УДК 616-006
С. В. Серебрякова, Г. Е. Труфанов, В. А. Фокин, Е. А. Юхно
МАГНИТНО-РЕЗОНАНСНАЯ МАММОГРАФИЯ: ОБОСНОВАНИЕ НЕОБХОДИМОСТИ ДИНАМИЧЕСКОГО КОНТРАСТИРОВАНИЯ
Военно-медицинская академия им. С. М. Кирова, Санкт-Петербург
Рак молочной железы (РМЖ) является наиболее часто встречающейся злокачественной опухолью у женщин в России и странах Западной Европы. В России на 100 тыс. женского населения приходится 36,5 случая РМЖ. Ранняя диагностика рака молочной железы является серьезной клинической проблемой [1-3].
В связи с потребностью поиска более эффективных методов диагностики логичным стало обращение многих исследователей к новому методу лучевой диагностики — магнитно-резонансной маммографии с контрастным усилением. Необходимость искусственного контрастирования при магнитно-резонансной томографии (МРТ) обусловлена тем, что ткани молочной железы имеют практически одну и ту же концентрацию протонов и близкие физические свойства, от чего и зависит интенсивность сигналов, и базируется на том, что рост злокачественного образования невозможен при отсутствии необходимых для этого метаболитов и кислорода, доставляемых по кровеносным сосудам. Поэтому под воздействием гипоксии в опухолевом узле начинают образовываться собственные сосуды для обеспечения возможности роста новообразования [4-7].
В ответ на ангиогенный стимул, поступающий из окружающей среды, запускается комплексный процесс, который включает следующие стадии: протеолитическое разрушение базальной мембраны сосудов и межклеточного матрикса, миграция и прикрепление эндотелиальных клеток, их пролиферация, формирование тубулярных структур [8, 9].
Образование сосудов обеспечивается выработкой различных факторов ангиогенеза, которые запускают неоваскуляризацию. Одним из наиболее изученных факторов ангиогенеза является эндотелиальный фактор роста (VEGF—Vascular Endothelial Growth Factor) [10].
Ряд исследователей доказали, что новообразованные сосуды отличаются от сосудов нормальной ткани [11-15]. Их отличает крайняя степень гетерогенности, наличие множества капилляров, имеющих непрямой, изогнутый ход и хрупкую стенку, а также наличие артериовенозных шунтов и тесное расположение сосудов наряду с зонами гипоксии и активного ангиогенеза. Стенки подобных капилляров характеризуются высокой проницаемостью вследствие наличия расширенных промежутков между эндотелиоцитами и отсутствия (частичного) базальной мембраны. Кроме того, в условиях гипоксии под воздействием эндотелиального фактора роста нарушается регуляция активности везико-васкулярных органелл, которые обеспечивают проницаемость эндотелия для макромолекул. Перечисленные критерии являются важными в дифференциальной диагностике доброкачественных и злокачественных образований [15-21].
© С. В. Серебрякова, Г. Е. Труфанов, В. А. Фокин, Е. А. Юхно, 2009
В МРТ для контрастирования используются хелаты гадолиния (Дотарем (Gerbe), Магневист (Nycomed), Омнискан (Schering AG) с концентрацией гадолиния 0,5 ммоль/л; Гадовист 1.0® (Schering AG) с концентрацией гадолиния 1 ммоль/л), которые вводятся внутривенно и выводятся из организма почками, являясь внеклеточными парамагнитными контрастными веществами. Дозировка подобных контрастных веществ обычно составляет по меньшей мере 0,1 ммоль/кг, хотя данные некоторых исследований свидетельствуют о получении лучших результатов при использовании более высоких доз [22].
Механизм контрастирующего эффекта заключается в том, что гадолиниевый ион укорачивает время Т1-релаксации возбужденных ядер атомов соседних тканей, таким образом увеличивая интенсивность регистрируемого от них сигнала и повышая контрастность изображения тканей. Эти контрастные вещества благодаря своей низкой молекулярной массе легко проникают через высокопроницаемую стенку патологических капилляров и накапливаются в экстраваскулярном пространстве опухолевой ткани. Будучи внеклеточными веществами, гадолинийсодержащие контрастные препараты накапливаются в межклеточном пространстве, тем не менее воздействие на внутриклеточное пространство происходит вследствие диффузии протонов через клеточную мембрану [23-25].
До тех пор пока концентрация контрастного вещества в сосудистом русле превышает таковую во внесосудистом внеклеточном пространстве (ВВП), молекулы контрастного вещества будут накапливаться в нем, увеличивая интенсивность сигнала на Т1-ВИ. В момент, когда концентрация контрастного вещества в сосудистом русле благодаря выходу его в ткани и почечной экскреции становится ниже концентрации в ВВП, молекулы контрастного вещества начинают возвращаться в сосудистое русло, вследствие чего интенсивность сигнала от тканей на Т1-ВИ уменьшается [25-28].
Материалы и методы исследования. Магнитно-резонансную маммографию выполняли на томографе «MAGNETOM SYMPHONY» (Siemens) с напряженностью магнитного поля 1,5 Тл. Исследования проводили в положении лежа на животе с прижатыми к телу руками с использованием специальной поверхностной катушки (breast coil), которая позволяла выполнять дозированную билатеральную компрессию молочных желез для исключения двигательных артефактов.
Применяли стандартный алгоритм проведения МРТ молочных желез — сначала выполняли импульсные последовательности по Т2-ВИ без и с использованием жироподавления, затем — одну преконтрастную серию Т1-ВИ 3D FLASH Fs в аксиальной плоскости. Далее с помощью автоматического инъектора внутривенно болюсно вводили парамагнитное контрастное вещество из расчета 0,1 ммоль/кг и после 10-20секундной задержки выполняли 5 постконтрастных серий без временной задержки между ними с теми же техническими параметрами в Т1-ВИ 3D FLASH Fs в аксиальной плоскости.
Результаты и их обсуждение. Нами обследовано 150 женщин с последующим гистологическим подтверждением опухолей молочной железы. Возраст пациенток варьировал в пределах 18-70 лет. Средний возраст при злокачественном поражении составил 51±1,6 года, при доброкачественном — 36,1±1,8 года.
В зависимости от морфологического типа опухолей обследованные больные были распределены следующим образом: рак молочной железы выявлен у 73 больных (49 %), фиброаденомы — у 68 (45 %), папилломы — у 6 (4 %), липомы — у 3 (2 %).
При обследовании доброкачественные образования равномерно незначительно накапливали контрастирующее вещество в течение всего времени исследования
(86 %), а злокачественные характеризовались быстрым его накоплением в первые минуты и последующим быстрым уменьшением интенсивности сигнала от ткани опухоли (79 %), для злокачественных образований характерно было также различие интенсивности сигнала в центральных и периферических отделах образования (у 67 % пациенток).
Улучшение контрастирования патологического очага связано с нарушением сосудистой проницаемости, либо с изменением кровотока, либо с индукцией ангионеоге-неза. Именно поэтому динамическое контрастирование позволяет получать хорошую визуализацию злокачественных образований, которые имеют как большее количество сосудов, так и сосуды с повышенной проницаемостью, что приводит к более быстрому накоплению и более быстрому вымыванию внеклеточных парамагнитных контрастных средств.
Таким образом, высококонцентрированные парамагнитные контрастные средства в сочетании со сверхбыстрыми импульсными последовательностями дают возможность в реальном времени определить малейшие изменения кровотока.
При использовании МРТ с динамическим контрастным усилением отмечено наличие корреляций между морфологическими изменениями, определяемыми с помощью гистологических исследований, и данными МРТ. Кольцевидное накопление опухоли коррелирует с высокой плотностью сосудов на периферии и ее снижением по направлению к центру образования, увеличением экспрессии сосудистого фактора; роста эндотелия, что характерно для рака. Замедленное увеличение сигнала в центральных областях наблюдается при наличии некроза. Для фиброаденом и воспалительных изменений характерно накопление контрастного вещества в межклеточной жидкости, что подтверждается и данными литературы.
Динамические МР-параметры: кольцевидное накопление контраста, раннее максимальное контрастирование (пиковое время) и феномен быстрого вымывания позволяют выделять злокачественные поражения молочной железы и определять процесс ангиогенеза в опухоли. Поэтому использование внеклеточных гадолинийсодержащих магнитнорезонансных контрастных средств является незаменимым условием методики МРТ, что и определяет его высокую диагностическую эффективность в выявлении патологических изменений в молочной железе.
Вспомогательное значение МРТ с контрастным усилением проиллюстрировано на рис. 1, 2.
В заключение можно сделать следующие выводы. Новообразования молочной железы выявляются на основании способности последних накапливать контрастное вещество, что отражено основными положениями:
• злокачественные образования выделяют факторы ангиогенеза — эндотелиальный фактор роста — стимулирует образование новых и рост существующих капилляров;
• ангиогенная активность увеличивает васкуляризацию тканей и ведет к повышению притока крови в опухоль;
• повышенная проницаемость сосудистой стенки способствует быстрой экстрава-зации контрастного вещества в ткань опухоли;
• артериовенозные шунты и повышенная проницаемость сосудистой стенки способствуют быстрому вымыванию контраста, что проявляется снижением интенсивности сигнала в раннем постконтрастном периоде.
Рис. 1. Инфильтрирующий дольково-протоковый рак. Больная К., 71 год А — Т1-ВИ, преконтрастное; Б — М1Р, постконтрастное. На МР-маммограммах на фоне жировой инволюции определяется мультицентричное узловое объемное патологическое образование с нечеткими, лучистыми контурами, неоднородной МР-структуры, преимущественно изогипоинтенсивное на Т1-ВИ (А, стрелки). При построении М1Р-реконструкции участки патологического накопления контрастного вещества определяются более отчетливо, отмечается усиление сосудистой сети левой молочной железы с наличием питающего опухоль сосуда (Б, толстая стрелка).
Рис. 2. Фиброаденома молочной железы. Больная 36 лет А — Т1-ВИ, преконтрастное; Б — MIP, постконтрастное. На маммограммах на фоне начальных проявлений инволюции ретромаммарно на преконтрастных изображениях выявляется изоинтенсивное образование (А), неравномерно накапливающее контрастное вещество (Б), более отчетливо определяется его округлая структура и четкие контуры, сосудистая сеть вокруг образования не деформирована.
На основании данных динамической магнитно-резонансной маммографии возможно проводить дифференциальную диагностику образований, получать относительно неинвазивные in vivo критерии с целью отбора больных для традиционной химиотерапии или антиангиогенной терапии.
Потенциальной сферой применения динамической магнитно-резонансной маммографии с контрастным усилением является мониторирование результатов консервативного лечения.
1. Давыдов М. И. Практическая маммология / Под ред. М. И. Давыдова, В. П. Летягина. М., 2007. С. 8-16.
2. HofmanM. B. MRI principles in MR mammography: Erasmus Course on Magnetic Resonance Imaging. MR of the Breast. VU medisch centrum, 2004. P. 4-8.
3. Goscin C. P., Berman C. G., ClarkR. A. Magnetic resonance imaging of the breast // Cancer Control. 2001. Vol. 8. P. 399-406.
4. Carmeliet P., Jain R. K. Angiogenesis in cancer and other diseases // Nature. 2000. Vol. 14. P. 249-257.
5. Kuhl C. K., MielcarekP., KlaschikS. Dynamic breast MRl imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? // Radiology. 1999. Vol. 211. Р 101-110.
6. Сергеев П. В., Панов В. О., Волобуев А. И., Шимановский Н. Л. Новые технологии в диагностике опухолевых образований молочной железы с использованием магнитно-резонансных контрастных средств // Мед. визуализация. 2005. № 3. С. 104-111.
7. Deurloo E. E., Klein Zeggelink W. F.A., Teerstra H. J. et al. Contrast-enhanced MRI in breast cancer patients eligible for breast-conserving therapy: complementary value for subgroups of patients // Eur. Radiol. 2006. Vol. 16. P. 692-701.
8. KnoppM. V., Weiss E., Sinn H. P., Mattern J. Pathophysiologic basis of contrast enhancement in breast tumors // J. Magn. Reson. Imaging. 1999. Vol. 10. P. 260-266.
9. Boetes C., Mann R M. Ultrafast sequences in magnetic resonance imaging the breast // Eur. Radiol. 2006. Vol. 16. Suppl. 5. P. 16-20.
10. Кушлинский Н. Е., Герштейн Е. С. Роль фактора роста эндотелия сосудов при раке молочной железы // Бюл. экспер. биол. и мед. 2002. T. 133. C. 521-528.
11. Герштейн Е. С., Щербаков А. Н., Алиева С. К. Фактор роста эндотелия сосудов в опухолях и сыворотке крови больных раком молочной железы // Бюл. экспер. биол. 2003. Т. 135. № 1. С. 99-102.
12. Щербаков Н. М., Герштейн Е. С., Анурова О. А., Кушлинский Н. Е. Фактор роста эндотелия сосудов, его рецепторы и антиапоптотические белки BCL-2 и АКТ при раке молочной железы // Маммология. 2006. № 3. С. 63-68.
13. Blaschuk O. W., Rowlands T. M. Cadherins as modulators of angiogenesis and the structural integrity of blood vesels // Cancer Metastasis Rev. 2000. Vol. 19. P. 1-5.
14. Baum F., Fischer U., Vosshenrich R., Grabbe E. Classification of hypervascularized lesions in CE MR imaging of the breast // Eur. Radiol. 2002. Vol. 12. P. 1087-1092.
15. Heywang-KoebrunnerS. H., Untch M. Contrast-enhancement MR imaging of the breast: comparison of two different doses of gadopentetate dimeglumine // Radiology. 1994. Vol. 191. P. 639-646.
16. DanielB. L., Yen Y. F., Glover G. H., Ikeda D. M. Breast disease: dynamic spiral MR imaging // Ibid. 1998. Vol. 209. P. 499-409.
17. Bagley F. H. The role of magnetic resonance imaging mammography in the surgical management of the index breast cancer // Arch. Surg. 2004. Vol. 139. P. 380-383.
18. Irwig L., Houssami N., Vliet C. van. New technologies in screening for breast cancer: a systematic review of their accuracy // Br. J. Cancer. 2004. Vol. 90. P. 1-5.
19. Moate P. J., Dougherty L., SchnallM. D. A modified logfistic model to describe gadolinium kinetics in breast tumors // Magn. Res. Imaging. 2004. Vol. 22. P. 467-473.
20. Tillman G. F., Orel S. G., SchnallM. D. Effect of breast magnetic resonance imaging on the clinical management of women with early-stage breast carcinoma // J. Clin. Oncol. 2002. Vol. 20. P. 3413-3423.
21. Weidner N. Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow // J. Pathol. 1998. Vol. 184. P. 119-122.
22. Сергеев П. В., Поляев Ю. А., Юдин А. Л., Шимановский Н. Л. Контрастные средства. М., 2007. С. 401-425.
23. Knopp M. V., Bourne M. W., Sardanelli F. Gadobenate dimeglumine-enhanced MRI of the breast: Analysis of Dose Response and Comparison with Gadopentetate Dimeglumine // AJR. 2003. Vol. 181. P. 663-676.
24. Brix G., Semmler W., Port R. Pharmacokinetic parameters in CNS Gd-DTPA enhancement MR imaging // J. Comput. Assist. Tomogr. 1991. Vol. 15. P. б21-б28.
25. Teifke A., Behr O., SchmidM. Dinamic MR imaging of breast lesions: correlation with microvessel distribution pattern and histologic characteristics of prognosis // Radiology. 2QQ6. Vol. 239. N 2. P. 351-36Q.
26. Корженкова Г. П., Лукьянченко А. Б., Зернов Д. И. Возможности магнитно-резонансной томографии в алгоритме обследования пациентов с заболеваниями молочной железы // Маммология. 2QQ6. № 1. С. 39-45.
27. ViehwegP., Lampe D., Buchman J., Heywang-Kobrunner S. H. In situ and minimally invasive breast cancer: morphologis and kinetic features on contrast-enhanced MR imaging // Magnetic. Res. Mater. in Phys. Biol. Med. 2QQQ. Vol. 11. P. 129-137.
2В. Warren R., Bobrow L., Earl H. Can breast help in the management of women with breast cancer treated by neoadjuvant chemotherapy? // Br. J. Canc. 2QQQ. Vol. 9Q. P. 1349-136Q.
Статья принята к печати 17 декабря 2QQB г