Научная статья на тему 'Laser processing mechanisms of graphene oxide '

Laser processing mechanisms of graphene oxide Текст научной статьи по специальности «Медицинские технологии»

CC BY
34
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Laser processing mechanisms of graphene oxide »

LM-O-9

LASER-MATTER INTERACTION

Laser processing mechanisms of graphene oxide

G. Murastov1, M. Fatkullin1, A. Averkiev1, D. Cheshev1, L. Kim1, R.D. Rodriguez1, E. Sheremet1.

1- Tomsk Polytechnic University, 30 Lenin Ave, 634050, Tomsk, Russia Main author email address: esheremet@tpu.ru

Among all the methods of graphene oxide (GO) reduction, the effect of laser radiation on suspensions and films is the most environmentally friendly, both in terms of the reagents used and in terms of energy consumption [1]. Moreover, such a method is spatially controlled (compared to thermal annealing in ovens), which makes it possible to implement reduction locally in the zone of laser beam impact [2]. Thus, by scanning the GO film surfaces with a laser beam, it is possible to create structures of strictly specified sizes and shapes [3]. This approach is easily integrated into modern technological processes of photolithography (compared to the methods of atomic force microscopy (AFM) and scanning electron microscopy (SEM) lithography that require complex expensive equipment) [4].

In the current work, the laser reduction was carried out by irradiating GO films deposited on different substrates such as glass, polyethylene terephthalate (PET), and indium tin oxide (ITO) with photon fluxes of continuous laser with different wavelengths and power densities. Raman spectroscopy and AFM scanning were used to confirm the presence of reduced GO (rGO) (Fig. 1a). We also have created the computational model of GO laser heating based on the finite element method (FEM) to determine the temperature distribution, profile, and maximum that we could reach with particular parameters of laser power, irradiation time, substrate, etc. (Fig. 1b, c). For model verification, experiments with silicon nanowires (NWs) were performed. In this experiment, the temperature was determined indirectly by the correlation of the Raman spectra shift with different power densities of the laser. Finally, the temperatures obtained from the computational model and from the Raman peak shift of Si NWs under the laser irradiation were compared to find the minimum temperature reached at the sample, and therefore the laser parameters for rGO formation.

ALT'22

Fig. 1. a) AFM topography image of the GO film/glass interface. b) Simulation GO/glass model image of the temperature distribution after 40 seconds of laser heating with the 7.25 mW power. c) Maximum temperature after 40 seconds of laser heating of GO/glass sample at different laser powers.

The work was supported by Russian Science Foundation grant № 22-12-20027, https://rscf.ru/project/22-12-20027/ and the funding from Tomsk region administration.

[1] Zhang Y.-L., Chen Q.-D., Xia H., Sun H.-B. Designable 3D Nanofabrication by Femtosecond Laser Direct Writing. Nano Today, 5 (5), 435-448, (2010).

[2] Rodriguez R. D., Khalelov A., Postnikov P. S., Lipovka A., Dorozhko E., Amin I., Murastov G. V., Chen J.-J., Sheng W., Trusova M. E., Chehimi M. M., Sheremet E. Beyond Graphene Oxide: Laser Engineering Functionalized Graphene for Flexible Electronics. Mater. Horiz., 7 (4), 1030-1041, (2020).

[3] Lipovka A., Petrov I., Fatkullin M., Murastov G., Ivanov A., Villa N. E., Shchadenko S., Averkiev A., Chernova A., Gubarev F., Saqib M., Sheng W., Chen J.-J., Kanoun O., Amin I., Rodriguez R. D., Sheremet E. Photoinduced Flexible Graphene/polymer Nanocomposites: Design, Formation Mechanism, and Properties Engineering. Carbon N. Y., 194, 154-161, (2022).

[4] Jiang H.-B., Zhang Y.-L., Han D.-D., Xia H., Feng J., Chen Q.-D., Hong Z.-R., Sun H.-B. Bioinspired Fabrication of Superhydrophobic Graphene Films by Two-Beam Laser Interference. Adv. Funct. Mater., 24 (29), 4595-4602, (2014).

i Надоели баннеры? Вы всегда можете отключить рекламу.