Е, %
99.95
99,90
99,85
99,80
99,75
/ N z1
N ■
/ / \ \
i i / V ft
J 4 X No \ v „2
X / \
/ s'
О 1 2 3 4 5 и, м/с
Рис. 5. Зависимость эффективности очистки Е воздуха в аппарате №4 от приведенной скорости воздуха и и концентрации в нем микроорганизмов, г/л:
1 - 52; 2 - 56; 3 - 64
тельно, более активный контакт с жидкостью, за счёт которого происходит переход микроорганизмов из воздуха в промывную жидкость (рис. 4).
В аппарате № 4 интенсификация процесса газоочистки достигается путём увеличении поверхности контакта фаз и продолжительности контакта между загрязнённым воздухом и промывной жидкостью. Это происходит в результате максимального увеличения площади проходных сечений отверстий, выполненных в стенке усечённого конуса, и их заглубления в промывную жидкость, что исключает образование больших газовых пузырей и унос клеток культуральной среды, которые характерны для аппаратов № 1 и № 3. Следует отметить более высокую степень очистки воздуха от микроорганизмов в аппарате № 4 по срав-
нению с аппаратом № 2. Это объясняется подъёмом части микроорганизмов в воздушное пространство над промывной жидкостью в аппарате № 2 (вторичный унос).
Простая конструкция газораспределителя аппарата № 4 даёт возможность эффективно очищать воздух, выходящий из биореактора. Зависимость эффективности очистки от приведённой скорости поступающего воздуха представлена на рис. 5, где видно, что максимальная степень очистки достигается при приведённой скорости воздуха 1-3 м/с.
На основе анализа результатов исследований за базовую принята конструкция аппарата газоочистки № 4, как наиболее эффективная и достаточно простая в техническом исполнении.
1. Балабеков О.С., Балтабаев Л.Ш. Очистка газов в химической промышленности. Процессы и аппараты. М.: Химия, 1991.
2. Калунянц К.А., Голгер Л.И., Балашов В.Е. Оборудование микробиологических производств: учебник для студ. вузов по специальности «Технология микробиол. пр-в». М.: Агро-промиздат, 1987. 397 с.: ил.
Библиографический список
3. Очистка отходящих газов технологических агрегатов микробиологической и медицинской промышленности / Дубин-ская Ф.Е. и [др.] // Химическое и нефтяное машиностроение. 1992. № 2. С. 31-33.
УДК 622.243.43
КРИТЕРИЙ ЭФФЕКТИВНОСТИ ДИНАМИЧЕСКОГО НАГРУЖЕНИЯ МЕРЗЛОГО ГРУНТА Ю. И. Чеботарев1
Национальный исследовательский Иркутский государственный технический университет, 664074, г. Иркутск, ул. Лермонтова, 83.
Получена математическая модель процесса разработки мерзлого грунта ковшом экскаватора с активными зубьями. Определены основные параметры, оказывающие влияние как на сопротивление разрушению мерзлого грунта, так и на удельную энергоемкость рабочего процесса, которая при рациональных значениях этих пара-
1 Чеботарев Юрий Иванович, доцент кафедры строительных, дорожных машин и гидравлических систем, тел.: (3952) 405134, 721001.
Chebotarev Yury Ivanovich, associate professor of the chair of Roadmaking Machinery and Hydraulic Systems, tel.: (3952) 405134, 721001.
метров достигает экстремального значения. Ил. 2. Библиогр. 3 назв.
Ключевые слова: сопротивление грунта разрушению; удельная энергоемкость процесса разрушения мерзлого грунта ковшом экскаватора с активными зубьями.
EFFICIENCY CRITERION OF THE DYNAMIC LOAD OF FROZEN GROUND Yu. I. Chebotarev
National Research Irkutsk State Technical University, 83, Lermontov St., Irkutsk, 664074.
The author obtains the mathematical model of the frozen soil development process by the shovel bucket with active teeth. He determines the main parameters affecting both the fracture strength of the frozen soil, and the specific energy capacity of the working process. The last reaches extreme values at the rational values of these parameters. 2 figures. 3 source.
Key words: soil fracture strength; specific energy capacity of the process of frozen soil fracture by the shovel bucket with active teeth.
При взаимодействии ковша экскаватора (зубья которого активизированы высокочастотными колебаниями) с мерзлым грунтом, последний подвергается динамическому нагружению.
Для нахождения рациональных параметров рабочего процесса ковша экскаватора необходимо составить его математическую модель. Одно из центральных мест в математической модели рабочего процесса занимает зависимость силы сопротивления грунта разрушению от геометрических и кинематических условий процесса.
Начальный этап работы характеризуется преодолением двух составляющих сопротивления разрушению:
Рр = Рв + Ро, (1)
где Рв - сопротивление внедрению зубьев в грунт; Р0 -сопротивление отрыву элементов грунта от массива.
Силами трения отдельных элементов грунта по поверхности рабочего органа по грунту можно пренебречь, так как, во-первых, они составляют значительно меньшую долю в балансе сил, во-вторых, величина силы трения резко снижается при наложении колебаний на рабочий орган.
Кроме того, оптимальный шаг установки активных зубьев на режущей кромке ^ равный длине упругой волны в грунте, позволяет исключить из процесса разрушения режущую кромку ковша, так как взаимовлияние зубьев приводит практически к полному разрушению грунта между ними.
Рис. 1. Расчетная схема определения сопротивления грунта разрушению
Проведенные исследования позволили определить как сопротивление внедрению зубьев в грунт, так и сопротивление отрыву элементов грунта от массива:
РВ = 2S-n
1
a2p-b + 2E ■ т02 ■ Vt/3G- f
niJi-Vyii+oJTTT)x
X t„
4 2
z^ Am ■b n d
■D,
(2)
где Б - контактная поверхность одного зуба; п - число активных зубьев; Ь -ширина зуба ковша экскаватора; ар - предел прочности на растяжение; Е - модуль упругости; то - предел прочности на сдвиг; в - модуль сдвига; f - циклическая частота колебаний зуба; Vt -скорость распространения напряжений сдвига; т - амплитудное напряжение сдвига; 10 - размер частиц, образующих грунтовый скелет; V - коэффициент Пуассона; ф - угол внутреннего трения грунта; г - число циклов нагружения грунта; Аш - колебательная скорость; А - амплитуда колебаний; ш - угловая частота колебаний; б - расстояние между зубьями; й1 - коэффициент характеризующий упругие свойства грунта:
D, =
(l + v)(l - 2v)
7-v-8v2 ^
3E■ p\l-v)
(l - 2v) ■ (l + v)
(p - плотность грунта);
nn^h ■Ctgу /
Po =----с
Sin у
K I
(3)
(4)
где у -угол отрыва элемента грунта; h -глубина резания; о!к-критическое напряжение распространения трещины
ж
Sin а
- v
сР ■ b +
2E ■ rjV Л 3G- f
(5)
(а -угол резания).
Подставив выражения (2) и (4) в уравнение (1), получим сопротивление разрушению мерзлого грунта ковшом экскаватора с активными зубьями:
K =
)
PP = 2S • n
ар • b + 2E-Z0 •Vt/3G • f П-l0 (1 -V2 )(l + 0,5т2 / t2 )
, п Ф) z • Arn •b _
x t \ — + — I---D
g| 4 2 ) п • d
п •n^h • Ctg w
+-2-^-X
Sin w
(6)
Sin а
•h(l-V2)
2 , 2E j p •b + 0 '
3G f
Полученное выражение связывает аналитически силу сопротивления мерзлого грунта при копании ковшом экскаватора с активными зубьями с конструктивными параметрами рабочего органа, геометрическими и колебательными параметрами рабочего процесса, физико-механическими характеристиками разрабатываемого грунта и позволяет объяснить физическую сущность процесса разрушения.
Анализируя выражение (6), приходим к выводу, что основными параметрами, оказывающими существенное влияние на силу сопротивления грунта разрушению, являются колебательная скорость Аш и толщина стружки (глубина резания) h, при этом с увеличением Аы сопротивление снижается, а с увеличением h возрастает. Наличие в выражении (6) временного фактора z - числа циклов нагружения указывает на усталостный характер процесса разрушения.
В первом приближении о рациональности активизации зубьев ковша экскаватора можно судить по величине сопротивления грунта разрушению Рр при этом условием оптимизации является соблюдение требования Рр ^ min.
Однако минимальное значение Рр является необходимым, но недостаточным условием оценки эффективности процесса разрушения мерзлого грунта ковшом экскаватора с активными зубьями. При работе экскаватора производится послойная разработка грунта с различной толщиной стружки h. Увеличение толщины стружки вызывает рост сопротивления разрушению, в то же время растет и объем разрушаемого грунта. Поэтому в качестве оценки эффективности процесса разработки следует принимать удельную энергоемкость разрушения E, которая определяется отношением затраченной мощности N к интенсивности разрушения грунта i (Дж/м3)
^ N
E = —. (7)
i
Интенсивность разрушения, т.е. производительность рабочего органа при прохождении участка bc (рис. 1), определяется отношением объема разрушенного грунта V к времени t, затраченному на разрушение.
На основании ранее принятого допущения о полном разрушении грунта между активными зубьями, объем разрушенного грунта может быть определен по формуле
V = "la^B + 2КШ), (8)
2Sina ■ Ьтщ
25 30
Рис. 2. Зависимость угла отрыва Ц1 от угла резания а
где В - ширина ковша.
Время, затраченное на разрушение данного объема грунта, будет складываться из времени внедрения 1в и времени отрыва 1о от массива, V„ - скорость перемещения рабочего органа.
В свою очередь время внедрения рабочего органа определяется временем подготовки (разупрочнения) грунта и временем прохождения участка Ь6: г Ъё
■ + —. (9)
/ V
Л п
Время отрыва грунта от массива определяется как время прохождения участка 6с: ёс
К = V . (10)
'в =
Полное время разрушения объема грунта V
z • Vn + f^L
' = 'в + 'о =
(11)
(12)
f-V
J п
где L -длина участка bc;
I = h(aga+agr)=
Sin а - Ьтщ Используя выражения (8), (11), (12) и произведя соответствующие преобразования, получим выражение для определения интенсивности разрушения i:
. = h2-f-Vn-(Б + 2h-Ctg¥)-Sm(a + ¥) (13) 2[z- Vn - Sina - Sin^ + f -h- Si"a + y/)\
Угол отрыва у принимаем в зависимости от угла резания а из рис. 2.
Тогда выражение для удельных энергозатрат на перемещение ковша примет вид
Рк - Vn
En =
1 К ' п
2Рр[г-V • 8гги-$>1щ+/• И• 81г{а+у)\ , (14)
= И2 • /{Б+2И • Сду) ■ 81г{а+у) • Со{сс-у/2) здесь РК - касательная составляющая сопротивления грунта разрушению; Y - угол заострения зуба.
X
+
x
Потребляемая вибровозбудителями мощность определяется произведением силы Р, с которой активный зуб ковша действует на грунт, на колебательную скорость Аш, поделенным на коэффициент полезного действия вибровозбудителя п
п-Е-Ла 6п■ ж- Ь-Л2а- Е (1 -у)
NВ =-=-1-^-. (15)
П (7-V-8у
Разделив мощность N на интенсивность разрушения, найдем удельные энергозатраты на привод вибровозбудителей:
12['Уп' Б1т- Б1пц+/ ■ к■ 81Пос+^)-п-ж- Ь-А т-Е(1-у)
ЕВ ="
к2 ■ / ■ Уп(в+2к■ аЦ-Бп(а+ц))
7-у-8У
.(16)
■п
Суммируя удельные энергозатраты на перемещение ковша и на привод вибровозбудителей, получим удельную энергоемкость процесса разработки мерзлого грунта ковшом экскаватора с активными зубьями: Еуд = Еп + Ев . (17)
Подставив в (17) выражения (6), (14) и (16), получим математическую модель процесса разрушения мерзлого грунта ковшом экскаватора с активными зубьями:
Е =
2п Ц z ■У ■ Бта ■ Бтц + / ■ к ■ Бт (а + к2 ■ / ■ (В + 2к ■ СБт (а + ц)
Б
Cos (а - у / 2)
2 2 ар-Ь + 2 Е ■ г0 ■ут /ЗО^/ I ж ф
■Ш | - + -
4 2
1 + 0, 5z■ т2 / Т
)
z ■ Ь ■ Ла п ■ с1
-■А
+ п ■ к ■ Ctg ц
Бта
■■к (1 -V2 )
2
ар ■ I
2
2Е ■ То ■УТ
ЗО/
(18)
6 п ■ Ь ■ Л? а Е (1 -у) +-----
(7 -V- 8v) • п ■У]
Выражение (18) представляет собой целевую функцию, а критерием оптимальности рабочего процесса является минимум удельной энергоемкости. Основными путями снижения энергоемкости являются увеличение производительности и снижение сопротивления грунта разрушению. Увеличение производительности можно осуществить за счет повышения толщины стружки, что в свою очередь вызовет рост сопротивления разрушению. Снижение сопротивления разрушению достигается повышением колебательной скорости и увеличением числа циклов нагружения, чрезмерное увеличение которых может привести к росту удельной энергоемкости процесса.
Из этого следует, что основными параметрами, оказывающими влияние как на сопротивление разрушению, так и на удельную энергоемкость процесса являются толщина стружки h и колебательная скорость Аш. При рациональных значениях этих параметров функция Еуд согласно формуле (18), достигает экстремального значения.
х
Библиографический список
1.Чеботарев Ю.И., Мельников А.В. Изменение прочностных свойств в горных породах при динамическом нагружении // Горный журнал. 1991. № 4. С. 6-8.
2. Тюмин В.Н. Введение в теорию излучения и рассеивания звука. М.: Наука, 1976. 254 с.
3. Партон В.З., Морозов Е.М. Механика упруго-пластического разрушения. М.: Наука, 1974. 416 с.