-►
Теоретические основы экономики и управления
Яковенко В.С.
Макроэкономическая динамика России и кривая ФиллипсА
Взаимосвязь трендовых и периодических движений экономических показателей, а также их отличительные особенности всегда волновали исследователей. Особенно ярко их различия проявляются в макроэкономике, где происходит круговорот таких глобальных экономических категорий, как ВВП, инфляция, безработица, скорость экономического роста, норма процента, валютные курсы, мировые цены на нефть. Принято считать, что макро- и мегаэкономическое поведение в долгосрочном периоде трендово, а экономические флуктуации характерны для краткосрочной динамики. Это утверждение основывается на том, что тренд интегрирует случайные выбросы, в итоге представляя собой устойчивую тенденцию, кривую с минимумом экстремумов, проходящую через характерные точки показателя.
В частности, внимание виднейших экономистов второй половины ХХ века привлекала зависимость между инфляцией и безработицей. В долго- и краткосрочном периодах показатели инфляции и безработицы определяются различными факторами. Изменения в объемах производства достаточно жестко и обратно пропорционально коррелируют с уровнем занятости в экономике, хотя уровень безработицы никогда не приближается к нулю, а колеблется вокруг естественного уровня, равного примерно 5-6 %.
Но в последнее время все большую роль в глобализирующихся, усложняющихся и ускоряющихся процессах мировой экономики начинают играть циклические флуктуирующие процессы. Поэтому в экономической науке сформировалась и развивается "циклическая" парадигма [2], утверждающая, что развитие экономики и движение во времени экономических показателей происходит циклично, а тренды представляют собой некую виртуальную усредненную кривую, проводимую аппроксимационно через характерные точки циклов. Эта парадигма по-новому помогает устанавливать и анализировать причинно-следственные связи, управляющие экономическим развитием. Конструктивно она проявляется во всеобщей, глобальной, систематической цикличности - одной из тонких составляющих структурного состава экономического сигнала.
Для поиска, выделения и обсчета циклических конструкций как в установившейся американской, так и в "рваной" российской экономике потребовались: "кусочная" концепция построения модели; унифицированная аналитическая модель; новый для экономики математический аппарат сплайн-аппроксимации; фазовый анализ; новые инструменты - системы компьютерной математики с методами программной визуализации.
"Кусочная" концепция предполагает, что в процессе неустойчивого экономического развития России спонтанно меняются экономические "правила игры", экономическое законодательство - законы, положения, правила, нормы, тарифы, ставки налогообложения, акцизы, квоты, отчисления, таксы, преференции и пр. Эти изменения на каждом временном отрезке должна отрабатывать соответствующая "кусочная" модель.
Модель экономического поведения должна быть аналитичной, т. е. наряду с математическим представлением переменной она должна явно иметь несколько производных процесса, с помощью которых оптимально связываются вместе фрагменты модели, строятся фазовые портреты и уточняется экстраполяция при входе в горизонт прогноза.
"Кусочный" подход реализуется математическим аппаратом сплайн-функций. Отличительная особенность сплайнов - наличие особых точек, в которых сходятся отрезки отдельных частей сплайна, и алгоритм "сшивки", работающий так, чтобы решение и все его производные автоматически "сшивались" оптимальным образом в единый ансамбль. В этом случае точки экономической "решетчатой" функции становятся "узлами", а поведение экономического показателя будет состоять из отдельных временных фрагментов функции - "кусков" степенного полинома малого порядка. Поскольку множество исходных "узловых" точек задано, составляя существенную часть описания экономического процесса, то сплайны как бы созданы для моделирования и анализа "рваной" динамики реальных экономических, производственных и финансовых показателей.
Принципиальное отличие кусочно-полиномиальной сплайновой аппроксимации от полиномиальной состоит в замене единого полинома п-1-го порядка (п - число узлов на всем интервале) "кусочным" полиномом меньшего (1-го, 2-го, 3-го) порядка с автоматической "сшивкой" фрагментов сплайна на "стыках", где сходятся отрезки частей сплайна - постоянные сдвиги, "куски" прямых, квадратичных или кубических парабол. Структура сплайн-функции позволяет автоматически и наилучшим образом "сшить" решение. Выражение "наилучшим образом" будет означать наличие у кубических сплайн-функций замечательного внутреннего свойства - свойства минимальности кривизны или минимальности нормы.
Остановимся также на новом для экономики фазовом анализе динамики экономических показателей, реализуемом в фазовом пространстве в виде фазовых траекторий на фазовых портретах, в картинах параметрических взаимозависимостей. Фазовым портретом будем называть построенную на фазовой плоскости кривую, представляющую собой зависимость первой производной У'(?) некоторой непрерывной функции 7(?) от самой этой же переменной 7(?), время ? играет роль параметра. В исследовании используется разновидность фазового портрета - параметрическая взаимозависимость одного показателя от другого, в этом случае оба показателя должны представляться гладкими сплайн-образами.
Вообще говоря, в математике, физике, технике понятие "фазовое пространство" и далее - "фаза", "фазовая плоскость", "фазовый портрет", "фазовая траектория" - имеют более общий смысл и определяются гораздо менее конструктивно. В математике фазовое пространство представляет множество всех возможных состояний системы в фиксированный момент времени. Состояние системы задается некоторым набором чисел (фазовых координат) и представляет собой область в многомерном пространстве или многообразие. Каждому возможному состоянию системы соответствует точка фазового пространства. Удобство фазового пространства состоит в том, что состояние сколь угодно сложной системы представляется единственной точкой, а эволюция ее образовывается движением точки в фазовом пространстве. Описываемая этой точкой фазовая кривая называется фазовой траекторией. Знание одной координаты не задает полного состояния динамической системы, не может позволить предсказать ее поведение в будущем. Получить его можно, зная координату и скорость в начальный момент времени. Фазовое пространство такой системы двумерно.
Представим новыми методами прикладную макроэкономическую задачу. Изменения уровня безработицы, определяемые экономическими циклами, циклами ВНП, были исследованы А. Оукеном [1] и их можно рассмотреть в виде закона Оукена:
А = (- У2)-(В - 3 %), где А - изменение уровня безработицы; В - процентное изменение реального объема ВНП.
Хотя А. Оукен исследовал экономику США, считается, что для экономик других стран могут несколько измениться параметры % и 3 %, может быть, проявится еще некоторая специфика, но для всех экономик характерна заметная корреляция между изменением реального объема ВНП и уровня безработицы. Суммируя показатели темпов роста цен и уровня безработицы, можно получить так называемый "индекс бедствия", призванный служить показателем "здоровья" экономики.
В основной модели экономических флукту-аций инструментом будет модель совокупного спроса и совокупного предложения. Взаимодействие уровня цен и объема выпускаемой продукции в конечном итоге приводит к установлению равновесия совокупного спроса и совокупного предложения. Снижение общего уровня цен уменьшает количество товаров и услуг, предлагаемых в краткосрочном периоде, существует схема взаимной зависимости равновесного спроса и равновесного уровня цен. Модель краткосрочных экономических колебаний в значительной степени представляет собой "положительный внешний эффект" Великой депрессии в США, когда за 1929-1933 гг. реальный объем ВНП сократился на 30 %, а уровень безработицы повысился с 3 до 25 %. Экономисты и политики не понимали причин рецессии и находились в поисках путей выхода из нее [1].
Оказывается, что темпы инфляции и уровень безработицы в краткосрочном периоде обратно пропорциональны (рис. 1), поэтому если темпы инфляции снижаются, то только за счет временного увеличения уровня безработицы. Принципиальное отличие от кривой рис. 32.6 из [1] состоит в том, что там был "спрятан" квазицикл 1960-1963 гг. При тонком фазовом сплайн-анализе спектрального состава он обнаруживается. Построенный эконометрический закон (пунктир) гиперболически достаточно точно описывает связь уровня безработицы иЕМ(Х) с темпом инфляции ^Е(Х) в тот период, Х - годы. Кривая А.У. Филлипса, так именуют зависимость между инфляцией и безработицей в краткосрочном периоде, впервые была
Теоретические основы экономики и управления
Кривая Филлипса в экономике США в 1960-е годы
уровень безработицы, %
Рис. 1. Кривая Филлипса в экономике США, параметрическая зависимость уровня инфляции и безработицы, 1960-е годы, война во Вьетнаме. Сплайн-аппроксимация
Кривая Филлипса в экономике США в 1960-1970-е годы
Рис. 2. Сбой кривой Филлипса в США. Трехлетний выраженный цикл в 1970-1973 гг Сравнение с рис. 32.7 из [1]
получена для Англии для периода 1861-1957 гг. Аналогичную зависимость для экономики США нашли П. Самуэльсон и Р. Солоу.
М. Фридман и Э. Фелпс пришли к такому уравнению:
С = Б- а-ф-О), где С - уровень безработицы; Б - естественный уровень безработицы; Е - фактическая инфляция в процентах; О - ожидаемая инфляция.
Несмотря на то, что кривая Филлипса в американской макроэкономике в полной мере оказалась справедливой только для 1961-1968 годов, она показала общее направление исследований - поиск взаимосвязи темпа инфляции и числа безработных. К сожалению или к счастью, столь простая гиперболическая модель стала в последующие годы уходить от начальной простоты и, как следовало ожидать, наполняться циклическим содержанием (рис. 2), так в ней появился первый трехлетний цикл.
Рис. 3 продолжает демонстрацию ухода зависимости Филлипса от тривиальной гиперболической. Для эры Гринспена цикличность проявляется наиболее ярко в 65-летнем цикле 1965-1992 гг.
На рисунках можно увидеть всю относительность и нерелевантность разговоров о законах взаимосвязи "инфляция-безработица" без использования гипотезы цикличности, сплайн-ап-проксимационных моделей и фазового анализа, без рассмотрения, сравнения и визуализации параметрических кривых взаимной связи экономических показателей.
Тем более интересно найти кривую Филлипса для российской экономики и изобразить ее на фазовой параметрической картине взаимосвязи инфляции и безработицы (рис. 4). Остается лишь посетовать на недостаточную идемпотентность исходных данных реальным показателям. Как легко видеть, в экономике России остаток гиперинфляционной ветви 1992-1997 гг. в течение двух лет (1997-1999 гг.) демонстрирует якобы обратную зависимость инфляции и безработицы. Однако далее при падении инфляции безработица уменьшается почти прямо пропорционально. Начало циклической конструкции (первый "квазицикл") можно увидеть в 2001-2003 гг. В работе аналитические преобразования, вычисления, графические образы построены с помощью системы компьютерной математики MAPLE 9.5.
Эра А. Гринспена
Рис. 3. Эра А. Гринспена, связь инфляции и безработицы в макроэкономике США
в 1984-1995 гг. Фазовая параметрическая кривая, кубические сплайны. Сравнение с рис. 32.12 из [1] показывает их, мягко говоря, малую идемпотентность
4-
Теоретические основы экономики и управления
Кривая Филлипса в макроэкономике России
Рис. 4. Кривая Филлипса в российской экономике в 1997-2006 гг, движение временных реперов сверху-вниз и справа-налево
Таким образом, макроэконометрические законы, ции, утверждая тем самым верность "циклической
несмотря на кажущуюся логику, математическую и парадигмы" [2]. Российская же кривая Филлипса
природную простоту, демонстрируют высокую вре- располагается прямо противоположно кривой Фил-
менную нестабильность, визуально "сваливаясь" в липса для американской экономики, не имея удовлет-
конце концов в круговые и спиралевидные конструк- ворительной экономической интерпретации.
СПИСОК ЛИТЕРАТУРЫ
1. МэнкьюН.Г. Принципы экономикс. СПб: Питер, 2. ВинтизенкоИ.Г.,ЯковенкоВ.С. Экономическая
2003. 496 с. цикломатика. М.: Финансы и статистика, Ставрополь:
АГРУС, 2008. 428 с.
Жекеев А.М.
Состояние и перспективы стратегического развития социальной сферы республики Казахстан
Необходимость стратегической ориентации конечном итоге - обобщающего и частных уров-
социальной сферы народного хозяйства Респуб- ней эффективности текущего функционирования,
лики Казахстан на достижение планируемых стратегического развития связана не только с
результатов, объемов ресурсопотребления, а в ограниченностью финансового обеспечения ряда