Научная статья на тему 'Квантовое пространство лобачевского и Q-функции Бесселя-Макдональда'

Квантовое пространство лобачевского и Q-функции Бесселя-Макдональда Текст научной статьи по специальности «Математика»

CC BY
99
28
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Квантовое пространство лобачевского и Q-функции Бесселя-Макдональда»

The Quantum Lobachevsky Space and the g-Bessel-Macdonald Functions

M.A.Olshanetsky1 ITEP, 117259, Moscow e-mail olshanez@vxdesy.desy.de

V.-B.K.Rogov2 MIIT, 101475, Moscow e-mail ml0106@sucemi.bitnet

1 Classical case

Let L3 = 56r2\5,L2(C)be a homogeneous space of the second-order unimodular Hermitian positive definite matrices, which is a model of the classical Lobachevsky space. Let

9 = ( “ 5 ) > cx6-Pj = 1.

Then any i6L3 can be represented as

x= \ ( aa + j7 aj + jj \

99 \ pa+ 67 /?/? + 66 ) '

The Iwasawa decomposition

g = kb, g € SL2(C), k £ SU2, b £ AN, (1-2)

AN - Borel subgroup, allows us to define the horospherical coordinates on L3. If

h hz

then from (1.1)

6-1 0 h~l I ’

‘*‘=1 0%iA.-+W‘ I' (U)

The tripl (H + hh,z,z) is uniquely determined by x. It is called the horospherical coordinates of x. It follows from (1.1) and (1.3) that

H = aa + 77, Hz = a(3 + 7 6, zH = /?a + 6 7.

Let

*=(; “)• B-d D- c=(° ?)■ D=(”:

be the generators of the Lie algebra gl2 and d.A,d,B, dc and do = —Aa be the corresponding Lie operators

of right shift on L3. In the horospherical coordinates they take the form

dA = ^HdH - zdZ) dB = dz, dc = HzdH - z2dz + H~2dz. (1.4)

The cecond Casimir

n - -iA-r aD in the horospherical coordinates takes the form

Q — d~A + d2D + dgdc + dcdg

Q=1-H2dj1 + ~HdH + 2H-2dj2. (1.5)

Supported in part by RFFI-96-18046 grant

2Supportedin part by NIOKR MPS grant

Consider the eigenvalue problem

[\n+^Fv(z,H,z)='^Fv{z,H,z), v > 0. (1.6)

After the Fourier transform with respect the variables z and z we have the ordinary differential equation for the Fourier image of Fu(z, H, z)

(\и2^p + IhJh~ h~2~ss + H>s) = H’s)- (L7)

The solutions to equation (1.7) decreasing for H -> 0 are the functions

Ф„(«, H, s) = ■щ^-^Н~1Ки{2л/Istf-1)(ss)^(s, s), (1.8)

where Kv is the Bessel-Macdonold function, and ф„(Е, s) is determined uniqualy by <£„(s, tf, s). It is well-known fact that

—L—H-'KrpVteH-'Kss)*

T(u+l)

is the Fourier transform of the function

Pv(z,H,z) = (zHz + H-i)-v~1. (1-9)

After the inverse Fourier transform we obtain the solution to equation (1.7) in form

F„(z,H,z) = Pv(z,H,z)*f(z,z), (1-Ю)

where f(z, z) is the inverse Fourier image of <p(s, s).

Function (1.9) is called the Poisson kernel, and convolution (1.10) is called the Poisson integral.

2 Quantum Lobachevsky Space

Let Ag(SL2(C)),q Є (O', 1), be the algebra of functions on SZ,2(C) [2], which is defined as the factor algebra of the associate C-algebra with generators а, 3, j, 6 with an anti-involution * : Aq —+ Aq, (ab) = b* a* and the following relations

а в = q3a, a~f = 97Q. 06 = q60, 76 = q67, 0~> = 7 3,

a6 — q3y = 1. 6a — q~l 3~f — 1) 0a‘ = 9 la* 0 + q X(1 — q~)7 <5.

7 a" = qa“j, 6a* = a*6, 7/?* = /3*7,

63’ = q3’6 - q(l - q2)a*j, 6j*—q~1j*6. (2.1)

aa* — a*a + (1 — q1)7*7, 33* = 3”3 + (1 — q2)(&* & ~ a a) — (1 — l‘ ) 7 7i

77* =7*7, 6(5* = <5*6 - (1 - g2)7*7-

The rest commutative relations can be read off from the rule (ab)* = 6’a*. We cast the generators into the matrix form

a 0 \ » _ ( a* 7

- 1 7 6 ; ■ “ - v P' 6"

With the comultiplication A : Aq ^ Aq Aq

a P \ _ ( a 0 \ хгл ( a P

Al 7 6 ; - V 7 <5 V 7 5

the antipode 5 : .4? —*• Aq

s(° 1) = ( 6

7 6 1 \ -q'f a

and the counit e : Aq

Aq becomes a Hopf algebra. In fact it is a *-Hopf algebra since

(A(a))« = A (a*)

and

So*oSo* = id. (2.2)

We define the *-Hopf subalgebra Aq(SU2) by the generators

and the relations

Then

In a similar way

a*cac + 7c7c = 1, aca*c+q2 7c7c = 1,

7* 7c =7c7c, (*c7c = 97* «c, <*c7c = 97c<*c-

w>e = ( J J j . (2.4)

AW)={^=(J A-i)} (2.5)

/i/i* = h*h, hn = gn/i, hn* =

nn‘ = n*n + (1 — q2)((h* h)~2 — 1).

The Iwasawa decomposition in the quantum context takes the form [2]

lL>=UlcU>d, U) £ Aq(SLi2(C)), Ulc G Aq(SU2), Wd£Aq(ANq). (2-6)

Natural description of commutative relations (2.1) can be obtained from the construction of the

quantum double. It was implemented in [3],where .4,(SL2(C)) is described as a special quantum double of Aq(SU2), and (2.2) is derived by means of the corresponding iJ-matrix.

Definition 2.1 The quantum Lobachevsky space L3 is a *-subalgebra of Aq(SL2(C)) generated by the bilinear constituents

a*a + j*y a*/3 + j*S \ _ f p s

w ^ 1 /3*a + 6*7 /3*0+ 6*6 ) ~ { S* r )

Evidently, * acts as ■

* / \* * *

p — p: {S) = s , r — r.

We don’t need the explicit form of the commutative relations between p, s, s* and r - they can be derived from (2.1). .

Introduce a new generator 2 instead of n

n = hz.

Then due to (2.4), (2.5) and (2.7)

p = H = h’h = hh‘, s = Hz, s* = z*H, r = z*Hz + H~l. (2.8)

Consider now the complex associative algebra Uq(SL2(C)) with unit 1, generators A, B, C, D and the

relations

AD = DA=l, AB = qBA, BD = qDB, AC = q~1CA, CD = q~1DC,

A2 — D2

[8,0]=^-^-. (2.9)

In fact it is the Hopf algebra where

= A (D) = Z?0Z>,

MB) = -4 0 B + B (g) D, A(C) = A 0 C + C 0 D, (2.10)

£( C n) = (o 1 )> (2.11)

A A B)-( D -ri5 \

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

V c ^ y I -?C 4 J • (2.12)

There exists a non-degenerate dilinear form (u,a) : Uq x Aq ^ C such that (A(u),a06) = (v,ab), ('/0r.A •. =

(1 u,a) = e>t(n), (u, 1,4) = £u(u). (S(u), a) = (u, 5(a)).

It takes the form of the generators

(;?)>=('? ,-w. <*(; ih('7

(B>( ? f )) = rs IV (c, fa 8A) = (° 0

6 J \0 oj’ \ 7 ^^l 0 ;• (213)

Moreover, Lq(bL2(C)) is the *-Hopf algebra in duality, where the involution is defined by the pairing

(u*,a) = (u,(5"(a))-). (2.14)

The element

fi, = (g"1 +g)(-42 + ^>2)-4 , 1

2lrrZlfi +2 (BC + CB) (2.15)

is a Casimir element, since it commutes with any u 6 Uq(SL2(C))

The right action of u £ Uq(SL2(C)) on A is defined as [4] '

a u = (u 0 id)(A(a)). (2.16)

It is the algebra action:

a.(uv) = (a.u).v (2.17)

which satisfies the Leibnitz rule

(ab).u = J2(a-u})(b.u]) (2 18)

3

where A(u) = uj (g) u?. The left action is defined in the same way.

The right action on the generators takes the form "

° P) A - ( ql/2° q~1/2(] \ ( a P\ n ( 0 Q

- 6 )-A7 ,-<IH )■ ?J-C=(0 ,

“ f U’= ( P ° ) ( a P'\ D-( *"lla l'ni>

1 6 / V « 0 ) • I T « ) { ,-1/S7 q''H ,

We will! definenow the right action of U, (.91,(0) on LJ, which endows the latter with the struct,,,e

of the right -module. For any a 6 L3 define the normal ordering using (2.1)

*a+ -Y^Ckai,ka 2,* (2.20)

where a1 k(a2 k) are monoms derpending ov a* 3* -y* 6*(iy ft -v Thor, fV, ■ i . ,. q

will de denoted as (a).u, is defined as follows ( ’*7’ ^ ^ actlOD °n LI whlch

(a)-u = ^2 ckai,k(a2,k-u). (2 21)

The generators H, z are expressed by generators a,... ,5* as

z = a!-ll3+J2(-l)kq-2k(y*)k + 1yk*-2, y = 7a-1. k-0 '

(2.23)

TBM^:i27Z:rTTusins(219X (2 21) • (2-23) wc c" *fi”the ** “«» ^

w(m, r, n).A = q~n+^w(m, r, n),

i 1 2n

u>(m, r, n).B = ^ n _ ^

r- ")c=-1, r _ 2, „) _ r_ n+1}i

w(m,r,n).D = qn-tw(m,r,n). (2 24^

The second Casimir (2.15) acts on monom w(m, r, n) as

w(m, r, n).Q = (]l~r (I--1---] T. 7,^ , r-i (1 - rm)(l - q2n)

' V l~q2 J u^'n’T’n) + <J -------------_ q2y----------v(m-l,r-2,n- 1). (2.25)

Remark 2.1

3^3,,! = ^, U;n/,Z> =

and

1 l\nnB~dB, lim C = dc,

i-o 9-i-o ’

lirn Q, = + I.

?-i-o q 2 4

3 Modified g-Bessel Functions

We »,,d the fundamental formula., from the theory of the basrc hype,geometrical series. For any

(a, q)n = <* % for n = 0

' I (1 ~ a)(l - o-q) . . . (1 - aqn~1) for n> 1, ’

(a> q)oo = nlm^(a,9)rlI (ai! . ..,ak,q)x = (all9)oo . . . (ak, q)^. (3.1)

The q — I-function is defined in following way

r*M=(F^(1

The basic hypergeometrical funcyion is

OC / ' \ /

....‘..........W

The 9-exponents are

= 1*1 <i,

71=0

x

Fl<1> (3-3)

OO »(n-l)

Eq(x) = y .

^ (?■?)" (3'4)

Ihe g-exponents can be represented by forms:

e?(2r)=(^U’ E*(x) = (-*,q)oo. (35)

There are two typies of g-trigonometric functions

cos? X = -[eq(ix) + eq(-ix)l sin? ar = ±-.[eq(ix) - e, (-,*)], (;] g)

Cos? i + £,(_;*)], sin? a: = ~[Eq(lx) - Eq{-ix)]. (3.7)

Let consider the complete elliptic integrals

r*/2

K(I-) =

Jo

da rir/2

,----====, K'm= i_______________“

and let

lng=-ZS2 * K(*) • (3.8)

Then [6](5.3.6.1)

OO

Q„ = (1 - 7) y ___________L________--1_Vau r21nrHj ,

+ ~ 7T ( ) f-;------------K'(*)]. (3.9)

^ llCIC d fl U ~z \f \ — ~ SIM ^ 7/ — ( ^ d'.i /1 • , .

_ ’ ^ ^ “ 1S 16 JaCobl elliptic function). U It = 0 then

o _ 0 and dn u - 1. It followes from (3.8) and (3.9) for any v

lim Qu = — 2

In []j the g-Bessel function were determined as

= T^(s/2)" -^£1)

Lhe^oliovving 1)- We **“ th'"'»d'fed ^ *W) » .1...

#\s-,q) = e-iT4^(e“fs;?)i j = l,2 (3 10)

We will consider below the functions

41]((1 - g2kr) = --------___-V" (l-g2)2ns^+2n !

IV('y + 1) “ ('72,g2)n(g2,/+21g2)ri2I'+2'>’ '*'< n-^ (3.11)

/(2)((1_92)s;(?2)= _____1_____^ q^+n){l_q2fns,+,n

r?2(i/ + 1) (^(5^+;, g2)n2^+2n • (3-12)

If |g| < 1, the series (3.12) converges for all s =£ 0 Therefore /(2Vn „2^ 2\ • , , ,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

outside of 2 — 0. J-nereiore Lu ((1-5 )s, q ) is holomorphic function

Remark 3.1

?hrn o^;((1-?2)5;92) =/„(s), i=li2

The function /^((l - q2)s\q2) is the meromorphic function outside of 2 = 0 with the ordinary poles ir the points s 7^ ± , r — 0,1,...

Remark 3.2 If q —* 1 — 0 the all poles of /£^((1 — q2)s] q2)

, 2g-r

-----2, r = 0,l,...

1 — qz

go to infinity along the real axis.

We have from (3.11) immediately Proposition 3.1 The function /^((l - q2)s;q2) satisfies the following relations

i'J) = «-'/'V+itd - ?2)«; r),

23.,

1 + q

and the difference equation

1 - q2)s-,q2) = -q2)s]q2),

[1 - (^^)2?“2s2]/(r1s) - (?" + q~lf(s) + f(qs) = 0 (3.13)

Analogy we have from (3.12)

Proposition 3.2 The function li2\( 1 - q2)s;q2) satisfies the relations

- »W) = !%,((! ~ ?!W).

9 f)

i_TTs‘'/P)((1 - (i2)s^q2) = 9“'/+1sv-14-i((1 - 92)9a’;?2).

+ q

and the difference equation

' Л'Г1*) - (qV + ?-")/(*) + [1 ~ (Ц^)2^]

It is easy to show that the functions (3.11) and (3.12) are connected by correlations:

- q2)s-,<f ) = сг’(^-у^-г2)^2)((1 - r>;?2) (3.15)

/^((1 - q2) = ^(-Ц^52)/Г°((1 - ?2)s; g2) (3.16)

4 The g-Bessel-Macdonald Function

Unfortunately the function /^((l - q2)s;q2) is determined by power series (3.11) in domain js[ < ~~y

only while we need a representation of this function as series 011 the whole complex plane. But the

following proprsition takes place '

Proposition 4.1 The function lil\( 1 - q2)s\q2) for s ф 0 can be represented as

4])(.( 1 ~ q')s',q-) = ^-[eq{~^z)<bv{s) + іе^еі{-1-^-г)Ф1,(-з)]1 (4.1)

where ■

Ф„(в) = ■2$l{qV + ll2,q-v + ll2\-q-,q, ^ 2, ), (4.2)

and

M-1)^ (4-3)

The coefficients а„ (4.3) satisfy the recurrent relation

du+i = avq~v~1!'1

and the condition

Cl у CL _ у —

q-» + V 2

2r?a(i/)r?2( 1 — u)smi/Tr

Proposition 4.2 The function I{u2\(\ _ g2)s-(72' f , „

^ V ^ j ? ) jor 6 f 0 can be represented by

In the classical analyses the Bessel-Macdonald function is defined as

AV(5)=2^f/-^)-/‘'(5)] (4.5)

for V ± n, and if V = n by the limit for u ~ n jn (4 V ,

"it,on m ”ch wa) that •*» »f

Definition 4.1 Tkc ,-B'ssel-.\I.clon.U f,,nc„„, (q.Bi,F) are lefineJ „ '

(i e}

with av (4.3), j = \, 2. .

the limit forC^C^C(4S6)thlS def,mt'0n Sh0uld be adJ^ted for the integer values of the index * = „ hv I! follows from (4.1), (4.4) and (1.6) ’

к(1)((л 2\ o, q~v2 + ll2 1 _ 2

4(1 -q )s: q~) = _i---------------_e / i - q

9 Г7Гr, /Te?V ГГ-

V^TT~2~5)ф"(~5). (4.7)

^ 2 4 *)• (4.8)

It is casu to prove using (4.7) and (4.8) the following

Proposition 4.3 4-BMF KW4\ - -,-M ■ • -2* • , ,

" ' 4 7 кч a 0'0rnorphic fvnrtion in domain Res > ,2у.

Proposition 4.4 q-DMF K[2)m _ ^ , *

" (( 9 >■? ) ;л- a holomorphic function in the domain s ф 0.

T he next propositions take place

Proposition 4.5 The function K(V)(n _ ,,2\,. 2x , • ,

" ^ 1 ) satisfies the following relations

2ds ,

l+qS K {{l~q2>’(l2) = ~sU~1I<il}1(^--q2)S:q2),

i + ~ ?W) = -s—iA'0)i((i _

о»г/ /Л<? difference equation (3.13).

Proposition 4.6 The function K^2)(n ^

/ /z0n Ky ((1 _ r)s. q } saUsfies ihe foUow.ng rclatwns

20 S

- Q2)s: q2) = -q-^s^K^l - q2)s’, q2),

2ds _

1 + / ^ Я2) = -r^s-^Ki^d 1 - 92),; ?2)

and the difference equation (З.Ц).

Proposition 4.7 For any 1/ the functions /^((l-g2)s;?2) and A'<1}((1 - q2)s; q2) form a fundamental system of solutions to the equation (3.13).

Proposition 4.8 For any v the functions /<2)((1-- g2).s;g2) and Af°((l - g2)s; g2) /orm a fundamental system of solutions to the equation (3.14)-

Remark 4.1 o

lim A'^((l —q )s',q ) = A'„(s), J = 1,2.

g — 1-0

Remark 4.2 // g —► 1 - 0 the representations (4-1), (4-4), (4-7) an& (4-8) g^ve us the well-known asymptotic decompositions for the functions Iv(s) and K„(s) respectively [7].

5 The Jackson Integral Representation of the Modified g-Bessel Functions and g-Bessel-Macdonald Functions

Jackson g-integral is determined as the map an algebra of functions of one variable into a set of the number serieses ^

[ /(*)cf?* = (i-g)X>H/(gm) + /(-9m)].

J — I m — 0

co

rCO _

I f(x)dqx = (l-q) y gm/(<?m)>

J 0 7X1 — — CO

oo

/oc „_

/(.r)dgx- = (l-g)^gm[/(gm) + /(-gm)]-

-oo -CO

Define the difference operator ^

(5'1}

The following formulas of the g-integration by parts are \alid

I rl

J &(x)dMx)dqx = 0(\)u( l) ~ 6(-l)u(--l) - J ^o(r)uiqx)dqx: (5.2)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

A <t>(x)dM*)dt* = Iim^^(?-mMrm)-^(9T"M7m)]-^ dxd>(x)iLiqx)dqx. (5.3)

Jq m co 0 ^

P *(*)«*)</,* = JLm [o(g-m)^-(g-"1) + - J_x ds<t>(x)v{qx)dqx. (5.4)

J — OC

The last- two expressions imply the regularizations of the improper integrals.

Let z and s be noncommuting elements and

(5.5)

r.s gsr.

Consider the function

/(*) = ^a,.zr.

r

T/ie rule of q-integration in the noncornmutative case

J f(zs)dqs = j yar(zs)rdqs = j ytarq-r-L^izrsTdqs, j dqzf{zs) = j d^arizsy = J dqzy/arq~A^JzrSr .

Define the following transformation ift for functions / depending on the noncornmutative variables s and z (5.5). If we have function which has the form (5.6) and all monoms are order we will write

f(Z8) = ytar(zs)r -

Definition 5.1 The function /(г) absolutely q-integrable if the series

ОС

E ?m/(?m)

m~~ со

converges absolutely.

It means, in particular, that

| = 0

It follows from (3.2) - (3.4)

Proposition 5.1

TP ~~ Q \ i yl~Q^

£,(-T-«) = te,(58)

There is a g-analog of classical binomial formula [5]

00 ( \

(1 _ - уМаЬ * T(a + k)

’ -Wt= вд ■■ ''К1-

{<1агл)сю \^(qa,q)k к

-Ет^тгг- N<1-

(z,q)0о ^ (9, g)*

We need in two generalizations of this g-binom

r(a,b,z,q) = (g5’g)°°

(^,?)oo (5-9)

- Ii(a, b, 7 z, q2) = (^_iS_)oo ^

1 ^2,?2)00‘ (5-10)

The function (5.9) satisfies the difference equation

4br(a, b, z, q) - ar(a, b, 52, 9)] = r(a, ^ ^ ^ ?) ^

The function (5.10) satisfies the difference equation

*-№R(a, b, 7, z. g2) - ^ b< 7. ^ g2)] = ^ ^ ?2) _ ^ ^ ^ ^ ^

Lemma s., //W < W c„ „ rlprcsenh, as * „„„ ,/||e ^ fin*,..

= —L_ f LlhzizMh^sht

(b~,q)oc (?>?)oc^ (?,g)*(i - ^69*) ' (5-13)

T/ie series (5.13) converges absolutely for any z ± * = 0,1

Remark 5.1 //0<|a|<|6| Men

(azi g)oo _ (a/6, g)^ (b/aq, q)k(a/b)k

(bz>q)00 (9,9)00 fr/0(q,q)k(i - zbqk)' (5 H)

If a = 0 then

1 1 00 ( i\k k(k + 1'>

77-----— = —-______\" (-1) g 2

(*‘=9)00 f^0(q,q)k(l - zbqk)' (5.15)

Assume that a = e92“,6 = e(,2/3 , , • ,

’ ^ ’ ±1 in (o.lO). Then we have from (5.14)

Corollary 5.1

Remark 5.2 /Is it follows from [5](1.3.2)

(eq2az2, q2)^ k Jpk {q2(-a~P\q2)k 2t (5 17l

(eg2/322,g2)oo ^ 9 (<Z2,92)* ' '

which converges in the domain |z| < q

It follows from Lemma 5.1 that if 7 = 0 (5.16) is the meromorphic function with the ordinary poles

2 = ±y^q-f3~k, k = 0, 1, ..and hence it is the analitic continuation of (5.17).

Corollary 5.2 For an arbitrary real s / 0

lim 1 = 0.

m—* co z

Corollary 5.3 For real s ^ 0 and integer m

, ,1 -?2 -m , , ^(r1)^?)

IW —!

Corollary 5.4 If a > P + I and real 2 / 0, then

(~q2az2,q2)00 < Cg„a

(~q^z2,q2)00 - l + z¥r

Remark 5.3 lei a = eg2a,6 = eg23 in (5.10) and (5.12). Then if q -* 1 - 0 iAe difference equation (5.12) takes the form of the differential equation

z(l -ez7)R’(z) - [7 + c(2a - 23 - 7)z2}R(z) = 0 (5.18)

with solution

R(z) = C z^ {\ ez2) .

Proposition 5.2 Modified q-Besscl function (q-MBF) l[l) for v > 0 can be represented as the q-integral

w-.w>=<519’

Proof. Consider the g-integral

ss>>(,)=(*•»)

where si'V) is such function that it rs absolutely convergent. Require that -^5L1 (s)(.s/2)1' satisfies (3.13).

Then 5(11)(s) satisfies the equation

' S[l\<-rls) - Si!)(s) - q2l'[Sl1l\s) - S(7(qs)) = (l^Sl)2q~2s[l\q^s)s2. (5.21)

Substituting (5.20) in (5.21), using the rule of q-integration, (5.8) and (5.2), we come to the difference equation for flX\z)

q2^lz2[fil\z) - q~2u+lfi^iqz)] = /<1}(z) - (5-22)

It coincides with (5.12) for a = q2,b = g2"+1,7 = 0> an<^ hence

f(D(z) - (g2z2.g2k_ ■ (5.23)

h (92, + l22i52)oo- V '

5|1-\s)(a72)‘/ is a solution to (3.13) and therefore it can be represented as (see Proposition 4.7) sf = ^41}((l - q2)s; q2) + BAf)((l - g2)S; g2).

Multiplying the both sides on (s/2)1' and putting s = 0 from (3.11) ( (4.6) we obtain 5 = 0. Multiplying again on (s/2)-" and assuming s = 0 we come to

Ld’zjt/,(z) = AT^r.

q'y1'" + !)

It follows from [5] (1.11.7)

2

i + - i + 9

and we come to (5.19).B At the same way we can prove the following

A = j—Be(u + 1/2, l/2)I>(j/ + 1) = + l/2)I>(l/2).

Proposition 5.3 The q-MBF li2\( 1 — q2)s; q2) for v > 0 has the following q-integral representation

4 )((1 - 9 )«. 9 ) = 2r^(i/ + 1/2)rffa(l/2) *

X J\dq Z (^--0) . 0; g- • (5-24)

Remark 5.4 If q —► 1 — 0 the equation (5.22) takes the form of the differential equation (see Remark 5.3)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

{\-z2)f,u{z) + (2v-\)zfv(z) = Q.

The solution to this equation is

Mz) = C\l-z2y-1/\ which leads to the classical integral representation of Modified Bessel function [7] (7.12.10)

/ (s) = ______(,s/2)'/___ f1 (i _

A) T(v+l/2)T(l/2)J_l[ ■

Proposition 5.4 The q-BMF A’£^((l — g2).s;g2) for v > 0 can be represented by the q-integral

<r"a+1/2IV(* + l/2)r,3(l/2)

q = -------------------------------------------------------\/-------x

4Qi, v a_

-V

„ r , {-q2z\q2U ^.i-92 v /ow ,-0.,

/ g2)TC 2~-S)(V2) , (o.2o)

' —cc

where Q„ is defined by (3.9).

Proposition 5.5 The q-BMF A'|f ^((1 — g2)s; g2) for v > 3/2 can be represented by the q-integral

Ki„ , , = ,-*T,.(. + №|i;2)n7

4Ql/2 V a--"

ah

X

/•oo / 2i/ + l 2 2\ i 2

x I dqz—^—— o^i(-;0;g,i—y— zs){s/2) v, (5.26)

> — OO

where Qi/-j is defined by (3 9).

Remark 5.5 J/g —> 1—0 the representations (5.25) and (5.26) give us the classical integral representation of Bessel-Macdonald function (the Fourier integral) [7] (7.12.27)

References

[1] Podles P. and Woronowicz Sd. Quantum deformation of Lorentz group, Commun. Math.Phys., v.130 (1990) 381

[21 Jurco B. and Slovachek P. Quantum Dressing Orbits on CompactGroups, Commun.Math.Phys., v.152 (1993) 97-126

[3] Koornwinder T. Askey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group, Report AM-R9013 (1990)

[4] Jackson F.II. The application of basic numbers to Bessel's and Legendre’s functions, Proc. London math. Soc. (2) 2 (1905) 192-220

[5] Gasper G. and Rahman M. Basic Hypergeometric Series, Cambridge. Cambridge University Press, (1990)

[6] Brychkov A., Prudnikov Yu. and Marychev 0. Integrals and Series, v. 1, Nauka, Moscow (1986)

[7] Bateman H. and Erdlyi A. Higher transcendental functions, v. 2 Me Graw-Hill Book Company.(1966)

i Надоели баннеры? Вы всегда можете отключить рекламу.