Научная статья на тему 'Laser properties of glass (Ga2S3)0. 70(La2S3)0. 25(Nd2S3)0. 05'

Laser properties of glass (Ga2S3)0. 70(La2S3)0. 25(Nd2S3)0. 05 Текст научной статьи по специальности «Медицинские технологии»

CC BY
112
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GLASS FORMATION REGION / LASER PROPERTIES / SEMI-CONDUCTOR / TRANSPARENT GLASS / LANTHANOIDES / ОБЛАСТЬ СТЕКЛООБРАЗОВАНИЯ / ЛАЗЕРНЫЕ СВОЙСТВА / ПОЛУПРОВОДНИК / ПРОЗРАЧНОЕ СТЕКЛО / ЛАНТАНОИДЫ / şüşə əMəLəGəLMə SAHəSI / LAZER XASSəSILəR / YARıMKEçIRICI / şəFFAF şüşə / LANTANOIDLəR

Аннотация научной статьи по медицинским технологиям, автор научной работы — Abdullayeva A.S.

Absorption spectrum of a violet (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05 glass found from a glass formation region in quasi-ternary system La2S3-Ga2S3-Nd2S3 using physical and chemical analysis methods was taken in a visible or close to IR-region at 300 K. Spectrum covers 0.5÷8 mkm wavelength. Relevant radiation bonds of 2H9̸̸2, 4F5̸2 levels fall to 0.815 and 0.890 mkm wavelength. Laser radiation with the peak corresponding to 1.08 mkm wavelength is related to transition 4F3̸2→4I11̸2 . The change of d n /d T temperature index and high thermal widening in glasses increases optical properties. This is directly observed during joining of He/Ne IR laser group into Ti:sapphire group. When Ti:sapphire laser is adjusted to absorption frequency of neodymium the glass behaves as a strong lens for He/Ne laser group. Unlike relevant crystalline matrixes laser properties of Nd3+ion is weaker in (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05 glass. This is related to a higher radiation loss in glasses. But quality of laser can be increased due to optimum concentration of an activator and length of a sample

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЛАЗЕРНЫЕ СВОЙСТВА СТЕКЛА СОСТАВА (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05

Cнят спектр абсорбции в видимой близкой к ИКобласти при 300 K стекла фиолетового цвета состава (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05,обнаруженного области стеклообразования квазитройной системы Ga2S3-La2S3-Nd2S3 которые были исследованы методами физико-химического анализа. Спектр охватывает длину волны от 0.5 до 8 мкм. Соответствующие уровни излучения 2H9̸̸2, 4F5̸2 опускаются до длины волн 0.815 и 0.890 мкм. Лазерное излучение с максимальной длиной волны 1.08 мкм связано с переходом 4F3̸2→4I11̸2. Изменение d n /d T температурного индекса в сульфидных стеклах и высокое термическое расширение увеличивает их оптические свойства. Это наблюдается непосредственно при соединении ИК-лазерного пучка He/Ne, с группой Ti: сапфир. При соответствии лазера Тi:cапфир частоте адсорбции неодима, стекло проявляет себя как сильная линза лазерного пучка Не/Ne. В соответствующих кристаллических матрицах Nd+3иона лазерного свойства слабее в стекле (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05. А это связано со свойством стекол терять большую часть излучения. Однако свойства лазера могут быть увеличены за счет оптимальной концентрации активатора и длины образцов

Текст научной работы на тему «Laser properties of glass (Ga2S3)0. 70(La2S3)0. 25(Nd2S3)0. 05»

ISSN 2522-1841 (Online) ISSN 0005-2531 (Print)

AZERBAIJAN CHEMICAL JOURNAL № 4 2019

35

UDC 546 (681.22:65.22)

LASER PROPERTIES OF GLASS (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05

A.S.Abdullayeva

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

ibbakhtiyarli@mail.ru Received 12.04.2019

Absorption spectrum of a violet (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5 glass found from a glass formation region in quasi-ternary system La2S3-Ga2S3-Nd2S3 using physical and chemical analysis methods was taken in a visible or close to IR-region at 300 K. Spectrum covers 0.5^8 mkm wavelength. Relevant radiation bonds of 2H92, 4F52 levels fall to 0.815 and 0.890 mkm wavelength. Laser radiation with the peak corresponding to 1.08 mkm wavelength is related to transition 4F32^4I112 . The change of dn/dT temperature index and high thermal widening in glasses increases optical properties. This is directly observed during joining of He/Ne IR laser group into Ti:sapphire group. When Ti:sapphire laser is adjusted to absorption frequency of neodymium the glass behaves as a strong lens for He/Ne laser group. Unlike relevant crystalline matrixes laser properties of Nd3+ion is weaker in (Ga2S3)070(La2S3)0.25(Nd2S3)0.05 glass. This is related to a higher radiation loss in glasses. But quality of laser can be increased due to optimum concentration of an activator and length of a sample.

Keywords: glass formation region, laser properties, semi-conductor, transparent glass, lanthanoides.

doi.org/10.32737/0005-2531-2019-4-35-38

Introduction

Chalcogenide glasses activated by lanthanoides are of great importance in the improvement of fibrous lasers and amplifiers. From the other side for their functional optical properties and "photostructure" changing ability thin films of glassy semi-conductors are indispensable materials in creation of optically active and passive wave-transmitters and other optoelectronic devices [1-9]. Development of modern optoelectronics made relevant the search of firm, non-fragile materials which are transparent in a wider region of the spectrum. From this point mixed cation sulfides of lanthanoides are prospective materials and research works are being carried out by authors [10-15]. In the works [16, 17] it was shown that in a region of the spectrum close to IR high lighting effect of Nd3+ ion in mixed cation sulfides matrixes of lanthanoides allows using these materials as a laser element. In cation glasses of lanthanoides mixed with gallium laser properties was studied insufficiently. In this work laser and optical properties of (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5 glass was studied.

Experimental part

Synthesis of a sample: synthesis was carried out in a stoichiometric composition under mixed sulphur pressure consisting of initial components (P-Ga2S3, a-La2S3, a-Nd2S3), at 1425 K in a glassy-carbon crucible placed in a quartz re-

actor. Synthesis was conducted for 2.5 hours in a vertical synthesis furnace. Sharp freezing process is completed by dropping the reactor of a sample directly into water from synthesis temperature at 300 K [18, 19].

Absorption calculations in visible or close IR spectrum region were carried out at Perkin Elmer Lambda 9 spectrophotometer. Absorption in average IR region of the spectrum was measured using Fourier-transform spectrometer (Perkin Elmer System 2000 FTIR). After preparing 1.4 mm plate from the sample and polishing its surface optical properties were studied based on wavelength.

Results and discussion

Using the complex methods of physical and chemical analysis glass formation region in system La2S3-Ga2S3-Nd2S3 was determined and its boundaries were defined (Figure 1). As figure shows glass formation covers a relatively large surface area in density triangle of quasi-ternary system. Colors of these samples varies from light violet to dark grey depending on the amount of Nd2S3. The sample (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5 studied by us is violet (Figure 2). In this work (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5 sample was synthesized privately from transparent glass area in La2S3-Ga2S3-Nd2S3 quasi-ternary system and ground state absorption spectrum of 1.40 mm polished glass was taken at 300 K in 5.2 mkm wavelength (Figure 3).

36

LASER PROPERTIES OF GLASS (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5

b

Fig. 1. The concentration dependence of glass formation in the system La2S3-Ga2S3-Nd2S3.

Fig. 2. Photo of (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5 glass.

16~I

- 12

o

Ö

O

5 1) c a

C

■S 4H

6

c

24

G7/2 5/2 i o-815^m

-- G

9/2

4

4S 4F

3/2'

\l

2 4F 2 F

9/2

11/2

H-h

"h9/24f5

5/2

4

l-8^m lasertransition 4

F3/2

o-89o^m

Iii 1

iiiAjly

4I

h—I—i-

o,5 o,6 o,7 o,8 o,9 1 X

15-

ö io.

S 5-1

H-H-H-H

2 34 6 8 5 7

1346/1 1

o

o,8 o,9

i,o l,l

X

1346/2 I

Fig. 3. Ground state absorption spectrum (a) and photoluminescent spectrum (b) of (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o o5 glass at 3oo K.

a

o

Ti:sapphire and He/Ne lasers were used to excite the sample. For laser experiments in 5o mm radius different entrance devices and in 1.o8 mkm high reflective hemisphere reactor was used. Glass sample is placed tightly on the glass surface.

Spectrum covers a large area beginning from UB absorption region - o.5 mkm to 8 mkm. Absorption bands are clearly seen in o.815 and o.89o mkm wavelength corresponding to 4H92, 4F52, upper 4F3/2 laser levels and 4F32^4I112 transitions.

In o.89o mkm lesser absorption coefficient reduces thermal loading of a glass and in-

creases homogeneous vibration in sample. Depending of wavelength in o.815 mkm absorption is 88%, but in o.89o mkm it is 5o%. In sulfide glasses the change of dn/dT temperature index and high thermal widening increases optical properties. This is directly observed when He/Ne IR laser group joins to Ti:sapphire group. When Ti:sapphire group is adjusted to absorption frequency of neodymium the glass behaves like a strong lens for He/Ne laser group.

Absorption coefficient (2.o mm) of ^F^ level is 3 times higher than absorption coefficients of 2Hg2 and 4F5/2 levels (o.7 mm). Photoluminescent property of Nd ion was

A.S.ABDULLAYEVA

37

2 4

calculated by exciting H92, F52 levels in 0.815 using Ti:sapphire laser. Multiphononic radiation is related to transformation from H92, 4F52 levels to ^F^ level within 70 p,sec. Laser spectrum is given separately in figure 3 b. As figure shows the peak of a laser radiation corresponds to 1.08 mkm wavelength and is related to 4F32^4Ii12 transition. For the first time we studied laser properties in (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o.o5 glass from Ga2S3-La2S3-Nd2S3 system. It was detected that the sample shows laser properties in 1.08 mkm wavelength at room temperature. This glass can be used as a laser element in preparation of amplifiers with 1.3 mkm wavelength for telecommunication in fibrous communication

3+

systems. Laser properties of Nd3+-ion is weaker than relevant crystalline matrixes. This is related to a higher radiation loss in glasses. The quality of a laser can be increased due to optimum density of an activator and length of sample.

Analysis of literature data and our studies show that even though participation of gallium in glassy semi-conductors increases dissolution of lanthanoides the formation of crystalline centers of new compounds under the chemical interaction of gallium and lanthanoides sulfides worsen optical properties of glasses. To eliminate this shortage the nature of lanthanides used only as an activator and the composition of matrixes must be studied in parallel. The influence of gallium compounds on even distribution of active lanthnide ions in glasses, change of their optical properties, absorption band, ion degree of lanthanide ions must be considered. Research works are being carried out in this direction.

References

1. Kertman A.V. Opticheskaia sulfidnaia keramika. Sorosovskii obrazovatelnyi zhurnal. 2000. T. 6. № 2. S. 93-98.

2. Borisov E.N., Smirnov V.B. Tverjanovich A., Tver-yanovich Yu.S. Deposition of Er3+ doped chalco-genide glass films by excimer laser ablation. J. Non-Cryst. Sol. 2003. V. 326. & 327, P. 316-319.

3. Tsendin K.D., Bogolovskiy N.A. Physies of Switching and Memoty effects in chalcogenide. Glassy semiconductors. ISSN 10637826. Semiconductors Pleiades Publishing. Ltd. 2012. Vl. 46. No 5. P. 559-590.

4. Liaw S.K., Wang H., Hsu K.H., Lin S.C., Chen N.K., Shin C.S., Tver'yanovich Y. Linear-Cavity Fiber Laser in Nearly Single-Frequency Operation using Faraday Rotator Mirror. Laser Physics.

2012. V. 22. No 2. P. 437-440.

5. Chen N. K.,. Hsu K.C,. Lin J. W., Liaw S. K., Liu F. Z., Chen Y. N., Hsu J. M., Manshina A, and Tver'yanovich Y. "Wavelength-tunable Er3+ doped fs mode-locked fiber laser using fundamental mode cutoff filters" FOAN 2010 conf. Moscow, Russia, Oct. 18-20. 2010. Page(s):1009-1011. DOI: 10.1109/ICUMT.2010.5676497 Published in: Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2010, International Congress on Publisher: IEEE.

6. Liaw S.K., Wang S., Shin C.S., Yu Y.L., Chen N.K., Hsu K.C., Manshina A. and Tver'yanovich Y. Linear-cavity fiber laser using subring-cavity incorporated saturable absorber for single-frequency operation. Laser Physics. 2010. V. 20. No 8. P. 1744-1746.

7. Liaw S. K., Wang S., Shin C. S., Chen N. K., Hsu K. C., Manshina A., Tver'yanovich Y., Su C.F. and Wang L.K. Single-longitudinal-mode linear-cavity fiber laser using multiple subring-cavities. Laser Physics. 2010. V. 20. No 7. P. 1608-1611.

8. Liaw S.K., Hong K.L., Jhong G.S., Ivanova T.Yu., Manshina A. A., and Tveryanovich Yu.S. Pump Slope-Improved Fiber-Ring Laser by Recycling the Residual Pumping Power. Laser Physics. 2008. V. 18. No 9. P. 1040-1043.

9. Vasilyeva A.S., Borisov E.N., Klotchenko S.A.Tver'yanovich, Yu.S.Tveryanovich. Vitreous Films of Ga6Ge17S43 composition as a Biochip Substrate. Glass Physics and Chemistry. 2014. V. 40. No 4. P. 467-469.

10. Bakhtiiarly I.B., Abdullaeva A.C., Mirzoeva A.A., Aliev A.B. Fiziko-himicheskie svoistva stekol sos-tavov (Ga2S3)0.60(La2S3)0.20(Sm.2S3)0.20 i (Ga2S3)0.55(La2S3)0.15(Sm2S3)0.30. 1st Int. Chem. Chem. Eng. Conf. Baku. Azerbaijan. 17-21 april

2013. P. 345-351.

11. Bakhtiyarly I. B., Abdullaeva A. S., Kurbanova R.C., Kerimov R.I., The ternary system La2S3-Ga2S3-EuS and glass formation. Azerb. Chem. J. 2016. № 3. P. 113-120.

12. Bakhtiyarly I. B., Fatullaeva G. M., Kerimli O. Sh. Glass Formation in the Ternary System La2O3-As2S3-Er2O3 . ISSN 0036-0236. Russian J. Inorg. Chem. 2018. V. 63. No 7. P. 962-965.

13. Bakhtiiarly I.B., Neimatova A.B., Mamedov F.M., Fazovye ravnovesiia v troinoi sisteme La2S3-Bi2S3-La2O3. Zhur. neorg. himii. 2010. T. 55. № 4. S. 671-675.

14. Baxtiyarli i.B., Karimov O.§., ismayilova §.B., La2O3-Ga2S3-Eu2S3 üglü sisteminda ¡jü§a amala-galma. Azerb. Chem. Jour. 2011. № 1. S. 107-110.

15. Bakhtiiarly I.B., Abdullaeva A.S., Mirzoeva A.M., Fiziko-himicheskie svoistva stekol v sisteme

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

38

LASER PROPERTIES OF GLASS (Ga2S3)o.7o(La2S3)o.25(Nd2S3)o

La2S3-Ga2S3-Nd2S3. Azerb. Chem. Jour. 2012. № 3. C. 82-84.

16. Bakhtiiarly I.B., Asadli LSh., Kerimli O.Sh., Geida-rova E.A. Stecloobrazovanie v troinykh sistemakh La2O3-Ga2S3-Nd2O3. Chemical Problems. 2006. № 3. S. 569-570.

17. Flahaut J., Guittard M., Loireau A.M. Rare earth sulphide and oxysulphide glasses. Glass Technology. 1983. V. 24. No 3. P. 149-156.

18. Baxtiyarli Í.B., Karimov O.§. Lantanoidlarin qalliumla oksisulfid ¡jü§alari. Chemical Problems. 2003. № 3. S. 27-29.

19. Bakhtiiarly I.B., Abdullaeva A.S., Kerimli O.Sh., Mirzoeva A.A., Farhatova N.B. Oblast stecloobra-zovaniia v sisteme Sm2S3-Ga2S3-EuS. Zhurn. neorg. mater. 2019. T. 55. № 6. S. 666-671.

(Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05 TORKIBLI §U§ONIN LAZER XASSOLORI

A.S.Abdullayeva

Fiziki-kimyavi analizin kompleks metodlari ila La2S3-Ga2S3-Nd2S3 kvaziüglü sisteminda a§kar edilan ¡jü§a amalagalma sahasindan (Ga2S3)0.70(La2S3)a25(Nd2S3)0.05 tarkibli banöv§ayi rangli ¡jü§anin 300 K-da görünan va yaxin ÍQ sahada absorbsiya spektri gakilmi§dir. Spektr 0.5 ^ 8 mkm dalga uzunlugunu ahata edir. Orada 2H92,saviyyalarinin uygun ¡jüalanma zolaqlari 0.815 va 0.890 mkm dalga uzunluguna dü§ür. Maksimumu 1.08 mkm dalga uzunluguna uygun galan lazer ¡jüalanmasi isa F32—* I112 kegidi ila alaqadardir. Sulfidli §ü§alarda dn/dT temperatur indeksinin dayi§masi va yüksak termiki geni§lanma optiki xassani artirir. Bu hadisa He/Ne infraqirmizi lazer dastasinin Ti:sapfir dastasina qo§ulmasi zamani birba§a mü§ahida olunur. Ti:sapfir lazerini neodimin absorbsiya tezliyina uygunla§dirildiqda taqdim olunan §ü§a özünü He/Ne lazer dastasi ügün güclü linza kimi aparir. Nd3+ ionunun müvafiq kristallik matrisalarla müqayisada (Ga2S3)0.70(La2S3)a25(Nd2S3)0.05 tarkibli §ü§ada lazer xassasi zaifdir. Bu da, §ü§alarda §üa itkisinin nisbatan gox olmasi ila alaqadardir. Lakin ola bilar ki, aktivatorun optimal qatiligi va nümunanin uzunlugu hesabina lazerin keyfiyyatinin yüksaldilmasi mümkün olsun.

Agar sözlar: §ü§3 amalagalma sahasi, lazer xassasilar, yarimkegirici, §affaf §ща, lantanoidlar.

ЛАЗЕРНЫЕ СВОЙСТВА СТЕКЛА СОСТАВА (Ga2S3)0 70(La2S3)025(Nd2S3)005

А.С.Абдуллаева

Снят спектр абсорбции в видимой близкой к ИК- области при 300 K стекла фиолетового цвета состава (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05, обнаруженного области стеклообразования квазитройной системы Ga2S3-La2S3-Nd2S3 которые были исследованы методами физико-химического анализа. Спектр охватывает длину волны от 0.5 до 8 мкм. Соответствующие уровни излучения 2H92,4F52 опускаются до длины волн 0.815 и 0.890 мкм. Лазерное излучение с максимальной длиной волны 1.08 мкм связано с переходом 4F32—4^ш. Изменение dn/dT температурного индекса в сульфидных стеклах и высокое термическое расширение увеличивает их оптические свойства. Это наблюдается непосредственно при соединении ИК-лазерного пучка He/Ne, с группой Ti: сапфир. При соответствии лазера ^:сапфир частоте адсорбции неодима, стекло проявляет себя как сильная линза лазерного пучка Не/Ne. В соответствующих кристаллических матрицах Nd+3- иона лазерного свойства слабее в стекле (Ga2S3)0.70(La2S3)0.25(Nd2S3)0.05. А это связано со свойством стекол терять большую часть излучения. Однако свойства лазера могут быть увеличены за счет оптимальной концентрации активатора и длины образцов.

Ключевые слова: область стеклообразования, лазерные свойства, полупроводник, прозрачное стекло, лантаноиды.

i Надоели баннеры? Вы всегда можете отключить рекламу.