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Cosmological Bianchi-I type model in the (n + 1)-dimensional gravitational theory with several forms is considered.
When electric non-composite brane ansatz is adopted the Wheeler-DeWitt (WDW) equation for the model, written in
the conformally-covariant form, is analyzed. Under certain restrictions asymptotic solutions to WDW equation near the
singularity are found which reduce the problem to the so-called quantum billiard on the (n− 1)-dimensional Lobachevsky
space Hn−1.
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1 Introduction

In this paper we deal with the quantum
billiard approach for multidimensional cosmological-
type models de�ned on the manifold (u−, u+) × Rn,
where n ≥ 3. In classical case the billiard approach
was suggested by Chitre [1] for explanation the BLK-
oscillations [2] in the Bianchi-IX model [3] by using a
simple triangle billiard in the Lobachevsky space H2.

In multidimensional case the billiard representation
for cosmological model with multicomponent �perfect�
�uid was introduced in [4,5]. The billiard approach for
multidimensional models with scalar �elds and �elds of
forms was suggested in [6], see also [7] for examples of
�chaotic� behavior in supergravitational models.

Recently the quantum billiard approach for a
multidimensional gravitational model with several
forms was considered in [8]. The asymptotic solutions
to WDW equation presented in [8] are equivalent to
those obtained earlier in [5].

Here we use another form of the WDW equation
with enlarged minisuperspace which include the form
potentials Φs [9]. We get another version of the
quantum billiard approach, which is di�erent from that
of [8].

2 The model

Here we consider the multidimensional
gravitational model governed by the action

Sact = 1
2κ2

∫
M
dDz

√
|g|{R[g]

−
∑
s∈S

θs
ns!

(F s)2}+ SY GH , (1)

where g = gMNdz
M ⊗ dzN is the metric on

the manifold M , dimM = D, θs 6= 0, F s =
dAs = 1

ns!
F sM1...Mna

dzM1 ∧ . . . ∧ dzMns is a ns-form

(ns ≥ 2) on a D-dimensional manifold M , s ∈
S. In (1) we denote |g| = |det(gMN )|, (F s)2 =
F sM1...Mns

F sN1...Nna
gM1N1 . . . gMnsNns , s ∈ S, where S

is some �nite set of indices and SYGH is the standard
York-Gibbons-Hawking boundary term.

Let us consider the manifold M = R∗ × Rn with
the metric

g = we2γ(u)du⊗ du+

n∑
i=1

e2φi(u)ε(i)dxi ⊗ dxi, (2)

where R∗ = (u−, u+), w = ±1 and ε(i) = ±1, i =
1, . . . , n. The dimension ofM is D = 1+n. For w = −1
and ε(i) = 1, i = 1, . . . , n, we deal with cosmological
solutions while for w = 1, and ε(1) = −1, ε(j) = 1,
j = 2, . . . , n, we get static solutions (e.g. wormholes
etc).

Let Ω = Ω(n) be a set of all non-empty subsets of
{1, . . . , n}. For any I = {i1, . . . , ik} ∈ Ω, i1 < . . . < ik,
we denote τ(I) ≡ dxi1∧. . .∧dxik , ε(I) ≡ ε(i1) . . . ε(ik),
d(I) = |I| ≡ k .

For the �elds of forms we consider the following
non-composite electric ansatz

As = Φsτ(Is), F s = dΦs ∧ τ(Is), (3)

where Φs = Φs(u) is smooth function on R∗ and
Is ∈ Ω, s ∈ S. Due to (3) we have d(Is) = ns − 1,
s ∈ S.

The equations of motion for the model (1) with the
�elds from (2) and (3) are equivalent to equations of
motion for the σ-model governed by the action [9]

Sσ =
µ

2

∫
duN

{
GAB(X)ẊAẊB

}
, (4)

where µ 6= 0 and N = exp(γ0 − γ) > 0 is modi�ed
lapse function with γ0(φ) ≡

∑n
i=1 φ

i, X = (XA) =
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(φi,Φs) ∈ RN , N = n + m, m = |S| is the number
of branes, Ẋ ≡ dX/du and minisupermetric G =
GAB(X)dXA ⊗ dXB on minisuperspace M = RN is
de�ned by the relation

G = G+
∑
s∈S

εse
−2Us(φ)dΦs ⊗ dΦs, (5)

where

G = Gijdφ
i ⊗ dφj , Gij = δij − 1, (6)

and

Us(φ) = Usi φ
i =

∑
i∈Is

φi, Us = (Usi ) = δiIs , (7)

s ∈ S.
Here δiI =

∑
j∈I δij is an indicator of i belonging

to I: δiI = 1 for i ∈ I and δiI = 0 otherwise; and
εs = ε(Is)θs, s ∈ S.

In what follows we will use the scalar product

(U,U ′) = GijUiU
′
j , (8)

for U = (Ui), U
′ = (U ′i) ∈ Rn, where (Gij) is the

matrix inverse to the matrix (Gij) G
ij = δij + 1

2−D ,
i, j = 1, . . . , n.

3 Quantum billiard approach

First we outline two restrictions which will be used
in derivation of the quantum billiard: (i) d(Is) < D−2,
(ii) εs > 0, for all s.

Due to the �rst restriction we get

(Us, Us) > 0, s ∈ S. (9)

Let us �x the temporal gauge as follows

γ0 − γ = 2f(X), N = e2f , (10)

where f :M→ R is a smooth function. Then we obtain
the Lagrange system with the Lagrangian

Lf =
µ

2
e2fGAB(X)ẊAẊB (11)

and the energy constraint

Ef =
µ

2
e2fGAB(X)ẊAẊB = 0. (12)

Using the standard prescriptions of covariant and
conformally covariant quantization of the energy
constraint [10] we are led to the Wheeler-DeWitt
(WDW) equation [9]

ĤfΨf ≡
(
− 1

2µ
∆
[
e2fG

]
+
a

µ
R
[
e2fG

])
Ψf = 0, (13)

where

a = aN =
(N − 2)

8(N − 1)
, (14)

N = n+m.
Here Ψf = Ψf (X) is the wave function

corresponding to the f -gauge (10) and satisfying the
relation

Ψf = ebfΨf=0, b = (2−N)/2. (15)

In (13) we denote by ∆[Gf ] and R[Gf ] the
Laplace-Beltrami operator and the scalar curvature
corresponding to the metric

Gf = e2fG, (16)

respectively.
The metrics G, G have pseudo-Euclidean signatures

(−,+, ...,+) . We put

e2f = −(Gijφ
iφj)−1, (17)

where Gijφ
iφj < 0.

In what follows we will use a diagonalization of φ-
variables

φi = Siaz
a, (18)

a = 0, ..., n − 1, obeying Gijφ
iφj = ηabz

azb, where
(ηab) = diag(−1,+1, ...,+1).

We restrict the WDW equation to the lower light
cone V− = {z = (z0, ~z)|z0 < 0, ηabz

azb < 0} and
introduce Misner-Chitre-like coordinates

z0 = −e−y
0 1 + ~y2

1− ~y2
, (19)

~z = −2e−y
0 ~y

1− ~y2
, (20)

where y0 < 0 and ~y2 < 1. We note that in these
variables f = y0.

We denote

Ḡij = e2fGij , Ḡij = e−2fGij . (21)

The following formula is valid

Ḡ = −dy0 ⊗ dy0 + hL, (22)

where

hL =
4δrsdy

r ⊗ dys

(1− ~y2)2
. (23)

Here the metric hL is de�ned on the unit ball Dn−1 =
{~y ∈ Rn−1|~y2 < 1}. The pair (Dn−1, hL) is one of
the realization of (n − 1)-dimensional analogue of the
Lobachevsky space.

We use the following ansatz

Ψf = eC(φ)eiQsΦ
s

Ψ0,L, (24)
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where

C(φ) =
1

2
(
∑
s∈S

Usi φ
i −mf). (25)

Here parameters Qs 6= 0 correspond to charge densities
of branes and eiQsΦ

s

= exp(i
∑
s∈S QsΦ

s).
Then the WDW is reduced to the following relation(
−1

2
∆[Ḡ] +

1

2

∑
s∈S

Q2
se
−2f+2Us(φ) + δV

)
×Ψ0,L = 0, (26)

where

δV = Ae−2f − 1

8
(n− 2)2 (27)

and

A =
1

8(N − 1)
[
∑
s,s′∈S

(Us, Us
′
)

−(N − 2)
∑
s∈S

(Us, Us)]. (28)

It was shown in [6] that

1

2

∑
s∈S

Q2
se
−2f+2Us(φ) → V∞, (29)

as y0 = f → −∞.
In this relation V∞ is the potential of in�nite walls

which are produced by branes:

V∞ =
∑
s∈S

θ∞(~v2
s − 1− (~y − ~vs)2). (30)

Here we use the notation θ∞(x) = +∞ for x ≥ 0
and θ∞(x) = 0 for x < 0. The vectors ~vs, s ∈ S,
belonging to Rn−1 are de�ned by the formulae

~vs = −~us/us0, (31)

where n-dimensional vectors us = (us0, ~us) = (usa)
are obtained from Us-vectors using a diagonalization
matrix (Sia) from (18)

usa = SiaU
s
i . (32)

Due to condition (9)

(Us, Us) = −(us0)2 + (~us)
2 > 0 (33)

for all s. Here we use a diagonalization (18) from [6]
obeying

us0 > 0 (34)

for all s ∈ S. The inverse matrix (Sai ) = (Sia)−1 de�nes
the the map inverse to (18)

za = Sai φ
i, (35)

a = 0, ..., n− 1.
The inequalities (33) imply |~vs| > 1 for all s.

The potential V∞ corresponds to the billiard B in the
multidimensional Lobachevsky space (Dn−1, hL). This
billiard is an open domain in Dn−1 which is de�ned by
a set of inequalities:

|~y − ~vs| <
√
~v2
s − 1 = rs, (36)

s ∈ S. The boundary ∂B is formed by parts of hyper-
spheres with centers in ~vs and radii rs.

The condition (34) is also obeyed for the
diagonalization (35) with

z0 = Uiφ
i/
√
|(U,U)|, (37)

where U -vector is time-like (U,U) < 0 and (U,Us) < 0
for all s ∈ S.

Thus, we are led to an asymptotic relation for the
function Ψ0,L(y0, ~y)(
−1

2
∆[Ḡ] + δV

)
Ψ0,L = 0 (38)

with ~y ∈ B and the zero boundary condition Ψ0,L|∂B =
0 imposed. Due to (22) we get ∆[Ḡ] = −(∂0)2 +∆[hL],
where ∆[hL] = ∆L is the Laplace-Beltrami operator
corresponding to the (n− 1)-dimensional Lobachevsky
metric hL.

By splitting the variables

Ψ0,L = Ψ0(y0)ΨL(~y) (39)

we are led to the asymptotic relation (for y0 → −∞)((
∂
∂y0

)2

−∆L + 2Ae−2y0

+ E − 1
4 (n− 2)2

)
×Ψ0 = 0 (40)

equipped with the relations

∆LΨL = −EΨL, ΨL|∂B = 0. (41)

Here we assume that the operator (−∆L) with
the zero boundary condition imposed has a spectrum
obeying

E ≥ 1

4
(n− 2)2. (42)

This inequality was proved in [8] for billiards with �nite
volumes.

Here we put

A < 0. (43)

Solving equation (40) we get for A < 0 the following
basis of solutions

Ψ0 = Biω
(√

2|A|e−y
0
)
, (44)
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where Biω(z) = Iiω(z),Kiω(z) are modi�ed Bessel
functions and

ω =

√
E − 1

4
(n− 2)2 ≥ 0. (45)

It was shown in [11] that

Ψf → 0 (46)

as y0 → −∞ for �xed ~y ∈ B and Φs ∈ R, s ∈ S, in
the following two cases: i) B = K; ii) B = I, when
1
2q >

√
2|A|.

In [11] we have presented an example of quantum
d = 9 billiard for D = 11 gravitational model with
120 �electric� 4-forms and have shown the asymptotic
vanishing of the basis wave functions Ψf → 0, as y0 →
−∞, for any choice of the Bessel function B = K, I.
The generalization of the model to electromagnetic
composite case (when scalar �elds were present) was
done in [12].

4 Conclusion

Here we have done an overview of our approach
from [11, 12] by considering the quantum billiard for
the cosmological-type model with n one-dimensional
factor-spaces in the theory with several forms. After
adopting the electric non-composite brane ansatz with
certain restrictions on parameters of the model we have
deduced the Wheeler-DeWitt (WDW) equation for the
model, written in the conformally-covariant form.

By imposing certain restrictions on parameters of
the model we have obtained the asymptotic solutions
to WDW equation which are of a quantum billiard
form since they are governed by the spectrum of the
Laplace-Beltrami operator on the billiard with the zero
boundary condition imposed. The billiard is a part of
the (n− 1)-dimensional Lobachevsky space Hn−1.
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Â. Ä. Èâàùóê, Â. Í. Ìåëüíèêîâ

ÊÂÀÍÒÎÂÛÅ ÁÈËÜßÐÄÛ Ñ ÁÐÀÍÀÌÈ

Ðàññìîòðåíà êîñìîëîãè÷åñêàÿ ìîäåëü òèïà Áèàíêè-I â (n + 1)-ìåðíîé ãðàâèòàöèîííîé òåîðèè ñ íåñêîëüêèìè ïîëÿ-
ìè ôîðì. Â ñëó÷àå, êîãäà ïðèíÿò àíçàòö ñ ýëåêòðè÷åñêèìè íåêîìïîçèòíûìè áðàíàìè, ïðîàíàëèçèðîâàíî óðàâíåíèå
Óèëåðà-ÄåÂèòòà (ÓÄÂ), çàïèñàííîå â êîíôîðìíî-êîâàðèàíòíîì âèäå. Ïðè îïðåäåëåííûõ îãðàíè÷åíèÿõ íàéäåíû
àñèìïòîòè÷åñêèå ðåøåíèÿ óðàâíåíèÿ ÓÄÂ âáëèçè ñèíãóëÿðíîñòè, êîòîðûå ñâîäÿò ïðîáëåìó ê òàê íàçûâàåìîìó êâàí-
òîâîìó áèëüÿðäó íà (n− 1)-ìåðíîì ïðîñòðàíñòâå Ëîáà÷åâñêîãî Hn−1.

Êëþ÷åâûå ñëîâà: êîñìîëîãè÷åñêèå áèëüÿðäû, áðàíû, óðàâíåíèå Óèëåðà-ÄåÂèòòà.
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