Научная статья на тему 'Macro- and microstructure of human fetus cerebellum at the 13-14th weeks of intrauterine development'

Macro- and microstructure of human fetus cerebellum at the 13-14th weeks of intrauterine development Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
76
25
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CEREBELLUM VERMIS / CEREBELLUM HEMISPHERES / MORPHOMETRIC PARAMETERS / RADIAL GLIA / INTRAUTERINE DEVELOPMENT

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Shkolnikov V.S., Zalevskiy L.L., Kyselova T.M., Gnenna V.O.

The study was performed to establish the structure of the vermis and cerebellum hemispheres macrometric parameters, as well as morphometric parameters and cytoarchitectonics of the human cerebellum on the 13th-14th weeks of fetal development. The anatomic-histological, immunohistochemical and morphometric study was carried out on the vermis and hemispheres of the cerebellum in 12 human fetuses with a gestation term of 13-14 weeks without abnormalities of the central nervous system, which were obtained as a result of a late abortion in the regional pathologist bureau of Vinnytsia. The study found: the transverse size of the cerebellum, longitudinal dimensions, height and transverse size of the cerebellum right and left hemisphere; transverse, longitudinal size and height of the vermis, as well as mass of the cerebellum. It is established that in the histo-cytoarchitectonics of the cerebellum hemispheres, there are three layers: the ventricular zone, the intermediate zone, the cortical zone, which in turn is divided into internal granular, molecular and external granular layers. In the course of the research it was established: the ventricular zone of the right cerebellum has the smallest thickness, and the intermediate zone has the largest thickness; the intermediate zone of the left cerebellum has the greatest thickness, and the ventricular zone has the smallest thickness; the smallest density of neural stem cells is observed in the molecular zone, and the largest is in the ventricular zone; more intensive proliferation of neural stem cells present in the ventricular zone, and less intense in the intermediate zone; starting from the ventricular zone, the radial glial cells fibers pass through all layers of the cerebellum to the external granular layer in the radial direction; the expression of Synaptophysin is present in all layers of the cerebellum. Thus, the macrometric parameters of the cerebellum formations of 13-14 weeks fetuses are established.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Macro- and microstructure of human fetus cerebellum at the 13-14th weeks of intrauterine development»

регенерацшно! невроми перифершного нерва тсля його травми забезпечуе метаболiчнi i пластичш потреби регенеруючих аксонiв i клтн сполучно! тканини.

Ключовi слова: регенерацшна неврома, сiдничний нерв, гiперваскуляризацiя, щури.

Стаття надiйшла 15.10.18 р.

невромы периферического нерва после его травмы обеспечивает метаболические и пластические потребности регенерирующих аксонов и клеток соединительной ткани.

Ключевые слова: регенерационная неврома, седалищный нерв, гиперваскуляризация, крысы.

Рецензент Срошенко Г.А.

DOI 10.26724/2079-8334-2019-1-67-203 UDC 616.831.71-053.13

MACRO- AND MICROSTRUCTURE OF HUMAN FETUS CEREBELLUM AT THE 13-14TH WEEKS OF INTRAUTERINE DEVELOPMENT

E-mail: rnzlvsk87@gmail.com

The study was performed to establish the structure of the vermis and cerebellum hemispheres macrometric parameters, as well as morphometric parameters and cytoarchitectonics of the human cerebellum on the 13th-14th weeks of fetal development. The anatomic-histological, immunohistochemical and morphometric study was carried out on the vermis and hemispheres of the cerebellum in 12 human fetuses with a gestation term of 13-14 weeks without abnormalities of the central nervous system, which were obtained as a result of a late abortion in the regional pathologist bureau of Vinnytsia. The study found: the transverse size of the cerebellum, longitudinal dimensions, height and transverse size of the cerebellum right and left hemisphere; transverse, longitudinal size and height of the vermis, as well as mass of the cerebellum. It is established that in the histo-cytoarchitectonics of the cerebellum hemispheres, there are three layers: the ventricular zone, the intermediate zone, the cortical zone, which in turn is divided into internal granular, molecular and external granular layers. In the course of the research it was established: the ventricular zone of the right cerebellum has the smallest thickness, and the intermediate zone has the largest thickness; the intermediate zone of the left cerebellum has the greatest thickness, and the ventricular zone has the smallest thickness; the smallest density of neural stem cells is observed in the molecular zone, and the largest is in the ventricular zone; more intensive proliferation of neural stem cells present in the ventricular zone, and less intense - in the intermediate zone; starting from the ventricular zone, the radial glial cells fibers pass through all layers of the cerebellum to the external granular layer in the radial direction; the expression of Synaptophysin is present in all layers of the cerebellum. Thus, the macrometric parameters of the cerebellum formations of 13-14 weeks fetuses are established.

Keywords: cerebellum vermis, cerebellum hemispheres, morphometric parameters, radial glia, intrauterine development.

The study is a fragment of the research project "Establishment of morphological changes in the formations of the central nervous system of a person during the prenatal period of ontogenesis (macroscopic, histologic, morphometric, immunohistochemical research)", state registration No. 0118U001043.

In the Vinnytsia region, the total number of stillbirths and late abortions over the past five years was 172, of which 99 males and 73 females. The highest frequency of pathologies of late abortions and stillbirths was observed at the age of 19-20 weeks of fetal development, which amounted to 35 cases, accounting for 20.3% of all cases in a year. The smallest number of cases was observed in the following gestational periods: 15-16, 28-29, 33-34, 41-42 weeks, which in total was 0.6%. Among the causes of late abortions and stillbirths in the Vinnytsia region over the past five years, the predominant proportion had fetal asphyxiation (ante or intranatal) - 70%. Congenital malformation was 30%. Of these, the defects of the central nervous system (CNS) (hydrocephalus, anencephaly, spina bifida, etc.) accounted for the highest percentage - 9.3% [1]. Thus, research on the development of CNS structures in ontogenesis remains a very topical issue.

In the formation of CNS structures, the leading place belongs to the processes of proliferation, migration, growth and differentiation of cells. However, scientific work that reflects morphometric parameters of the brain in the embryonic development period more often refers to the determination of sonographic or MRI parameters of the fetus. Therefore, for a more detailed study of mechanisms of embryogenesis and understanding mechanisms of the pathogenesis of birth defects, there is a need for certain morphometric (histometric) parameters of the brain organs in different gestational periods.

The development of skull bones is interconnected with an increase in the growth rate of the brain, so congenital malformations of the CNS structures are often combined with craniosynostoses, and also, in craniosynostoses, there are liquor-dynamic disorders that cause changes in the structure of the brain developing during the period of fetal development [8].

Taking into account the development and improvement of medical technologies and diagnostic methods, the interest of neuromorphologists, neurosurgeons and neuropathologists, as well as specialists

© V.S. Shkolnikov, L.L. Zalevskiy, 2019

in reproductive medicine in the histogenesis of CNS structures, in particular the cerebellum, has increased in recent years [8].

However, to date, there are no markers that would be specific for neural stem cells and their derivatives. Therefore, scientific reports related to studies on the development of CNS at the histological level are disorderly and contradictory [5].

The purpose of the study was to establish the structure of the macrometric parameters of the vermis and cerebellum hemispheres, as well as morphometric parameters and cytoarchitectonics of the human cerebellum 13-14 weeks of fetal development.

Materials and methods. The anatomic-histological, immunohistochemical and morphometric study of the vermis and hemispheres of the cerebellum of 12 fetuses of human gestational term (GT) - 1314 weeks, which were obtained as a result of late abortion in the regional pathologic-anatomical bureau of Vinnytsia, was performed. Congenital anomalies of the central nervous system were absent. The vertex-coccyge length (VCL) was 92.0±3.7 mm, and the mass was 56.0±2.1 g. The size of the head: transverse -29.0±1.2 mm, longitudinal - 38.0±1.5 mm, height - 38.0±1.5 mm. Dimensions of the anterior fontanelle: longitudinal - 21.0±0.8 mm, transverse - 20.0±0.8 mm. Dimensions of the posterior fontanelle: longitudinal - 11.0±0.4 mm, transverse - 14.0±0.5 mm.

Materials of the research do not contradict the basic bioethical norms of the Helsinki Declaration adopted by the 59th General Assembly of the World Medical Association in 2008 (excerpt from the minutes of the Committee on Bioethics of the National Pirogov Memorial Medical University, Vinnytsya №4 of April 7, 2017).

The obtained material was fixed in a solution of 10% neutral formaldehyde. Preparations of the cerebellum were filled in paraffin and celloidin blocks. After making serial sections of the cerebellum in the thickness of 10-12 ^m, they were stained with hematoxylin and eosin, toluidine blue and Van Gieson's stain. During the immunohistochemical study, the diagnostic monoclonal antibodies of the firm "DacoCytomation" (Denmark) were used: Ki-67, Vimentin and Synaptophysin. Ki-67 - used to evaluate the proliferative activity of neural stem cells, Vimentin - for studying the morphology of radial glia cells and Synaptophysin - for the evaluation of myelination of the fibers of the pathways.

The installation of macrometric parameters of the hemispheres and the cerebellum was carried out according to our own method [1].

During the morphometric study, a microscope SIGETA and MBS-10 were used. The photographing and morphometry of the obtained sections were performed using ETREK Ucmos camera and ToupViem computer program (computer histometry).

Statistical processing of digital data was performed using the standard software package "Statistica 6.0" Statsoft (license number BXXR901E246122FA).

Results and their discussion. In the course of the study, we obtained the following macrometric parameters of the hemispheres and the vermis of the cerebellum: the transverse size of the cerebellum is 15.0±0.5 mm, the longitudinal size of the left hemisphere is 7.0±0.3 mm, the height of the left hemisphere is 5.0±0.2 mm, transverse size of the left hemisphere - 6.0±0.2 mm, longitudinal dimension of the right hemisphere - 7.0±0.3 mm, height of the right hemisphere - 5.0±0.2 mm, transverse size of the right hemisphere - 6.0±0.2 mm. The transverse dimension of the vermis is 3.0±0.1 mm, the length of the vermis is 3.0±0.1 mm, the height of the vermis is 3.0±0.1 mm. Weight of the cerebellum - 0.8±0.3 g.

The structure of the upper and lower surfaces of the cerebellum is smooth. In this gestational period, the formation of the primary fissura of the cerebellum is observed. Formation of fissura, individual particles of the cerebellum does not occur (fig. 1). Loeser J. D., Lemire R. J. and Alvord E. C. [7] indicate that the formation and development of folia and the vermis in the cerebellum starts at 13-14 weeks, but all vermis folia can be identified in 15 weeks, whereas the final formation of the folia of the cerebellum vermis finish two months after the birth of the baby.

Babcook C. J. et al. [2] indicate that in the period of 13-14 weeks of fetal development, the application of ultrasound and MRI, the appearance of normal cerebellar development may resemble pathology at the beginning of the second trimester.

According to Guihard-Costa A. M. and Larroche J. C. [3] during the embryonic period, the brain and cerebellum have 5% of the body weight from 14 to 29 weeks, and on 39-40 weeks - exceeds 6.5% of the body weight.

Yamaguchi K. and Goto N. [9] found that the primary fissure on the lateral surface of the cerebral hemispheres were observed in the period from 22 weeks of prenatal life, and from 28-29 weeks already noticeable furrows throughout the surface that form the folia cerebelli.

Liu F. et al. [5] found the presence of the primary fissure of the human cerebellum for 14 week, and from the 16 week there is a secondary fissure and a nucleus dentatus.

Fig. 1 The human fetus 13-14 weeks of fetal development. VCL - 92.0 mm. A - the general view of the cerebellum in the cavity of the skull. B - cerebellum (upper surface). The primary fissure is indicated by a white arrow. Photo from EOS 1000 D.

Volpe J. J. [8] indicates that the cerebellum is formed due to the growth of the dorsolateral wall of the neural tube in the region of the posterior brain. In the first weeks of development, the migration of neuroblasts to the ventricular zone leads to the formation of nuclei and Purkinje cells. At 9-11 weeks neural stem cells are separated from the ependymal layer and migrate (primary migration) to the surface of the cerebellum germ. There they form an external germinative layer, up to 21 week of development its thickness is 6-9 cell layers. Hence, cells differentiate into neuroblasts and migrate in the opposite direction. The movement of cells through the cell layer Purkinje directs radial glial cells. However, the authors do not establish the nature of migration.

We have found that in the histo-cytoarchitectonics of the cerebellum hemispheres, there are three layers: the ventricular zone, the intermediate zone, the cortical zone, which in turn is divided into internal granular, molecular and external granular layers (fig. 2).

--mau .r- - w >■ ^f i w . ^ r- j at wtn hbm^hki — a r^K . ■ m via* w v « jf «

Fig. 2. Cerebellum of the human fetus 13-14 weeks. A - right hemisphere: 1 - external granular zone, 2 - molecular zone, 3 - internal granular zone, 4 - intermediate zone. Hematoxylin-eosin. x100. B - horizontal section of the cerebellum. 1 - ventricular zone, 2 - intermediate zone. Hematoxylin-eosin. x400.

In the course of the study, the following morphometric parameters were obtained: the total thickness of all layers of the cerebellum right hemisphere was 2037.3±91.7 ^m (p<0.05), the total thickness of the gray matter of the right cerebellum hemisphere was 411.1±16.4 ^m (p<0.05), the external granular - 19.4±0.8 ^m (p<0.05), the molecular - 26.6±1.1 ^m (p<0.05), the internal granular - 365.1±14.6 ^m (p<0.05), intermediate zone - 1602.7±65.7 ^m (p<0.05), ventricular zone - 23.5±1.0 ^m (p<0.05) Thus, the ventricular zone had the smallest thickness, and the intermediate zone had the largest thickness. In our opinion, this is due to the arrangement of the nuclei cerebellum.

The total thickness of all layers of the left hemisphere of the cerebellum was 1786.7±69.7 ^m (p<0.05), the total thickness of the gray matter of the left hemisphere of the cerebellum was 388.0±15.5 ^m (p<0.05), the external granular - 18.3±0.7 ^m (p<0.05), molecular - 18.1±0.7 ^m (p<0.05), internal granular - 351.6±14.2 ^m (p< 0.05), the intermediate zone - 1375.2±56.4 ^m (p<0.05), the ventricular

zone - 23.5±1.0 microns (p<0.05). The largest thickness was observed in the intermediate zone, while the ventricular zone has the smallest thickness.

Fig. 3. A - Glioblast proliferation in the cerebellum hemisphere (marked with red). Ki-67. x 400. B - the cerebellum hemisphere. 1-ventricular zone; 2-intermediate zone. Vimentin x 400.

In studying morphometric parameters and studying the cytostructure of the ventricular zone of all the structures of both hemispheres, the density of neural stem cells was 316.0±14.0 cells per 0.01 mm2 (p<0.05). In the external granular layer (neurons and gliocytes) - 290.0±12.0 cells per 0.01 mm2 (p<0.05). In the intermediate zone - 160.0±6.0 cells per 0.01 mm2 (p<0.05). In the internal granular layer -260.0±12.0 cells on 0.01 mm2 (p<0.05). We have found that the smallest cell density is observed in the molecular zone - 113.0±14.0 cells per 0.01 mm2 (p<0.05), whereas in the ventricular zone the highest density of neural stem cells is established.

V . - Y '. -; ' .J» w; •

>V ■ -i;v".v.• . -¿K.

A ^fe-.v- B .V

Fig. 4. A - cerebellum hemisphere. 1 - ventricular zone, 2 - intermediate zone. Synaptophysin 100. B - cerebellum hemisphere. 1 - external granular zone, 2 - molecular zone, 3 - internal granular zone. Synaptophysin x 400.

The obtained data showed that more intensive proliferation of neural stem cells is present in the ventricular zone, and less intensive - in the intermediate zone (fig. 3). Acton Q. A. [2] describes in the period 17-18 weeks of prenatal development of the fetus, more intensive proliferation of neural stem cells - in the ventricular zone and the external granular layer.

We have found that starting from the ventricular zone, the radial glial cells fibers pass through all layers of the cerebellum to the external granular layer in the radial direction (fig. 3). In the outer granular and intermediate regions, relatively moderate expression of Vimentin in the fibers of the radial glial cells is observed, and in the ventricular and internal granular zones relatively strong. Thus, comparing the data obtained by Shkolnikov V. S. and Zalevskiy L. L. (2015) at 11-12 weeks of prenatal development the expression of Vimentin in the fibers of the radial glial cells is identical to our data. The average length of the radial glial cells fibers was: for short - 153.3±7.2 ^m (p<0.05), for long - 239.2±10.5 ^m (p<0.05).

In this age period, the expression of Synaptophysin is present in all layers of the cerebellum (fig. 4). Milosevic A. and Zecevic N. [7] indicates that from 13 week of prenatal development present the

expression of Synaptophysin in all zones of the cerebellum. Thus, our research coincides with the data of Milosevic A.

Consequently, during the study of human fetus cerebellum 13-14 weeks of prenatal development we have established its macrometric parameters, as well as the peculiarities of cytoarchitectonics and morphometric parameters of cerebellar hemispheres structures.

1. In the human fetus 13-14 weeks of prenatal development upper and lower surface of the cerebellum is smooth. There is a formation of the primary fissure. Separate particles and fissura are not yet formed.

2. Cytoarchitectonically in the hemisphere of the cerebellum clearly distinguish three layers: the ventricular layer, intermediate layer and cerebellar cortex. The highest density of neural stem cells was observed in the ventricular zone, and the smallest in the molecular zone. The largest thickness has the intermediate zone of the cerebellum, and the smallest - external granular zone.

3. The greatest intensity of proliferation of neural stem cells occurs in the ventricular zone of the cerebellum and the least intense - in the intermediate zone. Expression of Synaptophysin was found in all layers of the cerebellum.

4. Fibers of the radial glial cells extend from the ventricular zone and finish in the external granular layer. Present radial migration of neural stem cells. Relatively moderate expression of Vimentin in the fibers of the radial glial cells was observed in the intermediate zone and is relatively strong in the ventricular and subventricular zones.

Further studies include the establishment of regularities in the formation of cytoarchitectonics of the human cerebellum in the prenatal period with the use of immunohistochemical markers, the morphology of neural stem cells and the nature of their migration.

1. Shkolnikov VS, Zalevskiy LL, Stelmashchuk PO, Tikholaz VO. Sposib vyznachennya makrometrychnyx parametriv struktur mozochka. Patent u2016 07526 Ukrayina, MPK А61В 5/107. 2016; 8. [in Ukrainian]

2. Acton QA. Chromosome disorders - advances in research and treatment. 2012; Edition is a ScholarlyBabcook_CJ, Chong BW, Salamat_MS, Ellis WG, Goldstein RB._Sonographic anatomy of the developing cerebellum: normal embryology can resemble pathology. AJR Am. J. Roentgenol. 1996; 166(2): 427-433.

3. Guihard-Costa AM, Larroche JC. Differential growth between the fetal brain and its infratentorial part. Early Hum. Dev. 1990; 23(1): 27-40.

4. Kabbani H, Raghuveer TS. Craniosynostosis. Am. Fam. Physician. 2004; 69(12): 2863-2870.

5. Liu F, Zhang Z, Lin X, Teng G, Meng H, Yu T, Fang F, Zang F, Li Z, Liu S. Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J. Anat. 2011; 219(5): 582-588.

6. Loeser JD, Lemire RJ, Alvord EC. The development of the folia in the human cerebellar vermis. Anat. Rec. 1972; 173(1): 109-113.

7. Milosevic A, Zecevic N. Developmental changes in human cerebellum: Expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein. J. Comp. Neurol. 1998; 396(4): 442-460.

8. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child. Neurol. 2009; 24(9): 1085-1104.

9. Yamaguchi K, Goto N. Three-dimensional structure of the human cerebellar dentate nucleus: a computerized reconstruction study. Anat. Embryol. (Berl). 1997; 196(4): 343-348.

МАКРО- ТА М1КРОСТРУКТУРА МОЗОЧКА ПЛОД1В ЛЮДИНИ 13-14 ТИЖН1В ВНУТР1ШНЬОУТРОБНОГО РОЗВИТКУ Школьшков В. С., Залевський Л. Л., Кисельова Т. М., Гненна В. О.

Дослщження було проведено з метою встановлення структури макрометричних napaMeTpiB черв'яка та твкуль мозочка, а також морфометричних параметрiв i цитоарх^ектотки мозочка плодiв людини 13-14 тижтв внутршньоутробного розвитку. Виконано анатомо-пстолопчне, iмуногiстохiмiчне та

морфометричне дослщження черв'яка та твкуль мозочка 12 плодiв людини гестацшним термтом 13-14 тиж. без аномалш центрально!' нервово'1 системи, яю були отримаш у результат тзнього аборту у обласному патологоанатомiчному бюро м. Вшнищ. В результат дослщження встановлено: поперечний розмiр мозочка, поздовжт розмiри, висота та поперечний розмiр право!' й лiвоï пiвкулi мозочка; поперечний, поздовжнш розмiр i висота черв'яка, а також маса мозочка. Встановлено,

МАКРО- И МИКРОСТРУКТУРА МОЗЖЕЧКА ПЛОДОВ ЧЕЛОВЕКА 13-14 НЕДЕЛЬ ВНУТРИУТРОБНОГО РАЗВИТИЯ Школьников В. С., Залевский Л. Л., Киселёва Т. Н., Гненная В. О.

Исследование было проведено с целью установления структуры макрометрических параметров червя и полушарий мозжечка, а также морфометрических параметров и цитоархитектоники мозжечка плодов человека 13-14 недель внутриутробного развития. Выполнено анатомо-гистологическое, иммуногистохимическое и

морфометрические исследования червя и полушарий мозжечка 12 плодов человека с гестационным сроком 13-14 нед. без аномалий центральной нервной системы, которые были получены в результате позднего аборта в областном патологоанатомическом бюро г. Винницы. В результате исследования установлено: поперечный размер мозжечка, продольные размеры, высота и поперечный размер правого и левого полушария мозжечка; поперечный, продольный размер и высота червя, а также масса мозжечка. Установлено,

що у пстоцитоарх^ектошщ твкуль мозочка, наявш три шари: вентрикулярна зона, промiжна зона, юркова зона, яка у свою чергу подшяеться на внутршнш зернистий, молекулярний та зовнiшнiй зернистий шари. У процес дослiдження встановлено: вентрикулярна зона право! пiвкулi мозочка мае найменшу товщину, а промiжна зона - найбiльшу товщину; промiжна зона лiвоï пiвкулi мозочка мае найбшьшу товщину, а вентрикулярна зона - найменшу товщину; найменша щшьшсть нейральних стовбурових клiтин спостерiгаеться у молекулярнш зонi, а найбiльша - у вентрикулярнш зонi; бiльш штенсивна пролiферацiя нейральних стовбурових клiтин присутня у вентрикулярнш зош, а менш iнтенсивна - у промiжнiй зош; починаючи з вентрикулярноï зони, волокна радiальноï глiï проходять через уа шари мозочка до зовнiшньою зернистого шару у радiальному напрямку; експреая синаптофiзину присутня в усiх шарах мозочка. Таким чином встановлеш макрометричш параметри утворiв мозочка плодiв людини вжом 13-14 тижнiв внутрiшньоутробного розвитку.

Ключовi слова: черв'як мозочка, пiвкулi мозочка, морфометричнi параметри, радiальна гая, внутршньоутробний розвиток.

Стаття надiйшла 5.03.18 р.

что в гисто-цитоархитектонике полушарий мозжечка, имеются три слоя: вентрикулярная зона, промежуточная зона, корковая зона, которая в свою очередь делится на внутренний зернистый, молекулярный и внешний зернистый слои. В процессе исследования установлено: вентрикулярная зона правого полушария мозжечка имеет наименьшую толщину, а промежуточная зона - наибольшую толщину; промежуточная зона левого полушария мозжечка имеет наибольшую толщину, а вентрикулярная зона - наименьшую толщину; наименьшая плотность нейральных стволовых клеток наблюдается в молекулярной зоне, а наибольшая - в вентрикулярной зоне; более интенсивная пролиферация нейральных стволовых клеток присутствует в вентрикулярной зоне, а менее интенсивная - в промежуточной зоне; начиная с вентрикулярной зоны, волокна радиальной глии проходят через все слои мозжечка к внешнему зернистому слою в радиальном направлении; экспрессия синаптофизина присутствует во всех слоях мозжечка. Таким образом установленные макрометрические параметры образований мозжечка плодов человека в возрасте 13-14 недель внутриутробного развития.

Ключевые слова: червь мозжечка, полушария мозжечка, морфометрические параметры, радиальная глия, внутриутробное развитие.

Рецензент Костюк Г.Я.

DOI 10.26724/2079-8334-2019-1-67-208 УДК 611-018(092)

Шя

w/w/w/w/w/w/w/w/w/w/w/w/w^

КАРЛ МАЙеР (ДО 200-Р1ЧЧЯ ТЕРМ1НУ «ПСТОЛОГШ»)

E-mail: yuchaiko@i.ua

Бiографiчний нарис на пошану професора анатоми та фiзiологiï Боннського ушверситету Карла Майера, який 200 роюв тому - у 1819 р. - запропонував i впровадив у бюмедичний лексикон термiн «Пстолопя».

Ключов1 слова: пстолопя, Карл Майер, ¡стор1я бюлогп та медицини

Якби у Х1Х стол1тт1 був Фейсбук, одного прекрасного дня 1819 року на сторшщ вщомого Боннського анатома професора Карла Майера (Рис. 1) з'явився би приблизно такий пост: «Пропоную науку про тканини тваринних оргашзм1в називати Пстолопею». Такий пост ми би отримати багато лайюв. Але оскшьки Фейсбуку ще не було, професор опублшував працю шд назвою Ueber Histologie und eine neue Eintheilung der Gewebe des menschlichen Kоrpers «Про гiстологiю i новий подiл тканин людського тша» (Рис. 2, 3) [5]. На 40 сторшках вш виклав опис тканин, подшивши ïx на п'ять основних типiв. Звичайно, ця класифiкацiя вiдрiзнялася вiд сучасноï, але була кроком уперед порiвняно iз загальноприйнятою на той час класифшащею тканин Мар> Франсуа Бiша. Та головне - у цш пiблiкацiï був запропонований новий термiн «Пстолопя», який дуже вдало i своечасно констатував перехщ морфологiчноï науки з органного на тканинний рiвень завдяки широкому застосуванню мiкроскопiчноï теxнiки.

Хто ж такий Карл Майер?.. Його повне iм'я Август Франц Йозеф Карл Майер [2, 3]. Вш народився 2 листопада 1787 р. у мют Швабський Гмюнд (земля Баден-Вюртемберг) в родиш купця. Його дитинство та пмназшш роки проходили в мальовничих передгiр'яx гiрського масиву Швабських Альп, де, ймовiрно, вiн зацiкавився природничими науками i вирiшив здобути вищу освiту. Вiдтак К.Майер вступив на медичний факультет ушверситету мюта Тюбшгена, який закiнчив у 1812 рощ, отримавши стушнь доктора медицини. Пюля цього працював прозектором, а вщ 1815 року - професором анатоми та фiзiологiï унiверситету в мют Берн (Швейцарiя). У 1819 рощ був запрошений до Боннського ушверситету, де устшно обiймав посаду професора до виходу на пенсiю у 1856 р. Тут, о^м виконання академiчниx обов'язкiв, вiн провадив широку лiкарську практику.

© О.Д. Луцик, Ю.Б. Чайковський, 2019

i Надоели баннеры? Вы всегда можете отключить рекламу.