Научная статья на тему 'МАГНИТНЫЕ СВОЙСТВА И ЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ПРИ ГЕТЕРОГЕННОМ ЗАМЕЩЕНИИ В ПИРОСТАННАТЕ ВИСМУТА BI2(SN0,9МЕ0,1)2O7, МЕ= CR3+, FE3+'

МАГНИТНЫЕ СВОЙСТВА И ЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ПРИ ГЕТЕРОГЕННОМ ЗАМЕЩЕНИИ В ПИРОСТАННАТЕ ВИСМУТА BI2(SN0,9МЕ0,1)2O7, МЕ= CR3+, FE3+ Текст научной статьи по специальности «Физика»

CC BY
47
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ / ЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ / МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ / ГИСТЕРЕЗИС ЭЛЕКТРИЧЕСКОЙ ПОЛЯРИЗАЦИИ

Аннотация научной статьи по физике, автор научной работы — Удод Л. В., Романова О. Б., Ситников М. Н., Абдельбаки Х.

Пиростаннат висмута Bi2Sn2O7 является диамагнетиком и относится к структурному типу класса пирохлора А2В2О7. В этом классе соединений, при наличии магнитных ионов, проявляются очень интересные магнитные свойства. Хром- и железозамещенные пиростаннаты висмута Bi2(Sn0.9Ме0,1)2O7, Ме = Cr и Fe синтезированы методом твердофазного синтеза. Рентгеноструктурный анализ показал, что образцы соответствуют моноклинной ячейке Pc в α-фазе Bi2Sn2O7 при комнатной температуре. Изучены магнитные свойства до 1100 К в магнитных полях до 0,86 Т и электрическая поляризация на частотах 10, 3 и 1 mHz в интервале температур 80-550 К. Исследовано влияние гетерогенного замещения ионами Cr3+ и Fe3+ на магнитные свойства и электрическую поляризацию. Анализ экспериментальных данных выявил зависимость магнитных свойств от степени заполнения электронных оболочек ионов хрома и железа. Соединение Bi2(Sn0,9Cr0,1)2O7 проявляет ферромагнитные свойства, а Bi2(Sn0,9Fe0,1)2O7 - антиферромагнитные. В хромзамещенном пиростаннате висмута при α→β переходе парамагнитная температура Кюри возрастает в 3 раза. Температурная зависимость обратной магнитной восприимчивости характеризуется гистерезисом в районе температур 400-900 К. Обратная магнитная восприимчивость Bi2(Sn0,9Fe0,1)2O7 во всем температурном интервале удовлетворительно описывается законом Кюри-Вейсса. Исследования магнитных свойств установили, что ионы Fe3+ находятся в высокоспиновом состоянии. Найден гистерезис поляризации в Bi2(Sn0,9Cr0,1)2O7, который смещается по оси поляризации и зависит от температуры. Bi2(Sn1-хFeх)2O7, х = 0,1 характеризуется линейной полевой зависимостью. С увеличением концентрации ионов железа возникает гистерезис полевой зависимости электрической поляризации. Нелинейная полевая зависимость поляризации в Bi2(Sn0,8Fe0,2)2O7 объяснятся взаимодействием дипольной и миграционной поляризаций. Для соединения Bi2(Sn0,9Cr0,1)2O7 обнаружен переход в состояние дипольного стекла. В β-фазе Bi2(Sn0,8Fe0,2)2O7 выше Т = 400 К гистерезис поляризации не наблюдается и преобладает электронно-релаксационная поляризация. Механизм * возникновения электронной поляризации объясняется с возникновением анионных вакансий при гетерогенном замещении ионов олова.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MAGNETIC PROPERTIES AND ELECTRIC POLARIZATION AT HETEROGENEOUS SUBSTITUTION IN BISMUTH PYROSTANNATE BI2(SN0.9МЕ0.1)2O7, МЕ = CR3+, FE3+

Bismuth pyrostannate Bi2Sn2O7 is a diamagnet and belongs to the structural type of the A2B2O7 pyrochlore class. In this class of compounds, in the presence of magnetic ions, very interesting magnetic properties appear. Chromium- and iron-substituted bismuth pyrostannates Bi2(Sn0.9Me0.1)2O7, Me = Cr, and Fe were synthesized by solid-phase synthesis. X-ray diffraction analysis showed that the samples correspond to the Pc monoclinic cell of the Bi2Sn2O7 α-phase at room temperature. The magnetic properties up to 1100 K in magnetic fields up to 0.86 T and the electric polarization at frequencies of 10, 3, and 1 mHz in the temperature range 80-550 K have been studied. The effect of heterogeneous substitution by Cr3+ and Fe3+ ions on the magnetic properties and electric polarization of bismuth pyrostannate is investigated. An analysis of the experimental data revealed the dependence of the magnetic properties on the degree of filling of the electron shells of chromium and iron ions. The Bi2(Sn0.9Cr0.1)2O7 compound exhibits ferromagnetic properties, while Bi2(Sn0.9Fe0.1)2O7 exhibits antiferromagnetic properties. In chromium-substituted bismuth pyrostannate during the α→β transition, the paramagnetic Curie temperature increases by a factor of 3. The temperature dependence of the inverse magnetic susceptibility is characterized by hysteresis in the temperature range of 400-900 K. The reverse magnetic susceptibility of Bi2(Sn0.9Fe0.1)2O7 in the entire temperature range is satisfactorily described by the Curie-Weiss law. Studies of the magnetic properties have established that the Fe3+ ions are in a high-spin state. The polarization hysteresis in Bi2(Sn0.9Cr0.1)2O7 is found, which shifts along the polarization axis and depends on temperature. Bi2(Sn1-xFex)2O7, x=0.1 is characterized by a linear field dependence. With an increase in the concentration of iron ions, a hysteresis arises in the field dependence of the electric polarization. The hysteresis of polarization in Bi2(Sn0.9Cr0.1)2O7 which depends on temperature was found. The nonlinear field dependence of the polarization in Bi2(Sn0.8Fe0.2)2O7 can be explained by the interaction of the dipole and migration polarizations and the presence of oxygen vacancies. For the Bi2(Sn0.9Cr0.1)2O7 compound, a transition to the dipole glass state was found. In the β-phase of Bi2(Sn0.8Fe0.2)2O7 above T = 400 K, no polarization hysteresis is observed and the electron-relaxation polarization predominates. The mechanism of the occurrence of electronic polarization is explained with the appearance of anionic vacancies upon heterogeneous substitution of tin ions.

Текст научной работы на тему «МАГНИТНЫЕ СВОЙСТВА И ЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ПРИ ГЕТЕРОГЕННОМ ЗАМЕЩЕНИИ В ПИРОСТАННАТЕ ВИСМУТА BI2(SN0,9МЕ0,1)2O7, МЕ= CR3+, FE3+»

УДК 537.312:538.911'956

Doi: 10.31772/2712-8970-2022-23-3-561-571

Для цитирования: Магнитные свойства и электрическая поляризация при гетерогенном замещении в пи-ростаннате висмута В^^п0.9Меол)207, Ме= Cr, Fe3+/ Л. В. Удод, О. Б. Романова, М. Н. Ситников, Х. Абдель-баки // Сибирский аэрокосмический журнал. 2022. Т. 23, № 3. С. 561-571. Doi: 10.31772/2712-8970-2022-23-3561-571.

For citation: Udod L. V., Romanova O. B., Sitnikov M. N., Abdelbaki H. [Magnetic properties and electric polarization at heterogeneous substitution in bismuth pyrostannate Bi2(Sn0.9Ме0.1)2O7, Ме = Cr , Fe ]. Siberian Aerospace Journal. 2022, Vol. 23, No. 3, P. 561-571. Doi: 10.31772/2712-8970-2022-23-3-561-571.

*

Магнитные свойства и электрическая поляризация при гетерогенном замещении в пиростаннате висмута Bi2(Sno,9Meo,ibO7, Ме= Cr3+, Fe3+

Л. В. Удод1, 2**, О. Б. Романова1, М. Н. Ситников2, Х. Абдельбаки2

1Институт физики имени Л. В. Киренского СО РАН - обособленное подразделение ФИЦ КНЦ СО РАН Российская Федерация, 660036, г. Красноярск, Академгородок, 50, стр. 38 2Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский Рабочий», 31

**E-mail: luba@iph.krasn.ru

Пиростаннат висмута Bi2Sn2O7 является диамагнетиком и относится к структурному типу класса пирохлора А2В2О7. В этом классе соединений, при наличии магнитных ионов, проявляются очень интересные магнитные свойства. Хром- и железозамещенные пиростаннаты висмута Bi2(Sno.gМеo,l)2O7, Ме = Cr и Fe синтезированы методом твердофазного синтеза. Рентгенострук-турный анализ показал, что образцы соответствуют моноклинной ячейке Pc в а-фазе Bi2Sn2O7 при комнатной температуре. Изучены магнитные свойства до 1100 К в магнитных полях до 0,86 Т и электрическая поляризация на частотах 10, 3 и 1 mHz в интервале температур 80-550 К. Исследовано влияние гетерогенного замещения ионами Cr3+ и Fe3+ на магнитные свойства и электрическую поляризацию. Анализ экспериментальных данных выявил зависимость магнитных свойств от степени заполнения электронных оболочек ионов хрома и железа. Соединение Bi2(Sn0,9Cr0,i)2O7 проявляет ферромагнитные свойства, а Bi2(Sn09Fe01)2O7 - антиферромагнитные. В хромзамещенном пиростаннате висмута при а^в переходе парамагнитная температура Кюри возрастает в 3 раза. Температурная зависимость обратной магнитной восприимчивости характеризуется гистерезисом в районе температур 400-900 К. Обратная магнитная восприимчивость Bi2(Sn09Fe01)2O7 во всем температурном интервале удовлетворительно описывается законом Кюри-Вейсса. Исследования магнитных свойств установили, что ионы Fe находятся в высокоспиновом состоянии. Найден гистерезис поляризации в Bi2(Sn09Cr01)2O7, который смещается по оси поляризации и зависит от температуры. Bi2(Sn1-^,Fe,)2O7, х = 0,1 характеризуется линейной полевой зависимостью. С увеличением концентрации ионов железа возникает гистерезис полевой зависимости электрической поляризации. Нелинейная полевая зависимость поляризации в Bi2(Sn08Fe02)2O7 объяснятся взаимодействием дипольной и миграционной поляризаций. Для соединения Bi2(Sn0,9Cr0,i)2O7 обнаружен переход в состояние дипольного стекла. В в-фазе Bi2(Sn0,8Fe0,2)2O7 выше Т = 400 К гистерезис поляризации не наблюдается и преобладает электронно-релаксационная поляризация. Механизм

Работа выполнена при финансовой поддержке РФФИ, Красноярского края и Красноярского краевого фонда науки, проект № 20-42-243002.

The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-42-243002.

возникновения электронной поляризации объясняется с возникновением анионных вакансий при гетерогенном замещении ионов олова.

Ключевые слова: рентгеноструктурный анализ, электрическая поляризация, магнитная восприимчивость, гистерезис электрической поляризации.

Magnetic properties and electric polarization at heterogeneous substitution in bismuth pyrostannate

Bi2(Sno.9Меo.l)2O7, Ме = Cr3+, Fe3+

L. V. Udod1, 2**, O. B. Romanova1, M. N. Sitnikov2, H. Abdelbaki2

:Kirensky Institute of Physics, Federal Research Center KSC SB RAS Akademgorodok 50, Krasnoyarsk, 660036, Russian Federation 2Reshetnev Siberian State University of Science and Technology 31, Krasnoyarskii Rabochii prospekt, Krasnoyarsk, 660037, Russian Federation **E-mail: luba@iph.krasn.ru

Bismuth pyrostannate Bi2Sn2O7 is a diamagnet and belongs to the structural type of the A2B2O7 pyrochlore class. In this class of compounds, in the presence of magnetic ions, very interesting magnetic properties appear. Chromium- and iron-substituted bismuth pyrostannates Bi2(Sn0.gMe0.i)2O7, Me = Cr, and Fe were synthesized by solid-phase synthesis. X-ray diffraction analysis showed that the samples correspond to the Pc monoclinic cell of the Bi2Sn2O7 a-phase at room temperature. The magnetic properties up to 1100 K in magnetic fields up to 0.86 T and the electric polarization at frequencies of 10, 3, and 1 mHz in the temperature range 80-550 K have been studied. The effect of heterogeneous substitution by Cr and Fe ions on the magnetic properties and electric polarization of bismuth pyrostannate is investigated. An analysis of the experimental data revealed the dependence of the magnetic properties on the degree of filling of the electron shells of chromium and iron ions. The Bi2(Sn0.9Cr0.1)2O7 compound exhibits ferromagnetic properties, while Bi2(Sn0.9Fe0.1)2O7 exhibits antiferromagnetic properties. In chromium-substituted bismuth pyrostannate during the a^fi transition, the paramagnetic Curie temperature increases by a factor of 3. The temperature dependence of the inverse magnetic susceptibility is characterized by hysteresis in the temperature range of 400-900 K. The reverse magnetic susceptibility of Bi2(Sn0.9Fe0.1)2O7 in the entire temperature range is satisfactorily described by the Curie-Weiss law. Studies of the magnetic properties have established that the Fe3+ ions are in a high-spin state. The polarization hysteresis in Bi2(Sn0.9Cr0.1)2O7 is found, which shifts along the polarization axis and depends on temperature. Bi2(Sn1-xFex)2O7, x=0.1 is characterized by a linear field dependence. With an increase in the concentration of iron ions, a hysteresis arises in the field dependence of the electric polarization. The hysteresis ofpolarization in Bi2(Sn0.cCr0.i)2O7 which depends on temperature was found. The nonlinear field dependence of the polarization in Bi2(Sn0.8Fe0.2)2O7 can be explained by the interaction of the dipole and migration polarizations and the presence of oxygen vacancies. For the Bi2(Sn09Cr01)2O7 compound, a transition to the dipole glass state was found. In the fi-phase of Bi2(Sn0.8Fe0.2)2O7 above T = 400 K, no polarization hysteresis is observed and the electron-relaxation polarization predominates. The mechanism of the occurrence of electronic polarization is explained with the appearance of anionic vacancies upon heterogeneous substitution of tin ions.

Keywords: x-ray diffraction analysis, electric polarization, magnetic susceptibility, electric polarization hysteresis.

Введение

Материалы, используемые в современных электронных устройствах, должны обладать одновременно сегнетоэлектрическими, ферромагнитными или антиферромагнитными свойствами. К таким материалам относятся сложные оксиды, имеющие в своем составе ионы железа. В них проявляется магнитоэлектрический эффект и свойства мультиферроиков [1-5]. Магнито-

резистивные эффекты, возникающие в результате взаимодействия магнитной подсистемы со спинами электронов проводимости, исследовались в рамках s-d модели и модели взаимодействия орбитальных магнитных моментов со спиновыми на основе сульфидов марганца. Магнито-сопротивление может быть обусловлено спин-орбитальным взаимодействием в топологических изоляторах [6-11].

Сочетание магнитных и электрических свойств, характерное для мультиферроиков, показывают соединения на основе структурного типа пирохлора А2В2О7. Этим материалам присущи как спонтанная намагниченность, магнитострикция, спонтанная поляризация и пьезоэлектрический эффект, так и магнитоэлектрический эффект (индуцированная магнитным полем электрическая поляризация и индуцированная электрическим полем намагниченность), а также эффект магнитоэлектрического контроля (переключение спонтанной поляризации магнитным полем и спонтанной намагниченности электрическим полем). Магнитоэлектрические эффекты могут быть обусловлены как магнитоупругим взаимодействием [12], так и в результате эффекта Максвелла-Вагнера [13-14]. Катионы А и В в структуре пирохлора А2В2О7 образуют подрешетку связанных углами тетраэдров, что может приводить к интенсивной фрустрации магнитного взаимодействия и низкотемпературным свойствам [15]. В Cd2Ti2O7 сильные фрустрации приводят к разупорядоченному состоянию спинов ниже температуры Кюри-Вейсса Т^ ~ 10 К. Фру-стрированные обменные взаимодействия могут привести к уменьшению намагниченности [1617] и к образованию спинового стекла [18-19]. Переход в упорядоченную фазу, обусловлен ди-поль-дипольным взаимодействием при Т ~ 1 К [20]. Отсутствие полного упорядочения сопровождается полным разрушением дальнего порядка и образованием парамагнитного состояния типа спиновой жидкости [21-26]. Это вызывает магнитокалорический эффект, востребованный в криотехнике.

Катионное окружение в кристаллической структуре пирохлоров делает невозможным антиферромагнитное взаимодействие между катионами одноосных направлений [27]. По-видимому, по этой причине многие пирохлоры характеризуются отсутствием дальнего магнитного порядка. Как правило, сложные оксиды со структурой пирохлора демонстрируют спин-стекольное состояние. Однако такие соединения могут быть и ферромагнитными, например Ln2V2O7 ^п = Lu, Yb, Тт) [28]. Марганецсодержащие пирохлоры обнаруживают сложную зависимость магнитных характеристик от природы А-катиона. Так, если в А-позиции находятся Sc, Y, Lu, то соединения характеризуются спин-стекольным поведением и проявляют полупроводниковые свойства [29], а Т12Мп207 и 1п2Мп207 - ферромагнетики [30]. Пиростаннат висмута В^^п1-хМпх)2О7, х = 0,05 и 0,1, проявляет антиферромагнитные свойства. С увеличением концентрации Мп4+ наблюдается увеличение антиферромагнитного обмена.

В кристаллической структуре пиростанната висмута В^п2О7 отсутствуют магнитные ионы. Замещая ионы Sn4+ 3d элементами, можно получить новые соединения, относящиеся к мульти-ферроикам. Изовалентное замещение ионами Мп4+ привело к антиферромагнитизму. При гете-ровалентном замещении ионами Сг3+ и Fe3+ будут наблюдаться искажения кислородных октаэдров, что приведет к возникновению спонтанной поляризации и магнитного порядка. Различная степень заполнения электронных оболочек ионов (Cr3+1s22s22p63s23p64s03d3 и Fe3+1s22s22p63s23p64s23d3) отразится на магнитных и электрических свойствах.

Цель работы: установить влияние гетерогенного замещения ионами Сг3+ и Fe3+ на возникновение магнитного порядка и поляризации в пиростаннате висмута В^п2О7.

Методика эксперимента

Синтез пиростанната висмута, замещенного 3d-элементами В^^п0,9Ме0д)2О7, Ме = Сг и Fe, выполнен методом многоступенчатого твердофазного синтеза. Рентгеноструктурные данные говорят, что синтезированные образцы соответствуют моноклинной ячейке Рс в а-фазе В^п2О7 при комнатной температуре [31-35]. Кристаллическая структура В^п2О7 содержит 32 иона В^+, 32 иона Sn4+ и 112 ионов О2 в независимой части ячейки (рис. 1). Все ионы

имеют в ближайшем окружении восемь ионов О2 и формируют искаженные кубы, а Sn4+ окружены шестью ионами О2 и формируют октаэдры, которые соединяются между собой вершинами. Замещая ионы Sn4+, ионы Сг3+ и Fe3+ создают дефекты в кислородном октаэдре SnО6 (вставка на рис. 1).

Рис. 1. Кристаллическая структура Bi2Sn2O7. Отдельно показаны дефектный кислородный октаэдр SnO6 с замещением ионами Fe и полиэдр BiO

Fig. 1. Crystal structure of Bi2Sn2O7. The defect oxygen octahedron SnO6 substituted by Fe3+ ions and the polyhedron BiO8 are shown separately

Магнитные свойства Bi2(Sn0,9Ме0д)2O7, Ме = Cr и Fe изучены на высокотемпературной установке методом Фарадея в интервале температур до 1100 K и магнитных полей до 0,86 Т. Полевые зависимости электрической поляризации исследованы квазистатическим методом на частотах 10,3 и 1 mHz в интервале температур 80-550 К. Проведены два цикла измерений на образцах, на которые нанесены контакты из серебра, между контактами и образцом находится лак для предотвращения токов утечки.

1. Магнитная восприимчивость

Температурная зависимость магнитной восприимчивости для Bi2(Sn09Cr0,i)2O7 представлена на рис. 2, а. Величина обратной магнитной восприимчивости меняет наклон (вставка рис. 2, а) при переходе из а^Р фазу при Т = 370 К. Парамагнитная температура Кюри возрастает в 3 раза. Так, для а-фазы 9а = 50 K в интервале 150 < T < 300 K, а Р-фазы 9р = 150 K при T > 400 K. Температурная зависимость 1/% характеризуется гистерезисом в районе температур 400-900 К, соответствующим границам существования Р-фазы.

Рис. 2. Температурная зависимость магнитной восприимчивости В^^^^Меод^О^ a - Me = Cr; б - Me = Fe. На вставках приведены температурные зависимости обратной восприимчивости

Fig. 2. The temperature dependence of the magnetic susceptibility of Bi2(Sn09Me01)2O7: a - Me = Cr; b - Me = Fe. The insets show the temperature dependences of the reciprocal susceptibilities

Магнитная восприимчивость в магнитном поле 600 Ое для Bi2(Sn09Fe01)2O7 проявляет парамагнитный характер и представлена на рис. 2, б. На вставке (рис. 2, б) показана температурная зависимость обратной магнитной восприимчивости, которая во всей температурной области удовлетворительно описывается законом Кюри - Вейсса 1/% = (T - 9) / C, где % - магнитная восприимчивость, 9 - парамагнитная температура Кюри, С - постоянная Кюри. Величина парамагнитной температуры имеет отрицательное значение © = -10 К. Используя формулу

Meff = (8C / n)1/2, (1)

был определен эффективный магнитный момент Fe3+. Здесь C - постоянная Кюри; NA - постоянная Авогадро; n - количество ионов железа в Bi2(Sn09Fe01)2O7. Эффективный магнитный момент Fe3+ вычислен по уравнению (1) и равен = 5,76цв. В пиростаннате висмута ионы Fe3+ находятся в высокоспиновом состоянии [35]. В соответствии с уравнением

MS = g(S(S + 1)цв)1/2, (2)

где S - спин Fe3+ = 5/2; g - фактор = 2, теоретическое значение эффективного магнитного момента ^s = 5,92цв. Используя полученные экспериментальные данные магнитных характеристик, по формуле (2) рассчитан g - фактор для Bi2(Sn09Fe01)2O7, g = 1,95.

Экспериментальные данные показывают различное влияние замещающих ионов на магнитное обменное взаимодействие Bi2Sn2O7. Соединение Bi2(Sn09Cr01)2O7 проявляет ферромагнитные свойства, а Bi2(Sn09Fe01)2O7 - антиферромагнитные. Такое различие связано с различной степенью заполнения электронных оболочек, у Cr 4s , а Fe 4s2.

2. Поляризация

Электрическая поляризация Bi2(Sn09Cr01)2O7 линейно растет во внешнем электрическом поле, наблюдается гистерезис малой величины в а-фазе. При циклировании ширина гистерезиса линейно растет с ростом числа циклов. Полевые зависимости поляризации Bi2(Sn09Cr01)2O7 для температур выше 400 К представлены на рис. 3, б. Диэлектрическая восприимчивость % = P/s0E, определенная в электрическом поле 800 V/cm, увеличивается при нагревании в а-фазе и обнаруживает максимум в области температуры перехода в состояние дипольного стекла (рис. 3, а). Для дипольных стекол характерен широкий максимум восприимчивости в области «замерзания» дипольных моментов и необратимое поведение восприимчивости при нагревании и охлаждении в электрическом поле.

Е, V/cm

Рис. 3. Температурная зависимость диэлектрической восприимчивости Bi2(Sno,9Cr0,1)2O7 (а); полевая зависимость поляризации Bi2(Sn09Cr01)2O7 (б). Кривая 1 соответствует Т = 400 К с серебряными контактами, 2 - Т = 400 К, 3 - Т = 450 К, 4 - Т = 500 К. 2, 3, 4 - лаковые контакты

Fig. 3. Temperature dependence of the dielectric susceptibility of Bi2(Sno.9Cr0.1)2O7 (a). The field dependence of the polarization of Bi2(Sn0.9Cr0.1)2O7 (b). Curve 1 corresponds to T = 400 K with silver contacts, 2 - T = 400 K, 3 - T = 450 K, 4 - T = 500 K. 2, 3, 4 - varnish contacts

Соединение В^^п1-^ех)2О7 (х = 0,1) проявляет параэлектрические свойства, поляризация линейна до Т = 300 К и соответствует закону Р = во %Е, где во - диэлектрическая проницаемость; % -восприимчивость; Е - электрическое поле. С увеличением концентрации ионов железа, х = 0,2, пи-ростаннат висмута показывает симметричные петли гистерезиса во внешнем электрическом поле.

На рис. 4 показаны полевые зависимости поляризации при различных температурах в магнитном поле 12 кОе для В^^п1-хРех)2О7, х = 0,2. На вставке (рис. 4) приведена полевая зависимость поляризации в магнитном поле Н = 0 и 12 кОе при Т = 160 К. Выше комнатной температуры электрическая поляризация возрастает в результате появления дополнительного вклада в виде миграционной электронной поляризации.

Делокализация дырок в а-фазе в окрестности замещающих ионов приводит к диффузии и накоплению заряда в ловушках на междукристаллических доменных границах. Под действием внешнего электрического поля носители тока диффундируют к поверхности домена и локализуются в ловушках. В результате межкристаллические границы становятся заряженными, что приводит к гистерезису поляризации и росту ширины петли гистерезиса. Образование заряженных границ и частичное экранирование приводит к неравномерному распределению потенциала по объему образца. В результате перестройки кристаллической структуры меняется плотность дефектов, например, понижается концентрация кислородных вакансий [37; 38] и индуцируется объемный заряд в образце.

Е, V/cm

Рис. 4. Полевая зависимость поляризации Bi2(Sn0,8Fe0,2)2O7 в магнитном поле Н = 12 kOe при различных температурах. Кривая 1 соответствует Т = 120 К, 2 - 160 К, 3 - 200 К, 4 - 280 К. На вставке приведена полевая зависимость при Т = 160 К. Сплошная линия соответствует Н = 12 kOe, пунктирная - Н = 0

Fig. 4. Field dependence of the polarization of Bi2(Sn0.8Fe0.2)2O7 in a magnetic field H = 12 kOe at different temperatures. Curve 1 corresponds to Т = 120 K, 2 - 160 K, 3 - 200 K, 4 - 280 K. The inset shows the field dependence of the polarization at Т = 160 K. The solid line corresponds to Н = 12 kOe,

the dashed line corresponds to Н = 0

В Р-фазе выше Т = 400 К преобладает электронно-релаксационная поляризация. Этот вид поляризации характерен для твердых диэлектриков, содержащих дефекты или примесные ионы, способные захватывать электроны с образованием ловушек. Во внешнем электрическом поле будут происходить переходы ловушек в направлении поля и возникает электрическая поляризация. Наиболее вероятный механизм электронной поляризации связан с возникновением анионных вакансий при гетерогенном замещении ионов олова. Кислородные вакансии являются эквивалентными положительными зарядами, вблизи которых для их компенсации в соответствии с принципом электронейтральности локализуются квазисвободные электроны, обусловливающие тепловую электронную поляризацию.

Заключение

Установлено, что ионы Cr3+ и Fe3+ оказывают различное влияние на магнитные свойства: в Bi2(Sn09Cr01)2O7 проявляются ферромагнитные обменные взаимодействия, а Bi2(Sn0,9Fe0,i)2O7 -антиферромагнитные.

В Р-фазе Bi2(Sn09Cr01)2O7 установлен гистерезис поляризации, смещенный по оси поляризации. Ширина гистерезиса растет при нагревании.

Для Bi2(Sn0,8Fe0,2)2O7 найден нелинейный вид электрической поляризации от поля с отсутствием гистерезиса в Р-фазе, что объясняется взаимодействием дипольной и миграционной поляризаций.

Библиографические ссылки

1. Влияние катионного замещения на кристаллическую структуру, магнитные и электрические свойства BiFe1-xMnxO3 (х = 0,05 и 0,15) / Т. Н. Тарасенко, В. И. Михайлов, З. Ф. Кравченко и др. // Известия РАН. Серия физическая. 2020. Т. 84, № 9. С. 1307-1309.

2. Magnetoresistive effect in the cobalt-doped bismuth ferrite films / O. B. Romanova, S. S. Aplesnin, M. N. Sitnikov, L. V. Udod, et. al. // J. Materials Science: Materials in Electronics. 2020. Vol. 31. P. 7946. DOI: https://doi.org/10.1007/s10854-020-03333-7.

3. Low-temperature phase transition in bismuth ferrite films substituted by manganese / S. S. Aplesnin, A. N. Masyugin, U. I. Rybina, et. al. // IOP Conf. Series: Materials Science and Engineering. 2020. W. 822. P. 012021. DOI: 10.1088/1757-899X/822/1/012021012021.

4. Magnetoelectric effect in bismuth - neodymium ferrite - garnet films / A. N. Masyugin, S. S. Aplesnin, Y. Y. Loginov et. al. // IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 822. P. 012025. DOI: 10.1088/1757-899X/822/1/012025.

5. Regulating the BiMnxFe1-xO3 film conductivity upon cooling in magnetic and electric fields / S. S. Aplesnin, A. N. Masyugin, et. al. // Mater. Research Express. 2019. Vol. 6. P. 116125. DOI: doi.org/10.1088/2053-1591/ab4ec7.

6. Магнитотранспортные эффекты и электронное фазовое расслоение в сульфидах марганца с электрон-дырочным допированием / О. Б. Романова, С. С. Аплеснин и др. // ЖЭТФ. 2021. Т. 159. С. 1-14. DOI: 10.31857/S0044451021030000.

7. Романова О. Б., Аплеснин C. C., Удод Л. В. Влияние электронного и дырочного допирования на транспортные характеристики халькогенидных систем // ФТТ. 2021. Т. 63. С. 606-609. DOI: 10.21883/FTT.2021.05.50808.269.

8. Аплеснин С. С., Янушкевич К. И. Изменение магнитосопротивления в халькогенидах марганца MnSe1-XTeX при переходе от объемных образцов к тонкопленочным // Сибирский журнал науки и технологий. 2020. Т. 21, № 2. С. 254-265. DOI: 10.31772/2587-6066-2020-21-2254-265.

9. Magnetic Capacitance in Variable-Valence Manganese Sulfides / S. S. Aplesnin, A. M. Kharkov at. al. // Phys. Status Solidi B. 2020. Vol. 257. P. 1900637. DOI: 10.1002/pssb.201900637.

10. Magnetoresistance, magnetoimpedance, magnetothermopower, and photoconductivity in silver-doped manganese sulfides / O. B. Romanova, S. S. Aplesnin, L. V. Udod, et. al. // J. Appl. Phys. 2019. Vol. 125. P. 175706. DOI: https://doi: 10.1063/1.5085701.

11. Aplesnin S. S., Kretinin V. V. Magnetoelectric Effect in a Paramagnetic Region in Gd0,15Mn0,85Se // Physics of the Solid State. 2019. Vol. 61, No. 8. P. 1379-1382. DOI: 10.1134/S1063783419080067.

12. Coexistence of the electric polarization and conductive current in the bismuth-neodymium ferrite garnet films / S. S. Aplesnin, A. N. Masyugin, M. N. Volochaev et al. // J Mater Sci: Mater Electron. 2021. Vol. 32. P. 3766-3781. DOI: https://doi.org/10.1007/s10854-020-05121-9.

13. Aplesnin S. S., Sitnikov M. N., Zhivul'ko A. M. Magnetocapacity in the Paramagnetic Region in a Cation-Substituted Manganese Selenide // Phys. Solid State. 2018. Vol. 60. P. 673-680.

14. Влияние подложки на магнитоэлектрический эффект пленок висмутового ферритаграна-та с редкоземельным замещением / С. С. .Аплеснин, А. Н. Масюгин, М. Н. Ситников, T. Иши-баши // Письма в ЖЭТФ. 2019. Т. 110. C. 204-212. DOI: https://doi.1134/S0370274X19150128.

15. Greedan J. E. Geometrically frustrated magnetic materials // J. Mater. Chem. 2001. Vol. 11. P. 37.

16. Metal-insulator transition and magnetic properties in disordered systems of solid solutions MexMn:-xS / G. A. Petrakovskii, G. V. Loseva, L. I. Ryabinkina, S. S. Aplesnin // JMMM. 1995. Vol. 140-144 (PART 1). P. 147-148.

17. Aplesnin S. S. Influence of spin-phonon coupling on the magnetic moment in 2D spin-1/2 antiferromagnet // Phys. Lett. Section A: General, Atomic and Solid State Physics. 2003. Vol. 313 (1-2). P. 122-125.

18. Aplesnin S. S. A study of anisotropic Heisenberg antiferromagnet with S = 1/2 on a square lattice by Monte-Carlo method // Phys. Status Solidi (B) Basic Research. 1998. Vol. 207 (2). P.491-498.

19. Aplesnin S. S. Monte?Carlo Study of Two?Dimensional Quantum Antiferromagnets with Random Anisotropies and Spin S = 1 // Physica Status Solidi (b). 1989. Vol. 153 (1). P. K79-K84.

20. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7 / J. D. M. Champion, A. S. Wills, T. Fennell at. al. // Phys. Rev. B. 2001. Vol. 64. P. 140407(R).

21. Аплеснин С. С. Димеризация антиферромагнитных цепей с четырехспиновым взаимодействием // ФТТ. 1996. Т. 38 (6). С. 1031-1036.

22. Aplesnin S. S. Quantum Monte Carlo analysis of the 2D Heisenberg antiferromagnet with S = 1/2: The influence of exchange anisotropy // Journal of Physics Condensed Matter. 1998. Vol. 10 (44). P. 10061-10065.

23. Aplesnin S. S. Existence of massive singlet excitations in an antiferromagnetic alternating chain with // Phys. Rev. B - Conden. Matter and Materials Physics. 2000. Vol. 61 (10). P. 6780-6784.

24. Аплеснин С. С. Неадиабатическое взаимодействие акустических фононов со спинами S = 1/2 в двумерной модели Гейзенберга // Журнал экспериментальной и теоретической физики. 2003. Т. 97 (5). С. 969-977.

25. Aplesnin S. S., Moskvin A. I. Magnetic structures upon ordering of eg orbitals in a square lattice // Journal of Physics Condensed Matter. 2008. Vol. 20 (32). P. 325202.

26. Aplesnin S. S. Two-dimensional quantum spin liquid with S = 1/2 spins interacting with acoustic phonons // Physics Letters, Section A: General, Atomic and Solid State Physics. 2004. Vol. 333 (5-6). P. 446-449.

27. Bramwell S. T., Harris M. J. Frustration in Ising-type spin models on the pyrochlore lattice // J. Phys.: Cond. Matter. 1998. Vol. 10. P. 215.

28. Crystal structure of the high-temperature superconductor TI2Ba2CaCu2O8 / M. A. Subramanian, J. C. Calabrese et. al. // Nature. 1988. Vol. 332. P. 420-422. DOI: 10.1038/332420A0.

29. Frustrated pyrochlore oxides, Y2Mn2O7, Ho2Mn2O7, and Yb2Mn2O7: Bulk magnetism and magnetic microstructure / J. E. Greedan, N. P. Raju et al. // Phys. Rev. B. 1996. Vol. 54. P. 7189.

30. Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Tl2Mn2O7 / M. A. Subramanian, B. H. Toby et al. // Science. 1996. Vol. 273. P. 81.

31. Bi2(Sn0 95Cr0 05)2O7: Structure, IR spectra, and dielectric properties / S. S. Aplesnin, L. V. Udod, M. N. Sitnikov, N. P. Shestakov // Ceramics International. 2016. Vol. 42. P. 5177-5183.

32. Aplesnin S. S., Udod L. V., Sitnikov M. N. Electronic transition, ferroelectric and thermoelectric properties of bismuth pyrostannate Bi2(Sn0,85Cr0,i5)2O7 // Ceramics International. 2018. Vol. 44. P. 1614-1620.

33. Dipole glass in chromium-substituted bismuth pyrostannate / S. S. Aplesnin, L. V. Udod, M. N. Sitnikov et al. // Mater. Res. Express. 2018. Vol. 5. P. 115202. DOI: https://doi.org/ 10.1088/2053-1591/aaddd934.

34. Influence of cation substitution on dielectric and electric properties of bismuth stannates Bi2Snj.9Me0.1O7 (Me=Cr, Mn) / S. S. Aplesnin, L. V. Udod, Y. Y. Loginov et al. // IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 467. P. 012014(5).

35. Phase transitions in bismuth pyrostannate upon substitution of tin by iron ions / L. V. Udod, S. S. Aplesnin, M. N. Sitnikov et al. // J. All. Compound. 2019. Vol. 804. P. 281-287. DOI: https://doi.org/10.1016/jjancom.2019.07.020.

36. Magnetodielectric effect and spin state of iron ions in iron-substituted bismuth pyrostannate / L. Udod, S. Aplesnin, M. Sitnikov et al. // EPJP. 2020. Vol. 135. P. 776. DOI: https://doi.org/ 10.1140/epjp/s13360-020-00781-2.

37. Relationship between Pyroelectric Properties and Electrode Sizes in (Pb, La)(Zr, Ti)O3 (PLZT) Thin Films / M. Kobune, H. Ishito, A. Mineshige, S. Fujii1, R. T. Tomozawa // J. Apl. Phys. 1998. Vol. 37. P. 5154.

38. Reappraisal of the crystal chemistry of beryl / C. Aurisicchio, G. Fioravanti, O. Grubessi, P. F. Zanazzi // American Mineralogist. 1988. Vol. 73 (7). P. 826-837.

Refenrences

1. Tarasenko T. N., Mikhailov V. I., Kravchenko Z. F., Burkhovetsky V. V., Kamenev V. I., Izotov

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

A. I., Legenkiy Yu. A., Demidenko O. F., Yanushkevich K. I., Aplesnin S. S. Effect of cationic substitution on the crystal structure, magnetic and electrical properties of BiFei-xMnxO3 (x = 0.05 and 0.15). Izv. RAN. Physical series. 2020, Vol. 84, P. 1307-1309.

2. Romanova O. B., Aplesnin S. S, Sitnikov M. N., Udod L. V., Begisheva O. B., Demidenko O. F. Magnetoresistive effect in the cobalt-doped bismuth ferrite films. J. Materials Science: Materials in Electronics. 2020, Vol. 31, P. 7946. https://doi.org/10.1007/s10854-020-03333-7.

3. Aplesnin S. S., Masyugin A. N., Rybina U. I., Tarasenko T. N. and Yanushkevich K. I. Low-temperature phase transition in bismuth ferrite films substituted by manganese. IOP Conf. Series: Materials Science and Engineering. 2020, Vol. 822, P. 012021. DOI:10.1088/1757-899X/822/1/012021012021.

4. Masyugin A. N., Aplesnin S. S., Loginov Y. Y. and Bandurina O. N. Magnetoelectric effect in bismuth - neodymium ferrite - garnet films. IOP Conf. Series: Materials Science and Engineering. 2020, Vol. 822, P. 012025. DOI: 10.1088/1757-899X/822/1/012025.

5. Aplesnin S. S., Masyugin A. N., Kretinin V. V., Yanushkevich K. I. Regulating the BiMnxFei_ xO3 film conductivity upon cooling in magnetic and electric fields. Mater. Research Express. 2019, Vol. 6, P. 116125. DOI: doi.org/10.1088/2053-1591/ab4ec7.

6. Romanova O. B., Aplesnin S. S., Sitnikov M. N., Udod L. V. Magnetotransport effects and electron phase separation in manganese sulfides with electron-hole doping. ZhETF. 2021, Vol. 159, P. 1-14. DOI: 10.31857/S0044451021030000.

7. Romanova O. B., Aplesnin S. S., Udod L.V. Effect of electron and hole doping on the transport characteristics of chalcogenide systems. Solid State Phys. 2021, Vol. 63, P. 606-609. DOI: 10.21883/FTT.2021.05.50808.269.

8. Aplesnin S. S., Yanushkevich K. I. Changes in the magnetoresistance in MnSe1-XTeX manganese chalcogenides upon transition from bulk samples to thin-film ones. Siberian Aerospace Journal. 2020, Vol. 21, No. 2, P. 254-265. DOI: 10.31772/2587-6066-2020-21-2-254-265.

9. Aplesnin S. S., Kharkov A. M., Filipson G. Yu. Magnetic Capacitance in Variable-Valence Manganese Sulfides. Phys. Status Solidi B. 2020, Vol. 257, P. 1900637. DOI 10.1002/pssb.201900637.

10. Romanova O. B., Aplesnin S. S., Udod L. V., Sitnikov M. N., Kretinin V. V., Yanushkevich K. I., Velikanov D. A. Magnetoresistance, magnetoimpedance, magnetothermopower, and photoconductivity in silver-doped manganese sulfides. J. Appl. Phys. 2019, Vol. 125, P. 175706. DOI: https://doi: 10.1063/1.5085701.

11. Aplesnin S. S., Sitnikov M. N., Kharkov A. M., Masyugin A. N., Kretinin V. V., Fisenko O.

B., Gorev M. V. Magnetoelectric Effect in a Paramagnetic Region in Gd0.15Mn0.85Se. Physics of the Solid State, 2019, Vol. 61, No. 8, P. 1379-1382. DOI: 10.1134/S1063783419080067.

12. Aplesnin S. S., Masyugin A. N., Volochaev M., Ishibashi T. Coexistence of the electric polarization and conductive current in the bismuth-neodymium ferrite garnet films. J Mater Sci: Mater Electron. 2021, Vol. 32, P. 3766-3781. DOI: https://doi.org/10.1007/s10854-020-05121-9.

13. Aplesnin S. S., Sitnikov M. N., Zhivul'ko A. M. Magnetocapacity in the Paramagnetic Region in a Cation-Substituted Manganese Selenide. Phys. Solid State. 2018, Vol. 60, P. 673-680.

14. Aplesnin S. S., Masyugin A. N., Sitnikov m.N.., Ishibashi T. Influence of the Substrate on the Magnetoelectric Effect of Rare-Earth-Substituted Bismuth Ferrite Garnet Films. Letters to JETF. 2019, Vol. 110, P. 204-212. DOI: https://doi .1134/S0370274X19150128.

15. Greedan J. E. Geometrically frustrated magnetic materials. J. Mater. Chem. 2001, Vol. 11, P. 37

15. Petrakovskii G. A., Loseva G. V., Ryabinkina L. I., Aplesnin S. S. Metal-insulator transition and magnetic properties in disordered systems of solid solutions MexMn1-xS. JMMM. 1995, Vol. 140144 (PART 1), P. 147-148.

16. Aplesnin S. S. Influence of spin-phonon coupling on the magnetic moment in 2D spin-1/2 antiferromagnet. Phys. Lett. Section A: General, Atomic and Solid State Physics. 2003, Vol. 313 (1-2), P.122-125.

17. Aplesnin S. S. A study of anisotropic Heisenberg antiferromagnet with S = 1/2 on a square lattice by Monte-Carlo method. Phys. Status Solidi (B) Basic Research. 1998, Vol. 207 (2), P. 491498.

18. Aplesnin S. S. Monte?Carlo Study of Two?Dimensional Quantum Antiferromagnets with Random Anisotropies and Spin S = 1 // Physica Status Solidi (b). 1989. Vol. 153 (1). P. K79-K84.

19. Champion J. D. M., Wills A. S., Fennell T., Bramwell S. T., Gardner J. S., Green M. A. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7. Phys. Rev. B. 2001, Vol. 64, P.140407(R).

20. Aplesnin S. S. Dimerization of antiferromagnetic chains with four-spin interactions. Phys. Solid State. 1996, Vol. 38 (6), P. 1031-1036.

21. Aplesnin S. S. Quantum Monte Carlo analysis of the 2D Heisenberg antiferromagnet with S = 1/2: The influence of exchange anisotropy. J. Phys. Condens. Matter. 1998, Vol. 10 (44), P. 1006110065.

22. Aplesnin S. Existence of massive singlet excitations in an antiferromagnetic alternating chain with S=1/2. Phys. Rev. B - Conden. Matter and Materials Physics. 2000, Vol. 61 (10), P. 6780-6784.

23. Aplesnin S. S. Nonadiabatic interaction of acoustic phonons with spins S = 1/2 in the two-dimensional heisenberg model. J. Experimental and Theoretical Physics. 2003, Vol. 97, Is. 5, P. 969-977.

24. Aplesnin S. S., Moskvin A. I. Magnetic structures upon ordering of eg orbitals in a square lattice. J. Phys. Condens. Matter. 2008, Vol. 20 (32), P. 325202.

25. Aplesnin S. S. Two-dimensional quantum spin liquid with S = 1/2 spins interacting with acoustic phonons. Phys. Lett. Section A: General, Atomic and Solid State Physics. 2004, Vol. 333, Is. 5-6, P. 446-449.

26. Bramwell S. T., Harris M. J. Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys.: Cond. Matter. 1998, Vol. 10, L215.

27. Subramanian, M. A., Calabrese, J. C., Torardi, C. C., Gopalakrishnan, J., Askew, T. R. Crystal structure of the high-temperature superconductor TI2Ba2CaCu2O8. Nature. 1988, Vol. 332, P. 420422. DOI: 10.1038/332420A0.

28. Greedan J. E., Raju N. P., Maignan A., Simon Ch., Pedersen J. S., Niraimathi A. M., Gmelin E., and Subramanian M. A. Frustrated pyrochlore oxides, Y2Mn2O7, Ho2Mn2O7, and Yb2Mn2O7: Bulk magnetism and magnetic microstructure. Phys. Rev. B. 1996, Vol. 54, P. 7189.

29. Subramanian M. A., Toby B. H., Ramirez A. P., Marshall W. J., Sleight A. W., Kwei G.H. Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Tl2Mn2O7. Science. 1996, Vol. 273, P. 81.

30. Aplesnin S. S., Udod L. V., Sitnikov M. N., Shestakov N. P. Bi2(Sn0.95Cr0.05)2O7: Structure, IR spectra, and dielectric properties. Ceramics International. 2016, Vol. 42, P.5177-5183.

31. Aplesnin S. S., Udod L. V., Sitnikov M. N. Electronic transition, ferroelectric and thermoelectric properties of bismuth pyrostannate Bi2(Sn0.85Cr0.i5)2O7. Ceramics International. 2018, Vol. 44, P. 1614-1620.

32. Aplesnin S. S., Udod L.V., Sitnikov M.N., Kretinin V. V., Molokeev M. S. and Mironova-Ulmane N. Dipole glass in chromium-substituted bismuth pyrostannate. Mater. Res. Express. 2018, Vol. 5, P. 115202. DOI: https://doi.org/10.1088/2053-1591/aaddd934.

33. Aplesnin S. S., Udod L. V., Loginov Y. Y., Kretinin V. V., Masyugin A. N. Influence of cation substitution on dielectric and electric properties of bismuth stannates Bi2Sn19Me0.iO7 (Me=Cr, Mn). IOP Conf. Series: Materials Science and Engineering. 2019, Vol. 467, P. 012014(5).

34. Udod L. V., Aplesnin S. S., Sitnikov M. N., Romanova O. B., Molokeev M. N. Phase transitions in bismuth pyrostannate upon substitution of tin by iron ions. J. All. Compound. 2019, Vol. 804, P. 281-287. DOI: https://doi.org/10.1016/jjallcom.2019.07.020.

35. Udod L., Aplesnin S., Sitnikov M., Romanova O., Bayukov O., Vorotinov A., Velikanov D., Patrin G. Magnetodielectric effect and spin state of iron ions in iron-substituted bismuth pyrostannate. EPJP. 2020, Vol. 135, Article number: 776. DOI: https://doi.org/10.1140/epjp/s13360-020-00781-2.

36. Kobune M., Ishito H., Mineshige A., Fujii1 S., Tomozawa R. T. Relationship between Pyroelectric Properties and Electrode Sizes in (Pb, La)(Zr, Ti)O3 (PLZT) Thin Films. J. Apl. Phys. 1998, Vol. 37, P. 5154.

37. Aurisicchio C., Fioravanti G., Grubessi O., Zanazzi. P.F. Reappraisal of the crystal chemistry of beryl. American Mineralogist. 1988, Vol. 73, Is. 7, P. 826-837.

Удод Л. В., Романова О. Б., Ситников М. Н., Абдельбаки Х., 2022

Удод Любовь Викторовна - кандидат физико-математических наук, доцент кафедры физики; Институт физики имени Л. В. Киренского СО РАН - обособленное подразделение ФИЦ КНЦ СО РАН; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: luba@iph.krasn.ru.

Ситников Максим Николаевич - кандидат физико-математических наук, доцент кафедры физики; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: kineru@mail.ru.

Абдельбаки Хишем - аспирант кафедры физики; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: abdel.hichem@outlook.fr.

Романова Оксана Борисовна - кандидат физико-математических наук, Институт физики имени Л. В. Киренского СО РАН - обособленное подразделение ФИЦ КНЦ СО РАН. E-mail:rob@iph.krasn.ru.

Udod Lyubov Viktorovna - Cand. Sc., Associate Professor of the Department of Physics; Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Reshetnev Siberian State University of Science and Technology. E-mail: luba@iph.krasn.ru.

Sitnikov Maxim Nikolaevich - Cand. Sc., Associate Professor of the Department of Physics; Reshetnev Siberian State University of Science and Technology. E-mail: kineru@mail.ru.

Abdelbaki Hishem - post-graduate student of the Department of Physics; Reshetnev Siberian State University of Science and Technology. E-mail: abdel.hichem@outlook.fr.

Romanova Oxana Borisovna - Cand. Sc., Kirensky Institute of Physics, Federal Research Center KSC SB RAS. E-mail:rob@iph.krasn.ru.

i Надоели баннеры? Вы всегда можете отключить рекламу.