doi: 10.18720/MCE.82.10
Lightweight steel concrete structures technology with foam fiber-cement sheets
Технология легких сталебетонных конструкций из пенобетона и фиброцементных листов
V.A. Rybakov*, K.G. Kozinetc, N.I. Vatin, V.Z. Velichkin, V.I. Korsun,
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
Канд. техн. наук, доцент В.А. Рыбаков*, д-р техн. наук, профессор Г.Л. Козинец, д-р техн. наук, профессор Н.И. Ватин, д-р техн. наук, профессор В.З. Величкин, д-р техн. наук, профессор В.И. Корсун, Санкт-Петербургский политехнический университет Петра Великого, г. Санкт-Петербург, Россия
Key words: concrete structures; foam concrete; fiber-cement sheets; lightweight steel concrete structures (LSCS)
Ключевые слова: легкие сталебетонные конструкции; пенобетон; фиброцемент; легкие сталебетонные конструкции (ЛСБК)
Abstract. Lightweight steel concrete structures (LSCS) constitute an innovative building structure type that can be used both for load-bearing and enclosing purposes. They consist of steel profile - usually galvanized and cold-bent - filled with a monolithic foam concrete with 200 kg/m3 and more density value, and with fiber cement panel sheathing. These structures can be used in industrial and civil buildings as internal and external bearing and enclosing wall structures, and as slabs. According to the LSCS production method, prefabricated panels (walls and slabs) and building site performed constructions are distinguished. The article presents the experimental studies on bearing capacity of LSCS subspecies i.e. representing slab panels made of galvanized steel profile, medium grade density monolithic foam concrete D400, and sheathing boards "Steklotsem". The paper confirms that such panels can be used in civil buildings and withstand the appropriate load, regulated by the current codes and rules. Moreover, it has been experimentally proved that the foam concrete, despite its own extremely low strength class, actually includes in the operation, preventing such effects as stability local loss, destruction and profile steel elements warping and increases the slabs overall load capacity by 20-25 %.
Аннотация. Легкие сталебетонные конструкции (ЛСБК) - инновационный тип конструкции, которые могут быть как несущим, так и ограждающими. Они состоят из профилированной стали -обычно оцинкованной и холодногнутой - заполненной монолитным пенобетоном с плотностью 200 кг/м3 и более и обшивкой из фиброцементных панелей. По способу производства ЛСБК различают сборные панели (стены и плиты) и монолитные. Представлены экспериментальные исследования несущей способности подвидов ЛСБК: панелей из оцинкованного стального профиля, монолитного пенобетона средней плотности D400 и обшивочных панелей «Стеклоцем». Подтверждается, что такие панели могут использоваться в гражданских зданиях и выдерживать соответствующую нагрузку, регулируемую действующими строительными нормами. Кроме того, экспериментально доказано, что пенобетон, несмотря на свой низкий класс прочности, фактически помогает предотвращать потери местной устойчивости, разрушение и деформацию профилей стальных элементов в поперечном сечении и увеличивает общую несущую способность плит на 20-25%.
1. Introduction
In the 21st century, much attention is paid to the construction industry development, including building materials and structures.
One of these areas are metal constructions. With the innovative technologies advent and the metallurgy development, they are becoming increasingly popular in the construction process.
The use of lightweight steel thin-walled structures is becoming increasingly popular due to a number of advantages of this structure, namely low metal consumption, availability of manufacturing and
transportation, high manufacturability, speed of construction, and consequently, lower costs for the facility construction.
LSTS is widely used abroad, and now they are on the Russian market [1].
Nowadays, much attention is paid to the energy efficiency issue, as well as to ensuring the fire resistance and fire preservation of structures.
The article [2] shows that the most efficient, from the point of view of energy saving, are buildings built via LSTS frame technology. In [3-5], the behavior of the reinforced concrete slab during fire exposure was considered, and fire resistance calculations were described.
What are the classic structures can be replaced by steel and steel-concrete? The roof system montage via LSTS is an alternative variant of wooden truss structures [6]. In low-story and modular construction may be applied walls made of steel, sheathed with drywall [7].
But the combination of LSTS with foam concrete is the most popular [8], which may be applied both as enclosing walls [9] and as a floor construction [10]. The work of this technology, the physic-mechanical characteristics, and the behavior of steel elements are described more detailed in [11-14].
The articles [15-19] describe the experience of using foam concrete in the floors and walls construction, and indicate possible methods for strengthening the structure to achieve sufficient strength.
In order for the building structure to be durable, it is necessary to comply with the temperature and moisture conditions [20-22], especially as concerns cellular concrete, which is foam concrete. In the articles [23-24], the consequences of the violation of the specified regime are described on the example of another cellular concrete - aerated concrete.
The effect of temperature loss in the enclosing structures linear elements is presented in article [25]. In [26], the joint work of LSTS and polystyrene concrete as a heater is considered; it is shown that this materials combination is able to minimize heat loss of the building envelope.
The lightweight steel thin-walled structures (LSTS) use in Russia is hampered by the absence of an appropriate regulatory framework. The existing regulatory documents cannot be applied, because they do not take into account the local stability in the early stages of loading loss possibility factor of LSTS [27].
As in any building materials and structures, for example, in concrete with synthetic fiber reinforcement [28], when designing buildings and structures using light steel gauge structures, it is quite important to not forget about its strength characteristics.
In [29], a scheme of tests for "pure" bending, created by applying two concentrated forces equidistant from the supports, was used. This scheme is convenient from the point of view of the stressstrain state; however, it does not reflect the operation of the structures under the actual application of loads on the floor. Numerical studies of the stress-strain state beam structures with external sheet reinforcement are presented in [30].
The steel pipes filled with concrete local stability analysis, as one of the reinforced concrete structures types, is considered in article [31]. For the steel thin-walled structures calculation, the CFSteel program, which operates both in Russian and European standards, can be applied [32].
The opportunities of cold-bent notched c-shaped profile members' application are considered in [33].
The work's aim is to identify the nature of the work and insulating non-autoclaved monolithic foam fiber concrete with a 400 kg/m3 bulk density, profile steel with fibrous cement cladding, slabs structures samples bearing capacity assessment.
Tasks of the research:
1) The research of slab three identical samples to the bearing capacity loss.
2) One of the samples, when bringing it to complete destruction, work nature research.
2. Test methods
During the research, 5 series of 4 foam concrete cubes samples with various additives were considered.
The identical samples' amount is 3 pcs.
The samples' geometrical dimensions are presented in Appendix 1 and correspond to Figure 1. Overall dimensions are 800 x 4000 (mm).
The support and the loading are shown in Figure 2.
Figure 1. The samples' general view Figure 2. The samples' support and load
The support is free, on special hinge supports, as a result of which the tested panels' free span turned out to be L = 3.85 m
Loading - via 3 jacks, each of which is attached from above to a rigid metal own transverse traverse fixed to the force floor via two racks. From below, jacks rest against an additional metal element or directly into the steel conditionally non-deformable channel shape longitudinal traverse. The longitudinal traverse transmits forces through distribution metal elements to concrete prisms with a section of 150 x 150 mm and a length of 800 mm, which coincides with the panel's width. These concrete prisms (6 pieces) imitate a concentrated load on the test panel. Between the panel and the concrete prisms, wooden gaskets are laid over the entire contact surface of the prisms and the panel.
Every jack is connected to the same source, in which the external load is specified and its constant value is maintained in all three jacks.
Thus, the accepted loading scheme 6 with concentrated forces can, as is known from the structural mechanics laws, be considered conditionally loaded with a uniformly distributed load, the constancy of which does not depend on the tested samples deformed axis.
To determine the each sample individual points' deflection two deflectometers were installed.
Three samples were investigated.
3. Results and Discussion
Sample 1. The test results are presented in Table 1 and Figures 3-4. Table 1. Slab panel's test results (sample 1)
Load, kgf Deflectometers testimony, mm*10-2 Deflections, mm Slab deflection, mm
1 2 1 2
0 7254 10393 0 0 0
100 7388 10507 1.34 1.14 1.24
200 7504 10620 2.5 2.27 2.385
300 7677 10755 4.23 3.62 3.925
400 7855 10931 6.01 5.38 5.695
500 8049 11111 7.95 7.18 7.565
600 8220 11302 9.66 9.09 9.375
700 8445 11500 11.91 11.07 11.49
800 8670 11768 14.16 13.75 13.955
900 8972 12053 17.18 16.6 16.89
1000 9220 12340 19.66 19.47 19.565
1100 9597 12670 23.43 22.77 23.1
1200 10020 13070 27.66 26.77 27.215
1300 10500 13700 32.46 33.07 32.765
Figure 3. Samples 1 loading diagram (sensor 1 and sensor 2)
40
Figure 4. The deflections curve in the panel's middle (sample 1)
The maximum load was 1.3 tf per 1 jack with a 33 mm deflection, which corresponds to 1,266 kgf/m2. The weight of the transfer equipment and the initial deflection of the panel's own weight were not taken into account.
Further loading was not made, since when trying to maintain a constant effort in the jacks, an increase in displacements occurred, which indicated the exhaustion of the bearing capacity.
Sample 2. The test results are presented in Table 2 and Figures 5-6:
Table 2. Slab panel's test results (sample 2)
Load, kgf Deflectometers testimony, mm*10-2 Deflections, mm Slab deflection, mm
1 2 1 2
0 9218 12422 0 0 0
100 9366 12303 1.48 1.19 1.335
200 9482 12194 2.64 2.28 2.46
300 9635 12051 4.17 3.71 3.94
400 9899 11886 6.81 5.36 6.085
500 10075 11722 8.57 7 7.785
600 10139 11715 9.21 7.07 8.14
700 10295 11715 10.77 7.07 8.92
800 10454 11666 12.36 7.56 9.96
900 10625 11480 14.07 9.42 11.745
1000 10800 11300 15.82 11.22 13.52
1100 11005 11110 17.87 13.12 15.495
1200 11200 10910 19.82 15.12 17.47
1300 11415 10680 21.97 17.42 19.695
1400 11680 10430 24.62 19.92 22.27
1500 11969 10145 27.51 22.77 25.14
1600 12278 9848 30.6 25.74 28.17
1700 12633 9442 34.15 29.8 31.975
1800 13183 9030 39.65 33.92 36.785
Lotfd, kgf
Figure 5. Sample 2 loading diagram (sensor 1 and Figure 6. The deflections curve in the sensor 2) panel's middle (sample 2)
The maximum load was 1.8 tf per 1 jack with a 37 mm deflection, which corresponds to 1,753 kgf/m2. The weight of the transfer equipment and the initial deflection of the panel's own weight were not taken into account.
Further loading was not made, since try to maintain a constant effort in the jacks, an increase in displacements occurred, which indicated the exhaustion of the bearing capacity.
Sample 3. The test results are presented in Table 3 and Figure 7-8:
Table 3. Slab panel's test results (sample 3)
Load, kgf Deflectometers testimony, mm*10-2 Deflections, mm Slab deflection, mm
1 2 1 2
0 1706 11065 0 0 0
100 1862 10906 1.56 1.59 1.575
200 2054 10721 3.48 3.44 3.46
300 2251 10517 5.45 5.48 5.465
400 2448 10320 7.42 7.45 7.435
500 2684 10094 9.78 9.71 9.745
600 2918 9854 12.12 12.11 12.115
700 3161 9632 14.55 14.33 14.44
800 3410 9330 17.04 17.35 17.195
900 3742 9042 20.36 20.23 20.295
1000 4065 8687 23.59 23.78 23.685
1100 4581 8240 28.75 28.25 28.5
1200 5369 7424 36.63 36.41 36.52
1300 5733 7063 40.27 40.02 40.145
Figure 7. Sample 3 loading diagram (sensor 1 and sensor 2)
The maximum load was 1.1 tf per 1 jack with a 28 mm deflection, which corresponds to 1,071 kgf/m2. The weight of the transfer equipment and the initial deflection of the panel's own weight were not taken into account.
50
40
E 30
E
c 20
o
ti
10
a
u *- Load, kef
0 100 200 300 400 500 600 700 S00 900 1000110012001300
Figure 8. The deflections curve in the panel's middle (sample 3)
Sample 3 was subjected to a complete destruction by efforts maintaining in the jacks, accompanied by an increase in displacements and, at the same time, a decrease in the magnitude of the efforts in the jacks. In the destruction course, the various sizes cracks presence in foam concrete, facing panels "Steklotsem" local cracking is noted. The final loss of bearing capacity is caused by the profile steel destruction (Figure 9) - the achievement of the tensile strength in the stretched fibers and the local loss of stability in the upper edges of the compressed zone.
Figure 9. The destruction in the "dangerous" Figure 10. The destruction's general section view
The dangerous section location is the left bar under the central jack (the third (out of five) in a row from left to right "concentrated" force - point A) - Figure 2,10.
This circumstance is due to the fact that the maximum bending moment ("pure" bending) occurs within the space between the bars of the central jack with a transverse force equal to zero. In addition, the two most "dangerous" sections are the sections under the central jack bars, in which a transverse force already occurs, equal to a half the force in the jack. In one of these sections the destruction appeared.
4. Conclusion
1. The research has shown that the maximum load on the slab varies from 1.1 tf to 1.8 tf per jack, which corresponds to the slabs' bearing capacity 1,071____1,753 kgf/m2
2. The ultimate load value corresponds to a certain range of deflection values - 28 ... 37 mm, which indicates a possible difference in the stiffness samples' values (most likely due to different characteristics of foam concrete - humidity, density, etc.), which indirectly indicates the capture of foam concrete on the part of the stress.
3. It was shown that the panels' final destruction occurs on the profile steel and foam concrete increases the slabs overall load capacity by 20-25 %.
4. It was shown that the filling of the construction of monolithic foam concrete, incl. due to the high degree of adhesion, prevents the loss of stability of the profile steel elements
5. Acknowledgment
Acknowledgment is expressed to professor Yuriy G. Barabanshchikov and Stanislav V. Akimov, ("Polytechnic SKIM test" scientific testing laboratory) for provided equipment, used for tests and to Anatoly V. Seliverstov, CEO of "Intech LB", Ltd, for structure specimens, provided for tests.
References
1. Sovetnikov, D.O., Videnkov, N.V., Trubina, D.A. Light gauge steel framing in construction of multi-storey buildings. Construction of Unique Buildings and Structures. 2015. No. 3(30). Pp. 152-165. (rus)
2. Orlova, A.V., Zhmarin, E.N., Paramonov, K.O. Power efficiency of houses from light-gauge steel structures. Construction of Unique Buildings and Structures. 2013. No. 6(11). Pp. 1-13. (rus)
3. Rybakov, V.A., Ananeva, I .A., Rodicheva, A.O., Ogidan, O.T. Stress-strain state of composite reinforced concrete slab elements under fire activity. Magazine of Civil Engineering. 2017. No. 6. Pp. 161-174. doi: 10.18720/MCE.74.13.
4. Bushmanova, A.V., Kharchenko, D.K., Semenov, K.S., Barabanshchikov, Yu.G., Korovina, V.K., Dernakova, A.V. Thermal cracking resistance in massive steel-reinforced concrete structures. Magazine of Civil Engineering. 2018. No. 3. Pp. 45-53. doi: 10.18720/MCE.79.5.
5. Nedviga, E., Beresneva, N., Gravit, M., Blagodatskaya, A. Fire Resistance of Prefabricated Monolithic Reinforced Concrete Slabs of "Marko" Technology. Advances in Intelligent Systems and Computing. 2018. Vol. 692. Pp. 739-749. DOI: 10.1007/978-3-319-70987-1_78
6. Rybakov, V.A., Al Ali, M., Panteleev A.P., Fedotova K.A., Smirnov A.V. Bearing capacity of rafter systems made of steel thin-walled structures in attic roofs. Magazine of Civil Engineering. 2017. No. 8. Pp. 28-39. doi: 10.18720/MCE.76.3.
7. Ariyanayagam, A.D., Mahendran, M. Fire performance of load bearing LSF wall systems made of low strength steel studs. Thin-Walled Structures. 2018. Vol. 130. Pp. 487-504.
8. Bronzova M.K., Vatin N.I., Garifullin M.R. Frame buildings construction using monolithic foamed concrete. Construction of Unique Buildings and Structures. 2015. No. 1(28). Pp. 74-90.
9. Geng, Y., Wang, Y., Ding, J., Xu, W. Mechanical behavior of connections between out-hung light-gauge steel frames. Journal of Building Structures. 2016. Vol. 37. Pp. 141-150.
10. Rum, R.H.M., Jaini, Z.M., Abd Ghaffar, N.H., Abd Rahman, N. A preliminary experimental study on vibration responses of foamed concrete composite slabs. Materials Science and Engineering. Vol. 271(1). No. 012102.
Литература
1. Советников Д.О., Виденков Н.В., Трубина Д.А. Легкие стальные тонкостенные конструкции в многоэтажном строительстве // Строительство уникальных зданий и сооружений. 2015. № 3(30). С. 152-165.
2. Орлова А.В., Жмарин Е.Н., Парамонов К.О. Энергетическая эффективность домов из ЛСТК // Строительство уникальных зданий и сооружений. 2013. № 6(11). С. 1-13.
3. Рыбаков В.А., Ананьева И.А., Родичева А.О., Огидан О.Т. Напряженно-деформированное состояние фрагмента сталежелезобетонного перекрытия в условиях огневого воздействия // Инженерно-строительный журнал. 2017. № 6(74). С. 161-174.
4. Бушманова А.В., Харченко Д.К., Семенов К.В., Барабанщиков Ю.Г., Коровина В.К., Дернакова А.В. Термическая трещиностойкость массивных сталежелезобетонных конструкций // Инженерно-строительный журнал. 2018. № 3(79). С. 45-53.
5. Nedviga E., Beresneva N., Gravit M., Blagodatskaya A. Fire Resistance of Prefabricated Monolithic Reinforced Concrete Slabs of "Marko" Technology // Advances in Intelligent Systems and Computing. 2018. Vol. 692. Pp. 739-749. DOI: 10.1007/978-3-319-70987-1_78
6. Рыбаков В.А., Ал Али М., Пантелеев А.П., Федотова К.А., Смирнов А.В. Несущая способность стропильных систем из стальных тонкостенных конструкций в чердачных крышах // Инженерно-строительный журнал. 2018. № 8(76). С. 28-39.
7. Ariyanayagam A.D., Mahendran M. Fire performance of load bearing LSF wall systems made of low strength steel studs // Thin-Walled Structures. 2018. Vol. 130. Pp. 487-504.
8. Бронзова М.К., Ватин Н.И., Гарифуллин М.Р. Конструкция каркасных зданий с применением монолитного пенобетона // Строительство уникальных зданий и сооружений. 2015. № 1(28). С. 74-90.
9. Geng Y., Wang Y., Ding J., Xu W. Mechanical behavior of connections between out-hung light-gauge steel frames // Journal of Building Structures. 2016. Vol. 37. Pp. 141-150.
10. Rum R.H.M., Jaini Z.M., Abd Ghaffar N.H., Abd Rahman N. A preliminary experimental study on vibration responses of foamed concrete composite slabs // Materials Science and Engineering. Vol. 271(1). № 012102.
11. Ye J.-H., Chen W. Elastic restrained distortional buckling of steel-concrete composite beams based on elastically
Корсун В.И. Технология легких сталебетонных
11. Ye, J.-H., Chen, W. Elastic restrained distortional buckling of steel-concrete composite beams based on elastically supported column method. International Journal of Structural Stability and Dynamics. 2013. Vol. 13(1). No. 1350001. DOI: 10.1142/S0219455413500016
12. Prabha, P., Palani, G.S., Lakshmanan, N., Senthil, R. Flexural Behaviour of Steel-Foam Concrete Composite Light-Weight Panels. KSCE Journal of Civil Engineering. 2018. Vol. 22(9). Pp. 3534-3545.
13. Jerman, M., Keppert, M., Vyborny, J., Cerny, R. Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials. 2013. Vol. 41. Pp. 352-359.
14. Ahmadi, A., Mathieson, C., Clifton, G., Das, R., Lim, J. An experimental study on a novel cold-formed steel connection for light gauge open channel steel trusses. Journal of Constructional Steel Research. 2016. Vol. 122. Pp. 70-79.
15. Hulimka, J., Krzywon, R., J^drzejewska, A. Laboratory tests of foam concrete slabs reinforced with composite grid. Procedia Engineering. 2017. Vol. 193. Pp. 337-344.
16. Koztowski, M., Kadela, M. Foamed concrete layer as substructure of industrial concrete floor. Procedia Engineering.
2016. Vol. 161. Pp. 468-476.
17. Vlcek, J., Drusa, M., Scherfel, W., Sedlar, B. Experimental investigation of properties of foam concrete for industrial floors in testing field. IOP Conference Series: Earth and Environmental Science. 2017. Vol. 95(2). Article no. 022049.
18. Orlovich, R.B., Bespalov, V.V., Derkach, V.N. Compressed-bent masonry walls reinforced with composite materials. Magazine of Civil Engineering. 2018. No. 3. Pp. 112-119. doi: 10.18720/MCE.79.12.
19. Bespalov, V.V., Ucer, D., Salmanov, I.D., Kurbanov, I.N., Kupavykh, S.V. Deformation compatibility of masonry and composite materials. Magazine of Civil Engineering. 2018. No. 2. Pp. 136-150. doi: 10.18720/MCE.78.11.
20. Tarasova, D.S., Petritchenko, M.R. Buildings quasi-stationary thermal behavior. Magazine of Civil Engineering.
2017. No. 4. Pp. 28-35. doi: 10.18720/MCE.72.4.
21. Statcenko, E.A., Ostrovaia, A.F., Musorina, T.A., Kukolev, M.I., Petritchenko, M.R. The elementary mathematical model of sustainable enclosing structure. Magazine of Civil Engineering. 2016. No. 8. Pp. 86-91. doi: 10.5862/MCE.68.9
22. Krutilin, A.B., Rykhlionak, Y.A., Liashkevich, V.V. Thermophysical characteristics of low density autoclaved aerated concrete and their influence on durability of exterior walls of buildings. Magazine of Civil Engineering. 2015. No.2(54). Pp. 46-55. (rus)
23. Vatin, N.I, Gorshkov, A.S., Kornienko, S.V., Pestryakov, I.I., The consumer properties of wall products from AAC. Construction of Unique Buildings and Structures. 2016. No. 1(40). Pp. 78-101. (rus)
24. Alyabyeva, D.A. Reinforcing of large gas-concrete panels from an autoclave. Construction of Unique Buildings and Structures. 2015. No. 8(35). Pp. 24-35. (rus)
25. Samarin, O.D. Temperature in linear elements of enclosing structures. Magazine of Civil Engineering. 2017. No. 2. Pp. 3-10. doi: 10.5862/MCE.70.1.
26. Leshchenko, M.V., Semko, V. Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering. 2015. No. 8. Pp. 44-55. (rus)
27. Trubina, D.A., Kononova, L.A., Kaurov, A.A., Pichugin, Y.D., Abdulaev, D.A. Local buckling of steel cold-formed profiles under transverse bending. Construction of Unique Buildings and Structures. 2014. No. 4(19). Pp. 109-127. (rus)
28. Kirsanov, A.I., Stolyarov, O.N. Mechanical properties of synthetic fibers applied to concrete reinforcement.
supported column method // International Journal of Structural Stability and Dynamics. 2013. Vol. 13(1). № 1350001. DOI: 10.1142/S0219455413500016
12. Prabha P., Palani G.S., Lakshmanan N., Senthil R. Flexural Behaviour of Steel-Foam Concrete Composite Light-Weight Panels // KSCE Journal of Civil Engineering. 2018. Vol. 22(9). Pp. 3534-3545.
13. Jerman M., Keppert M., Vyborny J., Cerny R. Hygric, thermal and durability properties of autoclaved aerated concrete // Construction and Building Materials. 2013. Vol. 41. Pp. 352-359.
14. Ahmadi A., Mathieson C., Clifton G., Das R., Lim J. An experimental study on a novel cold-formed steel connection for light gauge open channel steel trusses // Journal of Constructional Steel Research. 2016. Vol. 122. Pp. 70-79.
15. Hulimka J., Krzywon R., J^drzejewska A. Laboratory tests of foam concrete slabs reinforced with composite grid // Procedia Engineering. 2017. Vol. 193. Pp. 337-344.
16. Koztowski M., Kadela M. Foamed concrete layer as substructure of industrial concrete floor // Procedia Engineering. 2016. Vol. 161. Pp. 468-476.
17. Vlcek J., Drusa M., Scherfel W., Sedlar B. Experimental investigation of properties of foam concrete for industrial floors in testing field // IOP Conference Series: Earth and Environmental Science. 2017. Vol. 95(2). Article № 022049.
18. Орлович Р.Б., Беспалов В.В., Деркач В.Н. Сжато-изгибаемые каменные стены, армированные композитными материалами // Инженерно-строительный журнал. 2018. № 3(79). С. 112-119.
19. Беспалов В.В., Ючер Д., Салманов И.Д., Курбанов И.Н., Купавых С.В. Деформационная совместимость каменной кладки с композитными материалами // Инженерно-строительный журнал. 2018. № 2(78). С. 136-150.
20. Тарасова Д.С., Петриченко М.Р. Квазистационарные температурные режимы ограждающих конструкций // Инженерно-строительный журнал. 2017. № 4(72). С. 28-35.
21. Стаценко Е.А., Островая А.Ф., Мусорина Т.А., Куколев М.И., Петриченко М.Р. Простая модель теплоустойчивой ограждающей конструкции // Инженерно-строительный журнал. 2016. № 8(68). С. 86-91
22. Крутилин А.Б., Рыхленок Ю. А., Лешкевич В.В. Теплофизические характеристики автоклавных ячеистых бетонов низких плотностей и их влияние на долговечность наружных стен зданий // Инженерно-строительный журнал. 2015. №2(54). С. 46-55.
23. Ватин Н.И., Горшков А.С., Корниенко С.В., Пестряков И.И., Потребительские свойства стеновых изделий из автоклавного газобетона // Строительство уникальных зданий и сооружений. 2016. № 1(40). С. 78-101.
24. Алябьева Д.А. Армирование крупных панелей из автоклавного газобетона // Строительство уникальных зданий и сооружений. 2015. № 8(35). С. 24-35.
25. Самарин О.Д. Температура в линейных элементах ограждающих конструкций // Инженерно-строительный журнал. 2017. № 2(70). C. 3-10.
26. Лещенко М.В., Семко В.А. Теплотехнические свойства стеновых ограждающих конструкций из стальных тонкостенных профилей и полистиролбетона // Инженерно-строительный журнал. 2015. № 8(60). С. 44-55.
27. Трубина Д.А., Кононова Л.А., Кауров А.А., Пичугин Е.Д., Абдулаев Д.А. Местная потеря устойчивости стальных холодногнутых профилей в условиях поперечного изгиба // Строительство уникальных зданий и сооружений. 2014. № 4(19). С. 109-127.
Magazine of Civil Engineering. 2018. No. 4. Pp. 15-23. doi: 10.18720/MCE.80.2.
29. Travush, V.I., Konin, D.V., Krylov, A.S. Strength of reinforced concrete beams of high-performance concrete and fiber reinforced concrete. Magazine of Civil Engineering. 2018. No. 1. Pp. 90-100. doi: 10.18720/MCE.77.8.
30. Medvedev, V.N., Semenuk, S.D. Durability and deformability of braced bending elements with external sheet reinforcement. Magazine of Civil Engineering. 2016. No. 3. Pp. 3-15. (rus) doi: 10.5862/MCE.63.1.
31. Kanishchev, R.A. Analysis of local stability of the rectangular tubes filled with concrete. Magazine of Civil Engineering. 2016. No. 4. Pp. 59-68. doi: 10.5862/MCE.64.6
32. Kikot A.A. Design of cold-formed tension members using the CFSteel software. Magazine of Civil Engineering. 2016. No. 1. Pp. 42-59. (rus)
33. Vatin, N.I., Nazmeeva, T., Guslincky, R. Problems of cold-bent notched c-shaped profile members // Advanced Materials Research. 2014. Vol. 941-944. Pp. 1871-1875.
28. Кирсанов А.И., Столяров О.Н. Механические свойства синтетических волокон для армирования бетона // Инженерно-строительный журнал. 2018. № 4(79). С. 15-23.
29. Травуш В.И., Конин Д.В., Крылов А.С. Прочность железобетонных балок из высокопрочных бетонов и фибробетонов // Инженерно-строительный журнал. 2018. № 1(77). С. 90-100.
30. Медведев В.Н., Семенюк С.Д. Прочность и деформативность балочных изгибаемых элементов с внешним листовым армированием // Инженерно-строительный журнал. 2016. № 3(63). С. 3-15.
31. Канищев Р.А. Анализ местной устойчивости трубобетонных конструкций прямоугольного сечения // Инженерно-строительный журнал. 2016. № 4(64). С. 59-68.
32. Кикоть А.А. Расчет растянутых элементов из стальных тонкостенных холодногнутых профилей в программе CFSteel // Инженерно-строительный журнал. 2016. №1(61). С. 42-59.
33. Vatin N.I., Nazmeeva T., Guslincky R. Problems of cold-bent notched c-shaped profile members. // Advanced Materials Research. 2014. Vol. 941-944. Pp. 1871-1875.
Vladimir Rybakov*,
+7(964)331-29-15; fishermanoff@mail.ru Galina Kozinetc,
+7(964)387-05-00; galina4410@yandex.ru Nikolai Vatin,
+7(921)964-37-62; vatin@mail.ru Viktor Velichkin,
+7(921)654-54-68; V. Velichkin2011@yandex.ru Volodymyr Korsun,
+7(921)757-82-60; korsun_vi@mail.ru
Владимир Александрович Рыбаков*,
+7(964)331-29-15;
эл. почта: fishermanoff@mail.ru
Галина Леонидовна Козинец,
+7(964)387-05-00;
эл. почта: galina4410@yandex.ru
Николай Иванович Ватин, +7(921)964-37-62; эл. почта: vatin@mail.ru
Виктор Захарович Величкин, +7(921)654-54-68;
эл. почта: V.Velichkin2011@yandex.ru
Владимир Иванович Корсун, +7(921)757-82-60; эл. почта: korsun_vi@mail.ru
© Rybakov, V.A.,Kozinetc, K.G.,Vatin, N.I.,Velichkin, V.Z.,Korsun, V.I.,2018