u) + 0.02238 . (1)

Fig. 4. The dependence of the mass conductivity coefficient on the moisture content and temperature of the drying agent during convective drying of a piece of technical instrument cloth with dimensions of 50x80x2 mm at the speed of the drying agent vc = 10 m/s. Markers are an experiment, continuous lines are calculated according to the approximating formula (1) Рис. 4. Зависимость коэффициента массопроводности от вла-госодержания и температуры сушильного агента при конвективной сушке образца технического приборного сукна с размерами 50x80x2 мм при скорости сушильного агента v = 10 м/с. Маркеры - эксперимент, непрерывные линии - расчет по аппроксимирующей формуле (1)

The presence of the concentration dependence of the coefficient of mass permeability at different temperatures of the drying agent allows in many cases to carry out kinetic calculation and numerical modeling of the drying process based on mathematical models [7-12]. The obtained results can be used to analyze and calculate the kinetics of convective drying of fabrics, taking into account the experimentally justified dependence of the mass conductivity coefficients on the moisture content of the material and the temperature of the drying agent, to predict the kinetics of convective drying of dense woolen fabrics.

The analysis and kinetic calculation of the drying process of various materials based on mathematical models is carried out in a number of works [7, 8, 11, 13-16], while there is not enough work on drying flat textile materials and fibers [17-22]. Accumulation and systematization of data on drying kinetics and mass

conductivity coefficients for various fabrics will expand the practical use of mathematical methods for calculating and analyzing the kinetics of their drying.

CONCLUSIONS

The analysis and kinetic calculation of the con-vective drying process of flat textile materials requires the accumulation and systematization of data on ther-mophysical characteristics for different fabrics, which will expand the use of mathematical methods for calculating the kinetics of drying.

Experimental laboratory studies of the kinetics of drying a typical dense woolen fabric - technical in-

ЛИТЕРАТУРА

1. Кошелева М.К. Процессы и аппараты текстильных технологий в примерах, лабораторных работах и тестах. М.: ИН-ФРА-М. 2019. 321 с. DOI: 10.12737/textbook_5c738dd84 c8d55.56400384.

2. Гуляев Ю.В., Белгородский В.С., Кошелева М.К. Обзор материалов симпозиума "Втор. междунар. Косыгинские чт. "Энергоресурсоэффективные экологически безопасные технологии и оборудование", приур. к 100-л. РГУ им. А.Н. Косыгина". Теор. ос-н. хим. технол. 2020. Т. 54. № 3. С. 392-396. DOI: 10.31857/S0040357120030057.

3. Сажин Б.С., Федосов С.В., Кошелева М.К. Формирование научных направлений и отражение научных достижений в области повышения эффективности тепло-массообменных процессов, экологической и производственной безопасности текстильных производств в разделе "Экологическая и производственная безопасность. Промтеплоэнергетика". Изв. вузов. Технол. текстил. пром-сти. 2018. № 4 (376). С. 116-122.

4. Лыков А.В. Теория сушки. М.: Энергия. 1968. 471 с.

5. Павлюкевич Н.В. Введение в теорию тепло- и массо-переноса в пористых средах. Минск: ИТМО НАН РБ. 2002. 140 с.

6. Акулич П.В. Термогидродинамические процессы в технике сушки. Минск: ИТМО НАН РБ. 2002. 268 с.

7. Рудобашта С.П., Дмитриев В.М. Кинетика и аппа-ратурно-технологическое оформление конвективной сушки дисперсных полимерных материалов. Инж.-физ. журн. 2005. Т. 78. № 3. С. 51 -60. DOI: 10.1007/s10891-005-0082-x.

8. Рудобашта С.П., Карташов Э.М. Диффузия в химико-технологических процессах. М.: КолосС. 2013. 478 с.

9. Рудобашта С.П., Кошелева М.К. Определение коэффициентов массоотдачи и массопроводности из кривых кинетики. Изв. вузов. Технол. текстил. пром-сти. 2015. № 6 (360). С. 175-180.

10. Рудобашта С.П., Кошелева М.К., Разумеев К.Э., Пи-чугин А.В. Расчёт процесса сушки гранул поликапро-амида. Изв. вузов. Химия и хим. технология. 2013. Т. 56. Вып. 12. С. 118-123.

11. Рудобашта С.П., Дорняк О.Р., Дмитриев В.М. Расчёт кинетики сушки пластины с учётом усадки. Теор. осн.

strument cloth at various temperature conditions were carried out. Experimental data on the mass conductivity coefficient were obtained, analyzed and approximated. The obtained dependences of the mass conductivity coefficient on the moisture content of the material and the temperature of the drying agent can be used to calculate the drying kinetics of various dense woolen fabrics.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

The authors declare the absence a conflict of interest warranting disclosure in this article.

REFERENCES

1. Kosheleva M.K. Processes and apparatuses of textile technologies in applications, laboratory work and tests. M.: IN-FRA-M. 2019. 321 p. (in Russian). DOI: 10.12737/text-book_5c738dd84c8d55.56400384.

2. Gulyaev Yu.V., Belgorodsky V.S., Kosheleva M.K Review of the materials of the symposium "The Second International Kosygin Readings "Energy-efficient environmentally safe technologies and equipment", dedicated to the 100th anniversary of the Kosygin Russian State University". Theor. Found. Chem. Technol. 2020. V. 54. N 3. P. 392-396 (in Russian). DOI: 10.31857/S0040357120030057.

3. Sazhin B.S., Fedosov S.V., Kosheleva M.K. Formation of scientific directions and reflection of scientific achievements in the field of increasing the efficiency of heat and mass transfer processes, environmental and industrial safety of textile industries in the section "Ecological and industrial safety. Promteploenergetika". Izv. Vyssh. Uchebn. Zaved. Technol. Textile Ind. 2018. N 4 (376). P. 116-122 (in Russian).

4. Lykov A.V. Theory of drying. M.: Energy. 1968. 471 p. (in Russian).

5. Pavlyukevich N.V. Introduction to the theory of heat and mass transfer in porous media. Minsk: ITMO NAS RB. 2002. 140 p. (in Russian).

6. Akulich P.V. Thermohydrodynamic processes in the drying technique. Edited by P. S. Kutsa. Minsk: ITMO NAS RB. 2002. 268 p. (in Russian).

7. Rudobashta S.P., Dmitriev V.M. Kinetics and hardware and technological design of convective drying of dispersed polymer materials. Inzh.fiz. Zhurn. 2005. V. 78. N 3. P. 51-60 (in Russian). DOI: 10.1007/s10891-005-0082-x.

8. Rudobashta S.P., Kartashov E.M. Diffusion in chemical-technological processes. M.: KolosS. 2013. 478 p. (in Russian).

9. Rudobashta S.P., Kosheleva M.K. Determination of mass transfer and mass conductivity coefficients from kinetic curves. Izv. Vyssh. Uchebn. Zaved. Technol. Textile Ind. 2015. N 6 (360). P. 175-180 (in Russian).

10. Rudobashta S.P., Kosheleva M.K., Razumeev K.E., Pich-ugin A.V. Calculation of the drying process of polycaproam-ide granules. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2013. V 56. N 12. P. 118-123 (in Russian).

хим. технол. 2021. Т. 55. № 5. С. 612-617. DOI: 10.31857/S004035712104014X.

12. Кошелева М.К., Рудобашта С.П. Влияние ультразвукового поля на кинетические коэффициенты в процессе экстрагирования. Инж.-физ. журн. 2019. Т. 92. № 5. С. 2404-2409. DOI: 10.1007/s10891-019-02052-z.

13. Mujumdar A.S. Handbook of Industrial Drying. New-York: Marcel Dekker. 1995. 1423 c.

14. Kudra T., Mujumdar A.S. Advanced Drying Technologies. New York: Marcel Dekker. 2007. 459 c.

15. Кошелева М.К., Мешалкин В.П., Дорняк О.Р. Математическое моделирование тепло-и массопереноса при сушке гранул носителя для никелевого катализатора. Теор. осн. хим. технологии. 2021. Т. 55 Вып. 3. С. 339-346. DOI: 10.31857/S0040357121030258.

16. Липин А.А., Липин А.Г., Кириллов Д.В. Моделирование процесса сушки и демономеризации полиамида в аппарате с кипящим слое. Изв. вузов. Химия и хим. технология. 2012. Т. 55. Вып. 2. С. 85-88.

17. Волынский В.Ю., Стороженко Я.С. Математическое моделирование процесса термообработки полотенных материалов в сушильно-ширильной машине. Изв. вузов. Химия и хим. технология. 2014. Т. 57. Вып. 2. С. 108-111.

18. Волынский В.Ю., Зайцев В.А., Мизонов В.Е., Суханов С.Б. Математическая модель термообработки листовых материалов в барабанной сушильной машине типа МСБ. Изв. вузов. Химия и хим. технология. 2005. Т. 48. Вып. 11. С. 97-99.

19. Куц П.С., Ольшанский А.И. К вопросу приближенной методики расчета кинетики конвективной сушки плоских материалов. Инж.-физ. журн. 1975. Т. 28. № 4. С. 19-21. DOI: 10.1007/BF00878212.

20. Ольшанский А.И. Исследование процесса сушки плоских влажных материалов методом обобщенных переменных. Инж.-физ. журн. 2013. Т. 86. № 2. С. 66-76.

21. Рудобашта С.П., Зуева Г.А., Столбова А.С. Концентрационное равновесие при сушке коллоидных капиллярно-пористых растительных материалов. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 6. С. 75-80. DOI: 10.6060/ivkkt.20226506.6567.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

22. Казуб В.Т., Кошелева М.К., Рудобашта С.П. Кинетика измельчения растительного сырья при электроразрядном экстрагировании. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 6. С. 76-82. DOI: 10.6060/ivkkt.20216406.6385.

11. Rudobashta S.P., Dornyak O.R., Dmitriev V.M. Calculation of the kinetics of plate drying taking into account shrinkage. Teor. Osn. Khim. Tekhnol. 2021. V. 55. N 5. P. 612-617 (in Russian). DOI: 10.31857/S004035712104014X.

12. Kosheleva M.K., Rudobashta S.P. Influence of ultrasonic field on kinetic coefficients in the extraction process. Inzh.-fiz. Zhurn. 2019. V. 92. N 5. P. 2404-2409 (in Russian). DOI: 10.1007/s10891-019-02052-z.

13. Mujumdar A.S. Handbook of Industrial Drying. New-York: Marcel Dekker. 1995. 1423 p.

14. Kudra T., Mujumdar A.S. Advanced Drying Technologies. New York: Marcel Dekker. 2007. 459 p.

15. Kosheleva M.K., Meshalkin V.P., Dornyak O.R. Mathematical modeling of heat and mass transfer during drying of carrier granules for a nickel catalyst. Teor. Osn. Khim. Tekhnol. 2021. V. 55 N 3. P. 339-346 (in Russian). DOI: 10.31857/S0040357121030258.

16. Lipin A.A., Lipin A.G., Kirillov D.V. Modeling of the drying process and demomerization of polyamide in a fluidized bed apparatus. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2012. V. 55. N 2. P. 85-88 (in Russian).

17. Volynsky V.Yu., Storozhenko Ya.S. Mathematical modeling of the process of heat treatment of woven materials in a drying and shearing machine. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2014. V. 57. N 2. P. 108-111 (in Russian).

18. Volynsky V.Yu., Zaitsev V.A., Mizonov V.E., Sukhanov

S.B. Mathematical model of heat treatment of sheet materials in a drum dryer of the MSB type. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2005. V. 48. N 11. P. 97-99 (in Russian).

19. Kutz P.S., Olshansky A.I. On the issue of approximate methods for calculating the kinetics of convective drying of flat materials. Inzh.fiz. Zhurn. 1975. V. 28. N 4. P. 19-21 (in Russian). DOI: 10.1007/BF00878212.

20. Olshansky A.I. Investigation of the drying process of flat wet materials by the method of generalized variables. Inzh.fiz. Zhurn. 2013. V. 86. N 2. P. 66-76 (in Russian).

21. Rudobashta S.P., Zueva G.A., Stolbova A.S. Concentration equilibrium when drying colloidal capillary porous material (carrot). ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 6. P. 75-80 (in Russian). DOI: 10.6060/ivkkt.20226506.6567.

22. Kazub V.T., Kosheleva M. K., Rudobashta S.P. Kinetics of grinding of vegetable raw materials during electric discharge extraction. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 6. P. 76-82. DOI: 10.6060/ivkkt.20216406.6385.

Поступила в редакцию 30.05.2022 Принята к опубликованию 03.10.2022

Received 30.05.2022 Accepted 03.10.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.