Chelyabinsk Physical and Mathematical Journal. 2020. Vol. 5, iss. 4, part 2. P. 627-634.
DOI: 10.47475/2500-0101-2020-15422
MAGNETIC PROPERTIES OF Dy100-xInx (x = 0,1,2,3) SOLID SOLUTIONS FOR LOW TEMPERATURE MAGNETIC REFRIGERATION TECHNIQUE
S. Taskaev1'2'3'", V. Khovaylo2'3, M. Ulyanov1'4, D. Bataev1, A. Basharova1, M. Kononova1'3, D. Plakhotskiy1, M. Bogush1, M. Gavrilova1, D. Zherebtsov2, Z. Hu5
1 Chelyabinsk State University, Chelyabinsk, Russia
2South Ural State University (National Research University), Chelyabinsk, Russia 3National University of Science and Technology «MISiS», Moscow, Russia 4Immanuel Kant Baltic Federal University, Kaliningrad, Russia 5 University of Science and Technology Beijing, Beijing, P. R. China [email protected]
A promising form of the natural gas use is the liquefied gas, which has a number of advantages. Due to its properties, it is easier to transport, explosion-proof, non-toxic, does not corrode metal, and today it is the most environmentally friendly fuel. Among the various alternative technologies that could be used in refrigeration devices for producing the liquefied natural gas, the magnetic refrigeration technology is attracting the attention of researchers around the world. Dozens of prototypes of cooling devices based on various families of magnetic materials have been created in the world; however, their mass use is still far away and the process of searching for materials is actively continuing. Our research is aimed at studying the physical properties of the solid solutions Dyi00_xInx (x = 0,1, 2,3), promising for use in the technology of the liquefaction of natural gases.
Keywords: magnetocaloric effect, magnetic cooling, natural gas liquefaction, ferromagnet, rare earth element, solid solution.
Introduction
One of the important problems of our time are problems in the spheres of the ecology and the rational use of natural resources. The steadily growing demand for energy sources makes it necessary to develop and adapt existing installations to work on the natural gas. In addition, the delivery of gas through the gas pipelines today faces multiple challenges, in particular political and security concerns. One of the options for the safe storage and the transportation of the natural gas is its transportation in a liquefied state [1], the temperature of liquefaction of hydrocarbons is in the range 70-115 K. Today, classical gas cooling technologies are expensive, large-sized and ineffective. One of the promising technologies for the gas liquefaction is the magnetic cooling technology based on the magnetocaloric effect (MCE) [2], in which the working body is a magnetic material. For three decades, a large number of families of materials with MCE have been thoroughly studied for their possible application for the magnetic cooling technology, including the alloys based on rare earth elements and 3-d metals [3-13].
This work was carried out with the financial support of the Russian Science Foundation, grant no. 18-42-06201.
In this work, we report on the magnetic properties of Dy100-xInx (x = 0,1,2,3) solid solutions, which are promising for the liquefaction of natural gases by the magnetic cooling technique.
Samples preparation and measurements
It follows from the analysis of the phase diagram and literature data [14; 15] that the solubility of indium in dysprosium with the formation of solid substitution solutions at high temperatures is about 10 at%, but the solubility decreases with decreasing temperature. Therefore, for the preparation of solid solutions, we limited ourselves to compositions with an indium concentration x = 0,1,2,3: Dy, Dy99In1, Dy98In2, Dy97In3.
Cast samples of the binary composition Dy100-xInx (x = 0,1,2,3) were obtained by the arc melting technique in a pure argon atmosphere. For the synthesis, we used the raw materials Dy and Y with a purity declared by the manufacturer of 99.98 at.%. To achieve the best homogenization, the synthesized sample was remelted three times. The elemental analysis of the synthesized materials was carried out using the energy dispersive X-ray spectroscopy (EDX) on an electron microscope JEOL 6501. The X-ray structural and X-ray phase analyzes were studied using a Rigaku Ultima V X-ray diffractometer (Cu-Ka radiation). All magnetic measurements were carried out using the VSM module of the VersaLab Quantum Design device according to standard measurement procedures in the temperature range T = 50-250 K with a temperature step of 5 K and in magnetic fields up to 3 T.
Results and discussion
Fig. 1 shows the data of the X-ray structural analysis of Dy97In3, including the experimentally obtained diffraction profile, the theoretical X-ray diffraction
pattern calculated by the Rietveld method, and the difference between these two profiles. It is clearly seen, that the pattern of Dy97In3 solid solution has fine reflections, which are corresponding to a
Fig. 1. XRD pattern for Dy97In3. Red curve - measured x-ray data, well-crystallized phase blue line — Rietveld refinement, magenta curve — residual data and no extraneous
reflections from any
impurity phases are observed. The difference in the intensities of the experimental and the theoretical diffraction curves is due to the process of directed crystallization of the sample on a cold melting pot. A similar behavior is observed for other studied compositions. The lattice parameters are shown in Table 1. As can be seen from the data presented, they are in a qualitative agreement with Vegard's law.
Table 1
Lattice constants for Dy100-xInx (x = 0,1,2,3).
Phase a(A) b(A) c(A) a (deg) P (deg) Y (deg) Crystallite size (A) Strain (%)
Dy 3.6096 3.6096 5.6754 90.0 90 120 186.7 0.385
Dygg Ini 3.5916 3.5916 5.6513 90 90 120 250.9 0.517
Dygg In2 3.5933 3.5933 5.658 90 90 120 131.88 0.23
Dygr In3 3.5817 3.5817 5.6415 90 90 120 3.5817 3.5817
Fig. 2. Magnetic field dependences of magnetization for pure Dy
Fig. 3. Magnetic field dependences of magnetization for DyggIn1
Fig. 4. Magnetic field dependences of magnetization for DyggIn2
Fig. 5. Magnetic field dependences of magnetization for Dyg7In3
The field and temperature dependences of the magnetization of solid solutions Dy100-xInx (x = 0,1,2,3) in fields up to 3 T in the temperature range 50-250 K are shown in Fig. 2-6. An increase in the indium concentration in Dy-In alloys leads to a decrease in the magnetization relative to pure dysprosium. Thus, when dysprosium atoms are replaced by indium atoms with a concentration of x = 3 at%, the magnetization decreases by almost 15% relative to pure dysprosium in a field of 3 T and by almost 95% in a field of 0.1 T. Further increase of indium is almost senseless from the point of view of a practical application in the magnetic cooling technique. This behavior of the magnetization is due to the dilution of the magnetic subsystem, which occurs when dysprosium is doped with paramagnetic indium atoms. Magnetic exchange in rare-earth metals and alloys based on them is carried out through the indirect RKKY interaction. As can be seen from their experimental dependences, the exchange interaction changes significantly. At an external magnetic field of 3 T, the saturation of the magnetization is not observed; this
situation is typical for all rare earth elements and alloys based on them. More details on the magnetic properties are given in Table 2.
Fig. 6. Temperature dependence of magnetization for Dy100-xInx (x = 0,1,2,3) solid solutions in the external magnetic fields 0.1 T and 3 T
Fig. 7. Hysteresis loops for Dy100-xIn, (x = 0,1,2,3) solid solutions at T
50 K
Magnetic properties for Dy100-xInx
Table 2 (x = 0,1,2,3)
Fig. 7 shows the results of measurements of the hysteresis loops of solid solutions Dy100-xInx (x = 0,1,2,3) obtained at a temperature of T = 50 K. As can be seen from the data presented, the substitution of indium for dysprosium does not lead to a significant change in the coercive force HC which is in the range of 410-590 Oe. Thus, Dy100-xInx (x = 0,1,2,3) solid solutions are soft magnetic materials with a low coercive force, but with a high value of the magnetic moment.
Phase Tc , K He, Oe Ms, emu/g @ (50K, 3T)
Dy 125 580 279.8
Dy99 Ini 115 410 280.8
Dy98 In2 108 590 251.8
Dy97 In3 101 470 244.3
60 -
E
<M <
O)
o
0,01
0,04
0,02 0,03 li0H/M, A"1m"2kgT
Fig. 8. Belov — Arrot curves for Dy
°'05 0,00 0,02 0,04 0,06 0,08 0,10
[i0H/M, A"1m"2kgT Fig. 9. Belov — Arrot curves for Dy99In1
For a more precise determination of the phase transition temperature, the Belov — Arrott curves were used (Fig. 8-11). The Curie temperature for Dy is TC = 125 K, which correlates with the literature data [16]. The Curie temperatures for the investigated solid solutions are observed in the range from 101 K to 125 K %. That means that the Curie temperature decreases at a rate of 8 K/at% corresponding to the indium concentration.
Conclusions
As in the case of solid solutions Dy100-xInx (x = 0,1,2,3) [7], the studied solid solutions Dy100-xInx (x = 0,1,2,3) show the behavior which is interesting for a practical application: with a slight increase in the concentration of indium, we observe a slight decrease in the effective magnetic moment (thus the magnitude of the magniotcaloric effect will be comparable with a raw material). At the same time, the Curie temperature decreases, thereby we see shifting the maximum of the magnetocaloric effect to the region of lower temperatures. The crystal lattice parameters are in a qualitative agreement with Vegard's law. Taking into account the wide range in which a significant magnetocaloric effect is observed in dysprosium [10], the studied solid solutions turn out to be interesting materials for use as a working body in magnetic cooling devices (which operating at low temperatures). Thus, it is shown that it is possible by a simple formation of a solid solution of dysprosium, to create a series of compositions with different temperature ranges of the magnetocaloric effect, determined by the Curie and Neel temperatures.
References
1. MityukV.I., PankratovN.Yu., GovorG.A., NikitinS.A., Smarzhevskaya A.I.
Magnetostructural phase transitions in manganese arsenide single crystals. Physics of the Solid State, 2012, vol. 54, pp. 1865-1872.
2. Lewis L.H., Marrows C.H., LangridgeS. Coupled magnetic, structural, and electronic phase transitions in FeRh. Journal of Physics D: Applied Physics, 2016, vol. 49, p. 323002.
3. Gschneidner Jr. K.A., Pecharsky V.K., TsokolA.O. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, vol. 68, p. 1479.
4. TrungN.T., BiharieV., Zhang L., CaronL., BuschowK.H.J., BrUckE. From single- to double-first-order magnetic phase transition in magnetocaloric Mn1-xCrxCoGe compounds. Applied Physics Letters, 2010, vol. 96, p. 162507.
5. Yu B., Liu M., Egolf P.W., Kitanovski A. A review of magnetic refrigerator and heat pump prototypes built before the year 2010. International Journal of Refrigeration, 2010, vol. 33, p. 1029.
6. DongQ.Y., Chen J., ShenJ., SunJ.R., ShenB.G. Magnetic properties and magnetocaloric effects in R3Ni2 (R = Ho and Er) compounds. Applied Physics Letters, 2011, vol. 99, p. 132504.
7. Ibarra-GaytanP.J., Llamazares J.L.S., Alvarez-AlonsoP., Sanchez-ValdesC.F., GorriaP., Blanco J.A. Magnetic entropy table-like shape in RNi2
70
7=50 K
60
composites for cryogenic refrigeration. Journal of Applied Physics, 2015, vol. 117, p. 17C116.
8. Taskaev S., SkokovK., Khovaylo V., Buchelnikov V., PellenenA., KarpenkovD., Ulyanov M., BataevD., UsenkoA., LyangeM., GutfleischO.
Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets. Journal of Applied Physics, 2015, vol. 117, p. 123914.
9. DeSouzaM.V., Plaza E.J.R. Investigation on the magnetocaloric effect in RNi2 (R: Dy, Tb) melt-spun ribbon. Journal of Magnetism and Magnetic Materials, 2016, vol. 412, pp. 11-14.
10. GutfleischO., Gottschall T., Fries M., BenkeD., RadulovI., SkokovK.P., WendeH., GrunerM., AcetM., EntelP., FarleM. Mastering hysteresis in magnetocaloric materials, Philosophical Transactions of the Royal Society A, 2016, vol. 374, p. 20150308.
11. Taskaev S., SkokovK., KarpenkovD., Khovaylo V., UlyanovM., BataevD., DyakonovA., FazlitdinovaA., GutfleischO. The effect of plastic deformation on magnetic and magnetocaloric properties of Gd-B alloys. Journal of Magnetism and Magnetic Materials, 2017, vol. 442, pp. 360-363.
12. Taskaev S., Khovaylo V., KarpenkovD., RadulovI., UlyanovM., BataevD., DyakonovA., GunderovD., SkokovK., GutfleischO. Plastically deformed Gd-X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry. Journal of Alloys and Compounds, 2018, vol. 754, pp. 207-214.
13. Kadhim A.M.K. The low temperature specific heat of single crystal Er-Al2 compound. Journal of Magnetism and Magnetic Materials, 2019, vol. 469, pp. 178-182.
14. Kuvankykov O.K., Shakarov Kh.O., Yatsenko S.P., Semyannikova A.A. Fazovaya diagramma sistemy Dy-In [Phase diagram of the system Dy-In]. Doklady Akademii Nauk Uzbekistanskoy SSR [Reports of the Academy of Sciences of Uzbekistan SSR], 1981, vol. 2, pp. 28-30.
15. Taskaev S., SkokovK., Khovaylo V., UlyanovM., BataevD., KarpenkovD., RadulovI., DyakonovA., GutfleischO. Magnetocaloric effect in cold rolled foils of Dyioo-xInx (x = 0,1,2,3). Journal of Magnetism and Magnetic Materials, 2018, vol. 459, pp. 46-48.
16. DievaE.N., Bamburov V.G. Физико-химические исследования жидких металлов и сплавов [Physiochemical studies of liquid metals and alloys]. Sverdlovsk : Scientific Center of USSR Academy of Sciences, 1974. P. 98-104.
17. Taskaev S., SkokovK., KarpenkovD., Khovaylo V., UlyanovM., BataevD., DyakonovA., GutfleischO. Influence of severe plastic deformation on magnetocaloric effect of dysprosium. Journal of Magnetism and Magnetic Materials, 2019, vol. 479, pp. 307-311.
Accepted article received 12.09.2020.
Corrections received 04.11.2020.
Челябинский физико-математический журнал. 2020. Т. 5, вып. 4, ч. 2. С. 627-634.
УДК 669.017 Б01: 10.47475/2500-0101-2020-15422
МАГНИТНЫЕ СВОЙСТВА ТВЁРДЫХ РАСТВОРОВ букина (х = 0,1,2,3) ДЛЯ НИЗКОТЕМПЕРАТУРНОЙ МАГНИТНОЙ ХОЛОДИЛЬНОЙ ТЕХНИКИ
С. Таскаев1'2'3'", В. Ховайло2'3, М. Ульянов14, Д. Батаев1, А. Башарова1, М. Кононова1'3, Д. Плахотский1, М. Богуш1, М. Гаврилова1, Д. Жеребцов2, Д. Ху5
1 Челябинский государственный университет, Челябинск, Россия 2Южно-Уральский государственный университет (национальный исследовательский университет), Челябинск, Россия 3Национальный исследовательский технологический университет «МИСиС», Москва, Россия
4 Балтийский федеральный университет им. И. Канта, Челябинск, Россия
5 Университет науки и технологий Пекина, Пекин, Китай а1зу@сзи.ги
Перспективной формой использования природного газа является сжиженный газ, который имеет ряд преимуществ. Благодаря своим свойствам он легче транспортируется, взрывозащищён, нетоксичен, не подвержен коррозии металла, и на сегодняшний день это самое экологически чистое топливо. Среди различных альтернативных технологий, которые могут быть использованы в холодильных установках для производства сжиженного природного газа, магнитная холодильная технология привлекает внимание исследователей во всём мире. В мире созданы десятки прототипов охлаждающих устройств на основе различных семейств магнитных материалов, однако до их массового применения ещё далеко, и процесс поиска материалов активно продолжается. Наши исследования направлены на изучение физических свойств твёрдых растворов Dyioo-xInx (x = 0,1,2,3), перспективных для использования в технологии сжижения природных газов.
Ключевые слова: магнитокалорический эффект, магнитное охлаждение, сжижение природного газа, ферромагнетик, редкоземельный элемент, твёрдый раствор.
Поступила в 'редакцию 12.09.2020. После переработки 04.11.2020.
Сведения об авторах
Таскаев Сергей Валерьевич, доктор физико-математических наук, доцент, профессор кафедры физики конденсированного состояния, Челябинский государственный университет, Челябинск, Россия; научный сотрудник управления инновационной деятельности, Южно-Уральский государственный университет (национальный исследовательский университет), Челябинск, Россия; e-mail: [email protected].
Ховайло Владимир Васильевич, доктор физико-математических наук, профессор, Национальный исследовательский технологический университет «Московский институт стали и сплавов», Москва, Россия, [email protected].
Ульянов Максим Николаевич, кандидат физико-математических наук, старший научный сотрудник кафедры общей и прикладной физики, Челябинский государственный
Работа поддержана грантом РНФ № 18-42-06201.
университет, Челябинск, Россия; научный сотрудник лаборатории исследования магнитных явлений на рентгеновских источниках нового поколения МНИЦ «Когерентная рентгеновская оптика для установок "Мегасайенс"», Балтийский федеральный университет им. И. Канта, Калининград, Россия; e-mail: [email protected].
Батаев Дмитрий Сергеевич, научный сотрудник, Челябинский государственный университет, Челябинск, Россия; e-mail: [email protected].
Башарова Анастасия Андреевна, аспирант, Челябинский государственный университет, Челябинск, Россия; e-mail: [email protected].
Кононова Марина Валерьевна, аспирант, Челябинский государственный университет, Челябинск, Россия; Национальный исследовательский технологический университет «Московский институт стали и сплавов», Москва, Россия; e-mail: [email protected].
Плахотский Даниил Витальевич, аспирант, Челябинский государственный университет, Челябинск, Россия; e-mail: [email protected].
Богуш Михаил Юрьевич, аспирант, Челябинский государственный университет, Челябинск, Россия; e-mail: [email protected].
Гаврилова Мария Алексеевна, студентка физического факультета, Челябинский государственный университет, Челябинск, Россия; e-mail: [email protected]. Жеребцов Дмитрий Анатольевич, доктор химических наук, доцент, старший научный сотрудник управления инновационной деятельности, Южно-Уральский государственный университет (национальный исследовательский университет), Челябинск, Россия; e-mail: [email protected].
Джанг Ху, профессор школы материаловедения и инженерии, Университет науки и технологий Пекина, Пекин, Китай; e-mail: [email protected].