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Cosmological Bianchi-I type model in the (n + 1)-dimensional gravitational theory with several forms is considered.
When electric non-composite brane ansatz is adopted the Wheeler-DeWitt (WDW) equation for the model, written in
the conformally-covariant form, is analyzed. Under certain restrictions asymptotic solutions to WDW equation near the
singularity are found which reduce the problem to the so-called quantum billiard on the (n — 1)-dimensional Lobachevsky

space H" 1,
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1 Introduction

In this paper we deal with the quantum
billiard approach for multidimensional cosmological-
type models defined on the manifold (u_,uy) x R™,
where n > 3. In classical case the billiard approach
was suggested by Chitre [1] for explanation the BLK-
oscillations [2] in the Bianchi-IX model [3] by using a
simple triangle billiard in the Lobachevsky space H?2.

In multidimensional case the billiard representation
for cosmological model with multicomponent “perfect”
fluid was introduced in [4,5]. The billiard approach for
multidimensional models with scalar fields and fields of
forms was suggested in [6], see also [7] for examples of
“chaotic” behavior in supergravitational models.

Recently the quantum billiard approach for a
multidimensional gravitational model with several
forms was considered in [8]. The asymptotic solutions
to WDW equation presented in [8] are equivalent to
those obtained earlier in [5].

Here we use another form of the WDW equation
with enlarged minisuperspace which include the form
potentials ®° [9]. We get another version of the
quantum billiard approach, which is different from that
of [8].

2 The model

Here we consider the multidimensional
gravitational model governed by the action

Sact = 51z [y AP 2/ 191{ Rlg]
- ZSGS :él (FS)2} + SycH,

where ¢ = gundz™ ® dzV is the metric on
the manifold M, dimM = D, 6, # 0, F° =
dAs = 5Fy o dzM AL A dzMes s a ng-form

ng

(1)

cosmological billiards, branes, Wheeler-DeWitt equation.

(ns > 2) on a D-dimensional manifold M, s €
S. In (1) we denote |g| = |det(gmn)|, (F*)? =
Firooa, Fry o, 0" gMreNne s € S, where S
is some finite set of indices and Sygu is the standard
York-Gibbons-Hawking boundary term.

Let us consider the manifold M = R, x R"™ with
the metric

g =we?Wdu @ du + Z ewi(u)s(i)dzi ® da’,
i=1

(2)

where R, = (u_,uy), w = £1 and (i) = £1, i =
1,...,n. The dimension of M is D = 1+n. For w = —1

and (i) = 1, ¢ = 1,...,n, we deal with cosmological
solutions while for w = 1, and &(1) = —1, ¢(j) = 1,
j = 2,...,n, we get static solutions (e.g. wormholes
etc).

Let Q = Q(n) be a set of all non-empty subsets of
{1,...,n}. For any I = {i1,...,ip} € Q, i1 < ... <1y,
we denote 7(I) = dz' A. .. Adx'*, e(I) = e(iy) . .. e(iy),
dI)y=|I|=k.

For the fields of forms we consider the following
non-composite electric ansatz

A% = @7 (1), F* = do* AT(1), (3)

where ®° = ®°(u) is smooth function on R, and
I, € Q, s € S. Due to (3) we have d(Is) = ns — 1,
ses.

The equations of motion for the model (1) with the
fields from (2) and (3) are equivalent to equations of
motion for the o-model governed by the action [9]

S, = %/dw\f {QAB(X)XAXB}> (4)

where p # 0 and N = exp(yo — ) > 0 is modified
lapse function with vo(¢) = Y1, ¢, X = (X4) =
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(¢',@%) € RN, N = n+m, m = |S] is the number
of branes, X = dX/du and minisupermetric G =
Gap(X)dX* ® dX®P on minisuperspace M = RV is
defined by the relation

G=G+) eV 4o @ dd*, (5)
seS
where
G=Gydd' ®dy’,  Gij=0d;;—1, (6)
and
U$)=Ud' =Y ¢, U= (U7)=bir, (7)
i€l
seSs.
Here 6,7 = ZjeI di; is an indicator of ¢ belonging

to I: ;7 = 1 for ¢ € I and &;; = 0 otherwise; and
es =¢e(l5)0s, s € S.
In what follows we will use the scalar product

(U, U") = GYU,U3, (8)
for U = (U;), U’ = (U]) € R", where (G¥) is the
matrix inverse to the matrix (G;;) G¥ = 6 +
ij=1,...,n

2D7

3 Quantum billiard approach

First we outline two restrictions which will be used
in derivation of the quantum billiard: (i) d(I;) < D—2,
(i) €5 > 0, for all s.

Due to the first restriction we get

(U%,U°%) >0, seb. (9)
Let us fix the temporal gauge as follows
v —v=2f(X), N=e, (10)

where f: M — R is a smooth function. Then we obtain
the Lagrange system with the Lagrangian

L= ge2ngB(X)XAXB (11)
and the energy constraint
E; = ge2ngB(X>XAXB =0. (12)

Using the standard prescriptions of covariant and
conformally covariant quantization of the energy
constraint [10] we are led to the Wheeler-DeWitt
(WDW) equation [9]

gigf = (_ L Ar2fa] o @ pres F_
o'w _( QMA[e g]—i—#R[e Gl v/ =0, (13)

where
(v —2)
= 14
=N = SN (14)
N =n+m.
Here ¥/ = Wf(X) is the wave function

corresponding to the f-gauge (10) and satisfying the
relation

U =T eI=0 p=(2-N)/2. (15)

In (13) we denote by A[G/] and R[G'] the
Laplace-Beltrami operator and the scalar curvature
corresponding to the metric

gf _ e2fg7

respectively.
The metrics G, G have pseudo-Euclidean signatures
(=, +,...,+) . We put

el = —(Gyo'e?)

where G;;¢'¢? < 0.
In what follows we will use a diagonalization of ¢-
variables

(16)

(17)

(bi = szzav (18)

a = 0,...,n — 1, obeying G;j¢'¢?) = ngpz° 2, where
(Nab) = dlag( 1,41, .., +1).

We restrict the WDW equation to the lower light

cone Vo = {z = (2°,2)|2° < 0,ma2%2® < 0} and
introduce Misner-Chitre-like coordinates
0 ol 4y
= — 19
: T (19)
. o0 ¥
= —2¢7Y 20
7= 2 L, (20)

where ° < 0 and ¢?> < 1. We note that in these

variables f = y°.

We denote
Gy =Gy, G = e, (21)
The following formula is valid
G=—dy’®dy’ + hy, (22)
where
hy = 46,sdy” @ dy® (23)

(1—2)?
Here the metric hy, is defined on the unit ball D*~! =
{7 € R*1|#? < 1}. The pair (D", kL) is one of
the realization of (n — 1)-dimensional analogue of the
Lobachevsky space.

We use the following ansatz

U = @iy | (24)
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where

C(9) = 5 (3 U6 —mf)

ses

(25)

Here parameters Qs # 0 correspond to charge densities
of branes and '@ = exp(i Y., s Qs P?).
Then the WDW is reduced to the following relation

N 2 —2f+2U°(9)
(—AKH+2§:Q& +6V

2 sES
xWo 1, =0, (26)
where
1
6V = Ae 2/ — é(n —2)2 (27)
and
1 /
A - - Us US
s,s'€S
—(N=2)> (U, U*)]. (28)
seS
It was shown in [6] that
1 _ s
3 > Qe Sy (29)

ses

as Yy’ = f — —o0.
In this relation V, is the potential of infinite walls
which are produced by branes:

Voo = Zeoo(ﬁf -1- (37_ 65)2)'

ses

(30)

Here we use the notation 6 (z) = +oo for x > 0
and O (z) = 0 for x < 0. The vectors ¥, s € S,
belonging to R”~! are defined by the formulae

Uy = —Us/Us0, (31)

where n-dimensional vectors us = (uso,@s) = (Usq)
are obtained from U¢®-vectors using a diagonalization
matrix (S7) from (18)

Usq = SLUY. (32)
Due to condition (9)
(U*,U°) = —(us0)* + (i@s)* > 0 (33)

for all s. Here we use a diagonalization (18) from [6]
obeying
usg > 0 (34)

for all s € S. The inverse matrix (S¢) = (S%)~! defines
the the map inverse to (18)

2 = S, (35)

a=0,....n—1.

The inequalities (33) imply |05 > 1 for all s.
The potential V,, corresponds to the billiard B in the
multidimensional Lobachevsky space (D™~1, hy). This
billiard is an open domain in D™~ ! which is defined by
a set of inequalities:

|g_ﬁs|< \/1_}2—1:7“8,

s € S. The boundary 9B is formed by parts of hyper-
spheres with centers in ¥ and radii 7.

(36)

The condition (34) is also obeyed for the
diagonalization (35) with
ZO = Ul(bl/ V |(Ua U)|a (37)

where U-vector is time-like (U,U) < 0 and (U,U®) < 0
for all s € S.

Thus, we are led to an asymptotic relation for the
function ¥ 1,(y°, 7)

1
(_QA[G] + (5‘/) Vo =0 (38)
with ¢ € B and the zero boundary condition ¥ 155 =
0 imposed. Due to (22) we get A[G] = —(9)? + A[hy],
where A[hy] = Ay is the Laplace-Beltrami operator
corresponding to the (n — 1)-dimensional Lobachevsky
metric hy,.

By splitting the variables
VoL = o(y*) V() (39)

we are led to the asymptotic relation (for 3° — —o0)

2 0

XUy =0 (40)
equipped with the relations
AV, =—-FEV;, Vo =0. (41)

Here we assume that the operator (—Ajp) with
the zero boundary condition imposed has a spectrum
obeying

1

(42)
This inequality was proved in [8] for billiards with finite
volumes.

Here we put

A<O. (43)

Solving equation (40) we get for A < 0 the following
basis of solutions

Uy = B, (JMe*yo) ,

(44)
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where B;,(z) = [Li(2), Ki,(z) are modified Bessel
functions and

1
w:q/EfZ(an)zzO. (45)
It was shown in [11] that
v =0 (46)

as y° — —oo for fixed ¥ € B and ®°* € R, s € S, in
the following two cases: i) B = K ii) B = I, when
30> V2[A].

In [11] we have presented an example of quantum
d = 9 billiard for D = 11 gravitational model with
120 “electric” 4-forms and have shown the asymptotic
vanishing of the basis wave functions ¥/ — 0, as 3° —
—o00, for any choice of the Bessel function B = K, I.
The generalization of the model to electromagnetic
composite case (when scalar fields were present) was
done in [12].

4 Conclusion

Here we have done an overview of our approach
from [11,12] by considering the quantum billiard for
the cosmological-type model with n one-dimensional
factor-spaces in the theory with several forms. After
adopting the electric non-composite brane ansatz with
certain restrictions on parameters of the model we have
deduced the Wheeler-DeWitt (WDW) equation for the
model, written in the conformally-covariant form.

By imposing certain restrictions on parameters of
the model we have obtained the asymptotic solutions
to WDW equation which are of a quantum billiard
form since they are governed by the spectrum of the
Laplace-Beltrami operator on the billiard with the zero
boundary condition imposed. The billiard is a part of
the (n — 1)-dimensional Lobachevsky space H™ 1.
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B. JI. Usawyx, B. H. Meavruxos

KBAHTOBBIE BWJIBAPABI C BPAHAMU

Paccmorpena KocMmosiorndeckast Mojesb Tuna buanku-1 B (n + 1)-MepHON IpaBUTAIMOHHON TEOPHH C HECKOJIBKUMU IIOJIs-
mu opM. B ciydae, KOrga npuHLT aH3aTI| C JIEKTPUYECKUMUA HEKOMIIO3UTHBIMU OpaHaMu, IPOAHAJIU3NPOBAHO YPaBHEHUE
Vunepa-/leBurra (V/IB), 3anucannoe B KOHQOPMHO-KOBAPHAHTHOM BHJE. IIpH OIpeseseHHBIX OrDAHUYEHHUAX HAMIEHDBI
ACHMIITOTUYECKHE PeIeHns ypapHeHusd Y /B BOMU3U CUHTYISPHOCTH, KOTOPBIE CBOISAT MPOOIEMY K TaK HA3bIBAEMOMY KBaH-
ToBOMy Gunbapay Ha (n — 1)-meproM mpocrpancTse JloGauesckoro H™ 1.

KroueBble ciioBa: kocmonozurveckue 6uasbapov, 6pars, ypasHerue Yuaepa-leBumma.
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