UDC 517.5 Вестник СПбГУ. Математика. Механика. Астрономия. 2021. Т. 8 (66). Вып. 3
MSC 30C10, 26D10, 41A17
Lp-inequalities for the polar derivative of a lacunary-type polynomial
N. A. Rather1, L. Ali1, S. Gulzar2
1 Department of Mathematics, University of Kashmir, Srinagar, 190006, India
2 Department of Mathematics, Government College for Engineering & Technology, Safapora, Ganderbal, Kashmir, 193504, India
For citation: Rather N. A., Ali L., Gulzar S. Lp-inequalities for the polar derivative of a lacunary-type polynomial. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2021, vol. 8(66), issue 3, pp. 502-510. https://doi.org/10.21638/spbu01.2021.311
In this paper, we extend an inequality concerning the polar derivative of a polynomial in Lp-norm to the class of lacunary polynomials and thereby obtain a bound that depends on some of the coefficients of the polynomial as well. Keywords: Lp-inequalities, polar derivative, polynomials.
1. Zygmund type inequalities for polynomials. Let f (x) be a real polynomial of degree at most n then according to a well-known classical result in approximation theory due to A. Markov [1],
max If'(x)| < n2 max If(x)|.
The above inequality is best possible because for Chebyshev polynomial Tn(x) = cos(narccosx), max_i<x<i |Tn(x)| = 1 and \T!n(±1)| = n2. This inequality has been generalized in several ways, in particular, S. Bernstein (for details see [2] or [3]) obtained its extension to complex polynomials. Let Pn denote the space of all complex polynomials P(z) = Y^n=o ajzj of degree at most n. According to Bernstein's inequality, if P € Pn then
IIP'IL < n ||PIL , where ||P:=max |P(z)|.
|z|=1
Define the standard Hardy space Hp norm for P € Pn by
,-2n \ 1/P
„¿0\|P
/1 r'2n N
1И1 P:={^J0 We)\PM) , 0 < p < oo.
It is well known that the supremum norm of the space Hsatisfies
||P= l_im |P|p .
The other limiting case, also known as Mahler measure of a polynomial P(z), is
\\P\\0:=exp^j"\og\P(ei9)\dey
© St. Petersburg State University, 2021 502 https: / / doi.org/10.21638/spbu01.2021.311
If P 6Pn, then
IIP 'lip < n||P lip. (1)
Inequality (1) is due to Zygmund [4]. Zygmund obtained this inequality as an analogue to Bernstein's inequality. Arestov [5] showed that the inequality (1) remains valid for 0 < p < 1 as well. Equality in (1) holds for P(z) = azn, a = 0.
For the class of polynomials P € Pn having no zero in |z| < 1, inequality (1) can be sharpened. In fact, if P € Pn and P(z) = 0 for |z| < 1, then
n
imi^^iia.^i. (2)
Inequality (2) was found out by De Bruijn [6]. Rahman and Schmeisser [7] proved the inequality (2) remains true for 0 < p < 1 as well.
The estimates is sharp and equality in (2) holds for P(z) = azn + b, |a| = |b| = 0. Govil and Rahman [8] generalized inequality (2) and proved that if P € Pn does not vanish in |z| < k where k > 1, then
n
(3)
As a refinement of inequality (3), it was shown by Rather [9] that if P € Pn and
P(z) = En=o ajzj = 0 for |z| < k, k > 1, then
n
\\P'L < ne , .1, \\PL,P>0. (4)
11*1 + Zl
where is defined by
i ai I i
51 = k -. (5)
+1
n |ao|
2. Extension of Zygmund type inequalities to polar derivatives. By Gauss — Lucas theorem (see [10]), if all the zeros of a polynomial P € Pn of degree n lie in a half plane then its critical points are also contained therein. Since we may map a half plane onto a closed disk through a bilinear transformation z = 4>{w) = a,b,c,dG C
with ad — bc = 0. Let g(w ) = (cw + d)nP (f^) be transformation of P( z) under then if £ is a critical point of g, then is either to or a zero of the polynomial nP(z) + — z) P'(z). This property guides us to the polynomial
Da[P](z) := nP(z) + (a — z)P'(z),
called the polar derivative of P with respect to a complex number a (for details see [10, p. 44]). Note that Da[P](z) is of degree at most n — 1 and it generalizes the ordinary derivative P'(z) of P(z) in the sense that
a ^^o a
uniformly with respect z for |z| < R, R > 0.
p
Aziz and Rather [11] extended inequality (2) to the polar derivative of a polynomial and proved that if P £?„ and P(z) does not vanish in |z| < 1, then for a e C with |a| > 1, and p > 1,
/ H + i N |l + *l
11^]||Р<П|7ГГГГ1Г11И1Р- (6)
II p
Aziz et al. [12] also obtained an analogue of inequality (3) to the polar derivative and proved that if P eP„ and P(z) = 0 for |z| < k where k > 1, then for a G C with |a| > 1 and p > 1,
\\Da[P]\\<n(P±^-) ||P|I. (7)
llk-
z
p
Later N. A. Rather [13, 14] showed that inequalities (6) and (7) remain valid for 0 < p < 1
as well.
Recently, Rather et al. [15] extended (4) to the polar derivative which among other things also include a refinement of (7) and proved if P ePn and P(z) does not vanish in |z| < k where k > 1, then for a e C with |a| > 1 and 0 < p < to,
»^-"(m)11^1" (8)
where is given by (5).
Let P„iM C Pn be a class of lacunary type polynomials P(z) = a0 + aizj,
where 1 < ^ < n.
As a generalization of inequality (8), they [15] also proved that if P e P„iM and P(z) does not vanish in |z| < k where k > 1, then for a e C with |a| > 1 and 0 < p < to,
' |a| + ^
||Да[Р]||р<п| „V ; ^ ) ||P||p, (9)
where
"p" Vll^ + zip
3. Main results. Our main result is a compact generalization of all the above results for the class of polynomials not vanishing in | z| < k, k > 1. Here, we present our main result:
Theorem. If P e Pnand P(z) does not vanish in |z| < k where k > 1, then for a e C with |a| > 1, 0 < p < to and 0 < t < 1,
where m = minu|=k |P(z)| and
Г (я) + i I
p
For t = 0, (10) reduces to (9). If in above theorem, we let p ^ to, we obtain the following Corollary.
Corollary 3.1. If P € Pn,M and P(z) does not vanish in |z| < k where k > 1, then for a € C with |a| > 1 and 0 < t < 1,
1+ *
■i(M + <W)l|PlU - (|a| - 1)tm}
where is given by (11).
If we divide both sides of inequality (10) by |a| and let |a| ^ to, we obtain the following refinement of inequality (4).
Corollary 3.2. If P € Pn,M and P(z) does not vanish in |z| < k where k > 1, then for 0 < p < to and 0 < t < 1,
|P 'I +
nmt
1 + *
<
|z + *
Hp
-l|P Hp
(12)
where m = min|z|=k |P(z)|. The result is best possible as shown by the polynomial P(z) = (z^ + k^)n/^.
Inequality (12) also includes a refinement of (3). By taking k = 1 and m = 1 in (12), the following improvement of inequality (2), which holds uniforms for 0 < t < 1, follows immediately.
Corollary 3.3. If P € Pn and P(z) does not vanish in |z| < 1 then for 0 < p < to and 0 t 1,
IP 'I +
nmt
2
<
1 + z|
IPII
(13)
where m = min|z| = 1 |P(z)|. The result is sharp and equality in (13) holds for P(z) =
zn + 1.
4. Lemmas. For the proof of above theorem, we need the following lemmas. The first lemma is due to [16].
Lemma 4.1. If P(z) = a0 + ajzj, 1 < M < n, is a polynomial of degree n
having no zeros in |z| < k where k > 1, then for 0 < t < 1,
<W|P '(z)|<|Q'(z)|— tmn for |z| = 1
and 6> k^1 > 1 where 6is given by (11), Q(z) = znP(l/z) and m = min|z|=fc|P(z)|.
Lemma 4.2. If A, B and C are non-negative real numbers such that B + C < A, then for every real number 0,
|(A - C) + eie(B + C)| < |A + eieB|.
n
n
p
n
p
p
p
The above lemma is due to Aziz and Rather [17] and the next lemma is due to [15].
Lemma 4.3. If a, b are any two positive real numbers such that a > bc where c > 1, then for any x > 1,p > 0 and 0 < 0 < 2n,
(a + |c + eiß|P dß < (c + x)p / |a + beiß|P dß.
./0 ./o
We also need the following lemma due to Aziz and Rather [18].
Lemma 4.4. If P £ Vn and Q(z) = znP(l/~z), then for every p > 0 and ß real, 0 < ß < 2n,
/ / |P'(eiö)+ eißQ'(eiö)|P dödß < 2nnM |P(eie)|P d<9. 0 0 0
5. Proof of Theorem. By hypothesis P G Vn does not vanish in \z\ < k where k > 1 and Q(z) = znP(l/z), therefore, by Lemma 4.1, we have for \z\ = 1,
|P'(z)| < |Q'(z)| - tmn = |Q'(z)| - tmn
1 + <W
, 1 + Equivalently,
(V'WI + Yrf^) - |i3'(i)l ~ irf^ N-I. (")
i i mnt Setting A = \Q'(eie)\ , B = |P'(ei0)| and C = --— in Lemma 4.2 and noting by (14)
1 + Vt
that B + C < ¿M,t(B + C) < A — C < A since ¿Mjt > 1. Therefore, by Lemma 4.2 for each real 0, we get
I9V)I - YT^j + ^ (|p,(eiö)l + iTJ^Tt
This implies for each p > 0,
< |IQ'(eiö)| + eie|P'(eie)
2п л 2n
/ |F(0)+ eieG(0)|P dö < / ||Q'(eiö)| + eie|P'(eiö)||P d0 (15)
J 0 ./q
where
F(0) = \Q\e^)\- and G{B) = |P'(e^)| + (16)
1 + Vt 1 + Vt
Integrating (15) both sides with respect to 0 from 0 to 2n and using properties of definite integrals, we get
f 2n f2n f 2n 2n
/ / |F(0)+ e^G(0)|P d0d, < / / ||Q'(eie)| + e^|P'(eie)||P d0d, = Jo Jo Jo Jo
= / |P'(eie) + e^Q'(eie)|P d0d0.
oo
By using Lemma 4.4 this implies,
,-2n 2n 2n
nzn f 2n
|F(0)+ < 2nnM |P(ei0)|P d<9. (17)
./0
Since S^t > 1, we have
mnt „ „-д,, mnt
1 + Vi 1 + Vt
( mnt \
On adding t |P'(e*e)| -|---— on both sides, where 0 < t < 1, we get
V 1 + SM,t J
mnt „-д,, mnt
1 + SM,t V 1 + SM,t
This further implies for each p > 0,
Now for a e C with | a| > 1 and 0 < t < 1, we have
|I?a[P](e«)| +nmi ) < + |Q'(ei9)| + nmt {^^f
n„¿0 M , mnt ^ , Z'i^w„¿0- mnt
= H [\Р'(П\ + —— + |Q'(0|-
1 + sM,t7 v 1 + sM,t
By integrating both sides with respect to d from 0 to 2n, for each p > 0, we get
Multiply both sides by /02n |SM,t + e®^ |pd,0, we obtain
IS^t + eVfdpJ*" | \Da[P](ei9)\ + nmt (') ^ <
£ jf (^)l+i=fc) + (m* - ^
(18)
Further, since (5Mji > 1, 1 < ¡1 < n, by Lemma 4.3 with a = |Q'(e*e)| — t b = |P'(ei0)| + t, c = and x = |a|, we get for every a G C with |a| > 1,
|Q'(e
mnt
1 + *
+ |a| |P '(ei0 )| +
mnt
1 +
P /*2п
J ) Jo
|<W + eie |pde <
л2п
< (N + <W)P
1 + *
1 + *
¿в.
Again, integrating both sides with respect to 0 from 0 to 2n, we obtain
jf { (ЮУ)1 - + M (|i>V)l + jff;
P t-2n
o
Ml |<W + eie |pde <
л2п л2л
< (|a| + / |F(0) + eieG(0)|P ded0
oo
where F(0) and G(0) are given by (16). Using this in inequality (18), we get
J |<W + eie |de J ||Da[P](eie )| + nmi|
|a| - ^ P
d0 <
1 +
2n 2n
< (|a| + ¿M,t)p / / |F(0)+ eieG(0)|pded0. (19)
oo
By using (17) in (19), we obtain for each p > 0 and |a| > 1
r-2n
|<W + eieИв/ ] |Da[P](e!S)| + nmt
r-2n
H ~
\ \ ¿в <
1 + V«
p
/*2п
< (|a| + *Mji)P2nnM |P(eie)|P d0 o
Equivalently,
л2п
2п
|Da[P ](eie )| + nmt
<
H - <W 1 + <W
n(\a\ +
1/p d0 1 <
(¿/o^ + e*)
1/p
which immediately leads to (15) and this completes the proof of Theorem for p > 0. To obtain this result for p = 0, we simply make p ^ 0+. □
в
p
o
o
o
1
o
References
1. Markov A. Sur une question posee par Mendeleieff. Bull. Acad. Sci. de St. Petersburg 62, 1—24 (1889).
2. Milovanovic G.V., Mitrinovic D.S., Rassias Th. Topics in polynomials: Extremal properties. Inequalituies, Zeros. Singapore, World scientific (1994).
3. Schaeffer A.C. Inequalities of A.Markoff and S.N.Bernstein for polynomials and related functions. Bull. Amer. Math. Soc. 47, 565-579 (1941).
4. Zygmund A. A remark on conjugate series. Proc. London Math. Soc. 34, 392-400 (1932).
5. Arestov V. V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-Izv. 18, 1-17 (1982). http://dx.doi.org/10.1070/IM1982v018n01ABEH001375 [Russ. ed.: Ob in-tegral'nykh neravenstvakh dlia trigonometricheskikh mnogochlenov i ikh proizvodnykh. Izv. Akad. Nauk SSSR Ser. Mat. 45, 3-22 (1981)].
6. De Bruijn N. G. Inequalities concerning polynomial in the complex domain. Nederl. Akad. Weten-sch. Proc. 50, 1265-1272 (1947).
7. Rahman Q.I., Schmeisser G. Lp inequalitites for polynomial. J. Approx. Theory 53, 26-32 (1988). https://doi.org/10.1016/0021-9045(88)90073-1
8. Govil N. K., Rahman Q. I. Functions of exponential type not vanishing in a half-plane and related polynomials. Trans. Amer. Math. Soc. 137, 501-517 (1969). https://doi.org/10.2307/1994818
9. Rather N.A. Extremal properties and location of the zeros of polynomials. PhD thesis. University of Kashmir (1998).
10. Marden M. Geometry ofpolynomials. In: Mathematical surveys, no. 3. Amer. Math. Soc. (1989).
11. Aziz A., Rather N.A. On an inequality concerning the polar derivative of a polynomial. Proc. Indian Acad. Sci. (Math. Sci.) 117, 349-357 (2007). https://doi.org/10.1007/s12044-007-0030-0
12. Aziz A., Rather N.A., Aliya Q. Lq norm inequalities for the polar derivative of a polynomial. Math. Ineq. and Appl. 11, 283-296 (2008).
13. Rather N. A. Some integral inequalities for the polar derivative of a polynomial. Math. Balk. 22, 207-216 (2008).
14. Rather N. A. Lp inequalitites for the polar derivative of a polynomial. J. Inequal. Pure and Appl. Math. 9 (4), 103 (2008).
15. Rather N. A., Iqbal A., Hyun H. G. Integral inequalities for the polar derivative of a polynomial. Non Linear Funct. Anal. Appl. 23 (2), 381-393 (2018).
16. Gulzar S., Rather N. A. Inequalities concerning the polar derivative of a polynomial. Bull. Malays. Ma.th.Sci. Soc. 40, 1691-1700 (2017). https://doi.org/10.1007/s40840-015-0183-4
17. Aziz A., Rather N. A. Lp inequalities for polynomials. Glas. Math. 32, 39-43 (1997).
18. Aziz A., Rather N. A. Some Zygmund type Lq inequalities for polynomials. J. Math. Anal. Appl. 289, 14-29 (2004). https://doi.org/10.1016/S0022-247X(03)00530-4
Received: August 30, 2020 Revised: November 24, 2020 Accepted: March 19, 2021
A u t h o r s' i n fo r m a t i o n:
Nisar Ahmad Rather — Dr. Sci., Professor; [email protected] Liyaqat Ali — PhD; [email protected] Suhail Gulzar — PhD; [email protected]
¿^-неравенства для полярной производной полинома лакунарного типа
Н. А. Ратхер1, Л. Али1, С. Гульзар2
1 Кашмирский университет, Индия, 190006, Сринагар
2 Государственный инженерный и технологический колледж, Индия, 193504, Кашмир, Гандербал, Сафапора
Для цитирования: Rather N. A., Ali L., Gulzar S. Lp-inequalities for the polar derivative of a lacunary-type polynomial // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2021. Т. 8(66). Вып. 3. С. 502-510. https://doi.org/10.21638/spbu01.2021.311
В настоящей работе мы распространяем неравенство относительно полярной производной многочлена в Ьр-норме на класс лакунарных многочленов и тем самым получаем оценку, которая также зависит от некоторых коэффициентов многочлена. Ключевые слова: Ьр-неравенства, полярная производная, многочлены.
Статья поступила в редакцию 30 августа 2020 г.;
после доработки 24 ноября 2020 г.; рекомендована в печать 19 марта 2021 г.
Контактная информация:
Ратхер Нисар Ахмад — [email protected] Али Лийакат — [email protected] Гульзар Сухайл — [email protected]