Научная статья на тему 'КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И АНАЛИЗ ПОВЕРХНОСТИ ХИРШФЕЛЬДА 7-((6-ГИДРОКСИ-2,5,5,8А-ТЕТРАМЕТИЛ-1,4,4А,5,6,7,8,8А-ОКТАГИДРОНАФТАЛИН-1-ИЛ)МЕТОКСИ)-2Н-ХРОМЕН-2-ОНА, ВЫДЕЛЕННОГО ИЗ КОРНЕЙ FERULA PERSICA: НОВЫЙ ЭНАНТИОМОРФ ПРИ 100 К'

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И АНАЛИЗ ПОВЕРХНОСТИ ХИРШФЕЛЬДА 7-((6-ГИДРОКСИ-2,5,5,8А-ТЕТРАМЕТИЛ-1,4,4А,5,6,7,8,8А-ОКТАГИДРОНАФТАЛИН-1-ИЛ)МЕТОКСИ)-2Н-ХРОМЕН-2-ОНА, ВЫДЕЛЕННОГО ИЗ КОРНЕЙ FERULA PERSICA: НОВЫЙ ЭНАНТИОМОРФ ПРИ 100 К Текст научной статьи по специальности «Медицинские науки и общественное здравоохранение»

CC BY
3
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Ferula persica / extraction / chromatography / spectroscopy / crystalline structure / enantiomorph / O—H···O hydrogen bonds / C—H···π interactions / redetermination / Hirshfeld surface analysis. / Ferula persica / экстракция / хроматография / спектроскопия / кристаллическая структура / энантиоморф / водородные связи O—H···O / C—H···π взаимодействия / переопределение / анализ поверхности Хиршфельда.

Аннотация научной статьи по медицинским наукам и общественному здравоохранению, автор научной работы — E. G. Karimli, G. Mamedov, V. N. Khrustalev, M. Akkurt, A. N. Khalilov

An ethanol extract was obtained from the underground part of Ferula persica Wild., collected during the fruiting phase, which, after the solvent removal, was chromatographed on a column with neutral “Alumina” (II degree of activity) and eluted with hexane, benzene, and their mixtures in a gradient of increasing polarity. As a result, 7-((6-Hydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methoxy)-2H-chromen-2-one (conferol - m.p. 137–138 ºC), was isolated. To confirm the structure, we used X-Ray, NMR 1H, 13C NMR, DEPT, COSY, HSQC, and HMBC methods. It has been previously mentioned about crystalline structure of the given compound C24H30O4, isolated from F. persica roots at room temperature. Unlike literature data in this study crystalline structure was determined with higher precision at 100 K (-173 ºC). The compound being investigated consists of octahydronaphthalene fragment, attached to the chromen-2-one fragment through an oxymethylene bridge. The title compound is a new enantiomorph of the one reported previously. In the crystal the molecules are connected by C—H···O hydrogen bonds along the c-axis forming the layers parallel to the (010) plane, while molecules are linked by O—H···O hydrogen bonds, which generate R22(6) motifs along the a-axis. The C—H···π and van der Waals interactions between these layers stabilize and maintain the structure. The Hirshfeld surface analysis indicates that the most important contribution to the crystal packing are from H···H (58,3%), O···H/H···O (21,8%) and C···H/H···C (19,7%) contacts.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

CRYSTALLINE STRUCTURE AND HIRSHFELD SURFACE ANALYSIS OF 7-((6-HYDROXY-2,5,5,8A-TETRAMETHYL-1,4,4A,5,6,7,8,8A-OCTAHYDRONAPHTHALEN-1-YL)METHOXY)-2H-CHROMEN-2-ONE ISOLATED FROM FERULA PERSICA ROOTS: A NEW ENANTIOMORPH AT 100K

Из подземной части Ferula persica Wild., собранной в фазу плодоношения, получали этанольный экстракт, который после удаления растворителя хроматографировали на колонке с нейтральным «оксидом алюминия» (II степень активности) и элюировали гексаном, бензолом и их смесями с постепенно возрастающей полярностью. В результате был выделен 7-((6-гидрокси-2,5,5,8а-тетраметил-1,4,4а,5,6,7,8,8 а-октагидронафталин-1-ил)метокси)-2Н-хромен-2-он (конферол – т.пл. 137–138 °C). Для подтверждения его структуры использовали методы рентгенографии, ЯМР 1H, ЯМР 13C, DEPT, COSY, HSQC и HMBC. Ранее сообщалось о кристаллической структуре названного соединения C24H30O4, изолированного из корней F.persica при комнатной температуре. В отличие от литературных данных, в этом исследовании кристаллическая структура определена с более высокой точностью при 100 К (-173 ºC). Исследуемое соединение состоит из фрагмента октагидронафталина, присоединенного к фрагменту хромен-2-он через оксиметиленовый мостик. Титульное соединение является новым энантиоморфом соединения, о котором сообщалось ранее. В кристалле молекулы соединены водородными связями C—H···O вдоль оси c, образуя слои, параллельные плоскости (010), в то время как молекулы связаны водородными связями O-H···O, которые генерируют структурные R22(6) вдоль оси a. Взаимодействия C—H···π и ван-дер-Ваальса между этими слоями стабилизируют и поддерживают структуру. Анализ поверхности Хиршфельда показывает, что наиболее важный вклад в упаковку кристаллов вносят контакты H···H (58,3%), O···H/H···O (21,8%) и C···H/H···C (19,7%).

Текст научной работы на тему «КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И АНАЛИЗ ПОВЕРХНОСТИ ХИРШФЕЛЬДА 7-((6-ГИДРОКСИ-2,5,5,8А-ТЕТРАМЕТИЛ-1,4,4А,5,6,7,8,8А-ОКТАГИДРОНАФТАЛИН-1-ИЛ)МЕТОКСИ)-2Н-ХРОМЕН-2-ОНА, ВЫДЕЛЕННОГО ИЗ КОРНЕЙ FERULA PERSICA: НОВЫЙ ЭНАНТИОМОРФ ПРИ 100 К»

Вестник фармации №4 (102), 2023 Научные публикации

ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

UDK 547. 314+548.11 DOI: https://doi.Org/10.52540/2074-9457.2023.4.61

E. G. Karimli1'2, i. G. Mamedov6, V. N. Khrustalev34, M. Akkurt5, A. N. Khalilov67, A. M. Mamedov8, Y. B. Kerimov1, S. J. Ibadullayeva2, A. N. Aleskerova2

CRYSTALLINE STRUCTURE AND HIRSHFELD SURFACE ANALYSIS OF 7-((6-HYDROXY-2,5,5,8A-TETRAMETHYL-1,4,4A,5,6,7,8,8A-

OCTAHYDRONAPHTHALEN-1-YL)METHOXY)-2H-CHROMEN-2-ONE ISOLATED FROM FERULA PERSICA ROOTS: A NEW ENANTIOMORPH AT 100K

Azerbaijan Medical University, Baku, Azerbaijan, 2Institute of Botany, Ministry of Science and Education of the Republic of Azerbaijan,

Baku, Azerbaijan, 3Peoples' Friendship University of Russia, Moscow, Russian Federation, 4N. D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russian Federation,

5Erciyes University, Kayseri, Turkey, 6Baku State University, Baku, Azerbaijan, 7Azerbaijan State Economic University, Baku, Azerbaijan, 8Institute of Petrochemical Processes named after Academician Y. G. Mammadaliyev,

Baku, Azerbaijan

An ethanol extract was obtained from the underground part of Ferula persica Wild., collected during the fruiting phase, which, after the solvent removal, was chromatographed on a column with neutral "Alumina" (II degree of activity) and eluted with hexane, benzene, and their mixtures in a gradient of increasing polarity. As a result, 7-((6-Hydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl) methoxy)-2H-chromen-2-one (conferol - m.p. 137-138 °C), was isolated. To confirm the structure, we usedX-Ray, NMR H, 13C NMR, DEPT, COSY, HSQC, and HMBC methods. It has been previously mentioned about crystalline structure of the given compound C24H30O4, isolatedfrom F. persica roots at room temperature. Unlike literature data in this study crystalline structure was determined with higher precision at 100 K (-173 °C). The compound being investigated consists of octahydronaphthalene fragment, attached to the chromen-2-one fragment through an oxymethylene bridge. The title compound is a new enantiomorph of the one reported previously. In the crystal the molecules are connected by C—H-O hydrogen bonds along the c-axis forming the layers parallel to the (010) plane, while molecules are linked by O—H-O hydrogen bonds, which generate R22(6) motifs along the a-axis. The C—H- n and van der Waals interactions between these layers stabilize and maintain the structure. The Hirshfeld surface analysis indicates that the most important contribution to the crystal packing are from H-H (58,3%), O-H/ H- O (21,8%) and C-H/H-C (19,7%) contacts.

Keywords: Ferula persica, extraction, chromatography, spectroscopy, crystalline structure, enantiomorph, O—H-O hydrogen bonds, C—H—n interactions, redetermination, Hirshfeld surface analysis.

INTRODUCTION

The genus Ferula L. belongs to the Apiaceae family, which comprises over 160 species and is spread throughout the world, including the Mediterranean region, Central Asia, Siberia, China, Afghanistan, Iran, North Africa and the Caucasus [1, 2]. This genus is considered a good source of biologically

active compounds including sesquiterpene lactones and sesquiterpene coumarins [3, 4].

The scientific literature mentions information about the isolation and identification of four coumarins farnesiferol A, farnesiferon A, badrakemon, gummosin from the underground part of Ferula persica (F. persica), and badrakemon, farnesiferon A and farnesiferol A from the aerial parts of it.

Moreover, the configuration of badrakemin and gummosin was confirmed [5-7].

In a methanolic extract of the dried roots of F. persica were discovered four sesquiterpene coumarin glycosides, persicaosides A-D and two known phytosterol glucosides; sitosterol 3-O-P-glucoside and stigmasterol 3-O-P-glucoside [8]. Osthole, sitosterol, L-chimgin, L-chimganin were obtained from F. persica growing in Azerbaijan [9]. Luteolin, apigenin, cynaroside, cosmosiin, quercetin, rutin were isolated from the aerial part of F. persica [10, 11]. Isolated sesquiterpene coumarins and polysulfides from F. persica have cytotoxic, antibacterial, antifungal [12], antileishmaniasis, chemopreventive action against cancer, and an inhibitory effect on lipoxygenase [13]. Extracts of Ferula species exhibit antimicrobial and estrogenic effects and are natural plant growth inhibitors and stimulants. Therefore, they have long been well-known in folk medicine in the treatment of various health disorders, such as cough, asthma, toothache and gastroenteric problems [14-16]. These plants have been used for oleo-gum resin, plant extracts, and essential oils. Nevertheless, it has been approved that the essential oils and extracts of different species of Ferula can also be used as natural food preservatives due to their antioxidant and antimicrobial activity [17, 18].

Herein, in the framework of our ongoing structural studies [19-23], we have also studied the crystal structure and Hirshfeld surface analysis of 7-((6-hydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methoxy)-2H-chromen-2-one which has been isolated and then identified from the roots of F. persica.

MATERIAL AND METHODS

The purity of the isolated compounds was determined by using TLC plates "Silufol UV-254", by measuring melting point via the device Stuart SMP10. The spots of the plates were detected by using iodine vapor, UV lamp light at 254 nm and 365 nm. As a mobile phase hexane: benzene (8:2) were used. UV spectra were recorded on a Varian Cary 50 Scan spectrophotometer; IR spectra were recorded on a Bruker ALPHA IR-Fourier spectrometer; 300 MHz for 1H and 75 MHz for 13C nuclei (solvent CDCb). Chemical shifts are given on the 5 scale (ppm). Internal standard TMS. X-Ray structure of a single

crystal (1) obtained by using a Bruker APEX-II diffractometer.

Plant materials F. persica plants were collected during the fruiting period on 20.07.2021 in the Republic of Azerbaijan (Jangi village, Gobustan district; 40°30'03.04'' C 49°15'33.11" B 356 m a.s.l.).

Extraction and Isolation. Getting the sum of extractive substances. 2 kg of finely ground air-dried roots of the part was extracted three times with ethyl alcohol (> 99% Merck KGaA, EMD Millipore Corporation) for three days. The extract was filtered off, the alcohol was distilled off on a water bath using a rotary evaporator. The residue is 146 g dark brown resin (yield, 7,3%).

Сhromatography sum of extractives. 70 g of the extractives was dissolved in a small amount of alcohol and chromatographed on a column filled with alumina oxide (neutral, grade II act. h = 1,20, d = 4,5 cm) in the ratio of the weight of the extract: weight with aluminium oxide - 1 : 10 eluent hexane : benzene (8 : 2).

RESULTS AND DISCUSSION

Chromatographic isolation with a mixture of hexane and benzene in the ratio (7:3) in fractions revealed white crystals of composition С24Н30О4 with mp. 137-138 °C (from aqueous EtOH alcohol).

UV (Xmax, 212, 242, 258, 324 nm) and IR [Vmax, cm-1 3479 (OH), 2922, 2855 (СН, CH2, CH3), 1708 (СО-5-lactone), 1608, 1555, 1507 (aromatic core)] spectral data allowed the test substance to be classified as a derivative of sesquiterpenoid coumarin.

The 1H NMR spectrum of coumarin shows that it is a terpenoid ester of umbelliferone. In the region of SH 6,23-7,65 ppm there are signals from five protons of 7-hydroxy-substituted coumarin. Protons of three of tertiary methyl and one vinylmethyl groups -singlets at SH 0,93, 0,94, 0,98. 1,70 ppm (3H each) have been detected from the 1H NMR spectrum. The terpenoid residue С15Н25О contains three methyl groups at saturated quaternary carbon atoms SH (0,93, 0,94, 0,98 ppm 3H each). Signals for the olefinic proton at SH 5,55-5,56 ppm (1H) (broadened singlet) and vinylmethyl groups at SH 1,70 ppm. (3H) (broadened singlet) indicate the presence of the HC=C-CH3 fragments in the molecule. The terpenoid residue is attached to the hydroxy group of umbelliferone through a methylene

group, two quartets centered at 4,18 and 4,03 ppm. with a general intensity of two proton units of 4,18 ppm. (Jgem= 9,75 Hz, J™=3,45 Hz) and 4,03 ppm (Jgem= 9,6 Hz, Jvic= 6 Hz) due to the grouping of ArOCH- The nature of the splitting of the signal of this group indicates that it is located at the secondary atom. Then the terpenoid part connection contains a fragment (fotmula 1).

In HMBC (!H 13C) spectrum H-11'/C-8, 9,

10; H-37C-1', 5'; H-5/C-4', 7', 14'; H-3/C-2', H-4/C-2, 5, 9; H-5/C-4, 7, 9; H-6/C-8, 9, H-137C-4', H-14'/C-4'; H-157C-10' give a correlation (figure 1). In the ^H COSY spectrum of H-3/H-4; H-4/H-3; H-5/H-6; H-6/H-5, H-11'a/H-11'b; H-5'/H-6' give a correlation (figure 1).

The 13C NMR spectrum, taken with complete suppression of spin-spin interaction with protons, reveals 24 singlet signals, which corresponds to the number of carbon atoms in the elemental composition of the compound. NMR and HSQC correlation data for compound are presented in (table 1).

Figure 1. - Structures of compound conferol

Table 1. - 'H (300 MHz) and 13C (75 MHz) NMR Data of compound (CDCI3, 5, ppm (J/Hz)

HSQC

Atom С Se Sh Atom С Sc Sh

2 161,27 (-С=О) 4' 37,20 (-С-)

3 112,97 (-СН=) 6,25 (1Н, d, J=9,6) 5' 43,38 (-СН-) 1,73 (1H, m)

4 143,44 (-СН=) 7,64 (1Н, d, J=9,3) 6' 23,21 (-СН2-) 1,97 (2H, m)

5 128,69 (-СН=) 7,36 (1Н, d, J=8,7) 7' 123,21 (-СН=) 5,56 (1H, br. s.)

6 113,18 (-СН=) 6,85 (1Н, к, Jai=2,4) 8' 132,51(>С=)

7 162,10(>С=) 9' 53,52 (-СН-) 2,34 (1H, br. s.)

8 101,35 (-СН=) 6,82 (1Н s) 10' 35,64 (-С-)

9 155,94(>С=) 11'a 11'b 67,08 (-СН2О-) 4,18 (1H, K, Jgem= 9,75, Jvic=3,45) 4,03 (1H, K, Jgem= 9,6, Jvic= 6)

10 112,45 (>С=) 12' 22,36 (-СН3) 1,70 (3H, s)

1' 31,80 (-СН2-) 1,75 (2Н, m) 13' 28,09 (-СНэ) 0,98 (3H, s)

2' 25,15 (-CH2-) 1,69 (2Н, m) 14' 21,74 (-СНэ) 0,94 (3H, s)

3' 75,78 (-СН-) 3,49 (1H, br. s) 15' 14,81 (-СН3) 0,93 (3H, s)

1,54(br. s,OH)

The title compound (figure 2) consists of octahydronaphthalene rings (C10-C14/C19 and C14-C19), attached to the chromen-2-one moiety through an oxymethylene bridge. Octahydronaphthalene rings C10-C14/C19 and C14-C19 adopt half-chair and chair conformations for puckering parameters [24]

are Qt = 0,5458 (15) A, 9 = 49,18 (17)° and 9 = 273,3 (2)°, and Qt = 0,5405 (15) A, 9 = 9,33 (16)°and 9 = 188,4 (10)°, respectively, with the equatorial hydroxyl at C16, and the C11-C12 olefinic bond. All of the bond angles and bond lengths were within the normal range.

Figure 2. - The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, the minor disorder

component is not shown

In (figure 3), there is the overlap of the previous structure with room data solved and the last structure solved at 100 K. The overlap images taken in the (100) and

(010) planes show that both molecules have mirror symmetry of each other. Therefore, both molecules are enantiomorphs of each other.

Figure 3. - Overlapping images of two molecules determined at room temperature (green) and 100K (purple) in (a) (100) plane and (b) (010) plane

Six compounds similar to the 1,2,3,4,4a,-5,8,8a-octahydronaphthalene group are (E)-3-[(1R*,2S*,4aS*,8aR*)-2-(benzo[d] [1,3]dioxol-5-yl)-1,2,4a,5,6,7,-8,8a-octahydronaphthalen-1-yl]-N-isobutylacrylamide} ((I):[25], 3-(4-Bromophe-nyl)-l-[4-(4-bromophenyl)- 3-butene-2-one-1-yl ]-2-[ 3-( 2,6,6-trimethyl- 1-cyclohexene-l-yl)-2-propene-1-one-1- yl]-l,2,3,4,5,6,7,8-octa-hydro-8,8-dimethyl-naphtalene((II):[26],(+/-)-3p-Bromo-2p-methyl-4aP H,8aaH-decahyd-ronaphthalen-2a-ol ((IIl):[27], (2R,3R,5R)-2-[(2R,3aS,6aR)-2,3,3a,- 4,5,6a-Hexahydrofuro -[2,3-b]furan-2- yl]-5-isopropenyl-2,3-dimethy-lcyclo- hexanone ((IV): [28] (4aR,5S,7R)-5-isopro-penyl-7,8,8-trimethyl-2,3,4,4a,-5,6,7,8-octahydronaphthalene- 4a-carbonitrile ((V): [28].

In the crystal of (I), molecules are linked by N—H O hydrogen bonds, forming chains propagating along [100]. The chains are linked by pairs of C—H O hydrogen bonds, involving inversion-related benzodioxole ring systems, forming ribbons lying parallel to (010). There are also C—H-n interactions present within the ribbons (II) in the structure of a new octahydronaphthalene. Disorder in the crystals arises from the coexistence of the two possible puckered conformations of the dimethylcyclohexene rings.

In (III), the trans-fused six-membered rings are chair-shaped but somewhat flattened. (IV), and (V) are the molecular structures of two chiral cyclohexanones based on R-(-)-carvone. The six-membered ring in

(IV) is in a chair conformation with the two fused five-membered rings of the furofuranyl substituent in a cis configuration. Compound

(V) contains a decalin group; one ring has the chair form whilst the other is in a half-boat conformation.

In the title compound studied at room temperature [29], space group: P 2i2i2i(19), a = 6,1621 (7) A, b = 18,3914 (19) A, c = 18,621 (2) A, a = 90,00°, p = 90,00°, y = 90,00°, V = 2110,3 (4) A3, Z = 4, T =

273 (2) K. Cyclohexane rings adopt chair and half- chair conformations, respectively. We determined the title structure which is a new enantiomorph at low temperature (100 K), to precise determination of unit cell parameters, unit volume and bond lengths and bond angles. Space group: P 2i2i2i (19), a = 6,08556 (3) A, b = 18,20929 (11) A, c = 18,58004 (11) A, a = 90°, p = 90°, y = 90 , V = 2058,92 (2) A3, Z = 4, T = 100 K.

At 100K,numberofmeasured, independent and observed [I > 2o(I)] reflections are 27476, 4382 and 4286, respectively. Rmt = 0,025. R[F2> 2o(F2)], wR(F2) and S are 0,029, 0,078 and 1,03, respectively. At room temperature, number of measured, independent and observed [I > 2o(I)] reflections are 12098, 2164 and 1680, respectively. Rmt = 0,046. R[F2> 2o(F2)], wR(F2) and S are 0,040, 0,099 and 1,04, respectively. Apmax and Apmm are 0,16 and -0,21 e.A-3, respectively. As a result, the values of the bond lengths and angles and hydrogen bonds etc. were also revealed more precisely at low temperature.

Supramolecular features and Hirshfeld surface analysis

In the crystal, the molecules are connected by C—H--O hydrogen bonds along the c-axis, forming layers parallel to the (010) plane, while molecules are linked by O—H--O hydrogen bonds, which generate R22(6) motifs along the a-axis [30], (table 2, figures 4-6).

The C—and van der Waals interactions between these layers stabilize and maintain the structure (tables 2 and 3, figure 7).

Hirshfeld surfaces and two-dimensional fingerprint plots were produced using Crystal Explorer17.5 to quantify the intermolecular interactions in the crystal [31]. The Hirshfeld surface mapped over de norm in the range -0,3269 to +1,7684 a.u. (figure 8) shows the intermolecular contacts as red-colored spots, which indicate the O—H---O and C—H---O hydrogen bonds.

Table 2. - H ydrogen-bond geometry (A, °)

D—H---A D—H H--A D---A D—H--A

O16—H16O-O1Í 0,83 (3) 2,31 (3) 3,0711 (15) 152 (3)

C3—H3--O2" 0,95 2,41 3,2425 (19) 146

C8—H8--O16ffi 0,95 2,55 3,2515 (18) 130

C12—H12-Cg1iv 0,95 2,65 3,4295 (17) 140

C16—H16-Cg2v 1,00 2,70 3,5913 (16) 148

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x-1/2, -y+1/2, -z; (iii) x+1/2, -y+1/2, -z+1; (iv) -x+3/2, y+1, z+1/2; (v) -x, y+1/2, -z+3/2.

The two-dimensional fingerprint plots are presented in figure 9. The H---H contacts comprise 58,3% of the total interactions. The O-H/H-O (21,8%) and C-H/H-C

(19,7%) interactions also make significant contributions to the total Hirshfeld surface. The O--C/C--O contact contributes 0,2% of the total.

Figure 4. - View of the packing of the title compound with the O—H • O and C—H O hydrogen bonds along the a-axis. H atoms not involved in hydrogen bonding have been

omitted for clarity

Figure 5. - View of the same interactions of the title compound in figure 3 along the b-axis

66

BecmmiK (papAiaifuu №4 (102), 2023 HctyuHbie nydjiUKCtnuu

b

Figure 6. - View of the same interactions of the title compound in figure 3 along the c-axis

Figure 7. - View of the C—interactions of the title compound along the a-axis

67

Вестник фармации №4 (102), 2023 Научные публикации

Table 3. - Summary of short interatomic contacts (A) in the title compound

C2-H12 2,82 3/2 - x, 1 - y, - 1/2 + z

O1-H16O 2,31 1/2 + x, 1/2 - y, 1 - z

O2--H3 2,41 1/2 + x, 1/2 - y, - z

H16O--H22A 2,59 - 1 + x, y, z

C3--H20A 3,06 1 - x, - 1/2 + y, 1/2 - z

H13A--H5 2,35 1/2 - x, 1 - y, 1/2 + z

H22A--H16O 2,59 1 + x, y, z

Figure 8. - (a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of -0,3269 to +1,7684 a.u.

Figure 9. - The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) H--H, (c) O---H/H---O and (d) C---H/H---C interactions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively]

Crystal data, data collection and structure refinement details are summarized in table 4. The H atom of the OH group was located in a differencemap, andrefinedfreely [O16—H16= 0,83 (3)°A]. All H atoms bound to C atoms

were positioned geometrically and refined as riding with C—H = 0,95 (aromatic), 0,99 (methylene), 0,98°A (methyl), and 1,00°A (methine), with ^(H) = 1,5 ^(C) for methyl H atoms and 1,2^eq(C) for all others.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Table 4. - Experimental details

Chemical formula C24H30O4

Mr 382,48

Crystal system, space group Orthorhombic, P212121

Temperature (K) 100

a, b, c (À) 6,08556 (3), 18,20929 (11), 18,58004 (11)

V (À3) 2058,92 (2)

Z 4

Radiation type Cu Ka

^ (mm-1) 0,66

Crystal size (mm) 0,10 x 0,05 x 0,03

Diffractometer XtaLAB Synergy, Dualflex, HyPix

Absorption correction Gaussian CrysAlis PRO 1.171.42.72a ([32] Rigaku OD, 2022) Numerical absorption correction based on gaussian integration over a multifaceted crystal model

Tmin, Tmax 0,927, 1,000

No. of measured, independent and observed [I> 2o(I)] reflections 27476, 4382, 4286

Rint 0,025

(sin 9A,)max (À-1) 0,634

R[F2> 2o(F2)], wR(F2), S 0,029, 0,078, 1,03

No. of reflections 4382

No. of parameters 261

H-atom treatment H atoms are treated by a mixture of independent and constrained refinement

Apmax, Apmin (e À-3) 0,31, -0,18

Absolute structure Flack x is determined using 1802 quotients [(I+)-(I-)]/[(I+)+(I-)] ([33] Parsons & Flack, 2004).

Computer programs: CrysAlis PRO 1.171.42.72a ([32]Rigaku OD, 2022), [34] SHELXT 2014/5 (Sheldrick, 2015a), [35] SHELXL 2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows [36] (Farrugia, 2012),PLAT0N[37] (Spek, 2020).

CONCLUSIONS

From the ethanolic extract of the roots of F. persica collected during the fruiting phase, C24H30O4 (with m.p. 137-138 °C) was isolated by column chromatography (aluminium oxide as a stationary phase).

Via X-Ray, NMR >H, 13C NMR, DEPT, COSY, HSQC, and HMBC methods the structure of 7-((6-Hydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methoxy)-2H-chromen-2-one (conferol) is confirmed.

The crystal structure of the 7-((6-Hydroxy-

2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methoxy)-2H-chromen-2-one has been reported previously at room temperature. In contrast to the literature, the crystal structure of the isolated compound determined with greater accuracy at l0o K as a new enantiomorph. The title compound consists of two trans-fused cyclohexane rings, attached to the chromen-2-one moiety through an oxymethylene bridge. Cyclohexane rings adopt half-chair and chair conformations, respectively. The title compound is a new enantiomorph of the one reported.

Вестник фармации №4 (102), 2023 Acknowledgements

This study was supported by Baku State University, Azerbaijan Medical University and the RUDN University Strategic Academic Leadership Program.

РЕЗЮМЕ

Э. Г. Керимли, И. Г. Мамедов, В. Н. Хрусталев, М. Аккурт, А. Н. Халилов, А. М. Мамедов, Ю. Б. Керимов, С. Д. Ибадуллаева, А. Н. Алескерова КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

И АНАЛИЗ ПОВЕРХНОСТИ ХИРШФЕЛЬДА 7-((6-ГИДРОКСИ-2,5,5,8А-ТЕТРАМЕТИЛ-1,4,4А,5,6,7,8,8А-ОКТАГИДРОНАФТАЛИН-1-ИЛ) МЕТОКСИ)-2Н-ХРОМЕН-2-ОНА, ВЫДЕЛЕННОГО ИЗ КОРНЕЙ FERULA PERSICA: НОВЫЙ ЭНАНТИОМОРФ ПРИ 100 К Из подземной части Ferula pérsica Wild., собранной в фазу плодоношения, получали этанольный экстракт, который после удаления растворителя хромато-графировали на колонке с нейтральным «оксидом алюминия» (II степень активности) и элюировали гексаном, бензолом и их смесями с постепенно возрастающей полярностью. В результате был выделен 7-((6-гидрокси-2,5,5,8а-тетраметил-1,4,4а,5,6,7,8,8 а-октагидронафталин-1-ил) метокси)-2Н-хромен-2-он (конферол -т.пл. 137-138 °C). Для подтверждения его структуры использовали методы рентгенографии, ЯМР 1H, ЯМР 13C, DEPT, COSY, HSQC и HMBC. Ранее сообщалось о кристаллической структуре названного соединения C24H30O4, изолированного из корней F. persica при комнатной температуре. В отличие от литературных данных, в этом исследовании кристаллическая структура определена с более высокой точностью при 100 К (-173 °C). Исследуемое соединение состоит из фрагмента октагидро-нафталина, присоединенного к фрагменту хромен-2-он через оксиметиленовый мостик. Титульное соединение является новым энантиоморфом соединения, о котором сообщалось ранее. В кристалле молекулы соединены водородными связями C—H'O вдоль оси c, образуя слои, параллельные плоскости (010), в то время как молекулы связаны водородными связями O-H 'O, которые генерируют структур-

ные R22(6) вдоль оси a. Взаимодействия C—Н-л и ван-дер-Ваальса между этими слоями стабилизируют и поддерживают структуру. Анализ поверхности Хирш-фельда показывает, что наиболее важный вклад в упаковку кристаллов вносят контакты H---H (58,3%), O-H/H-O (21,8%) и C-H/H-C (19,7%).

Ключевые слова: Ferula persica, экстракция, хроматография, спектроскопия, кристаллическая структура, энантиоморф, водородные связи O—H-O, C—Н-л взаимодействия, переопределение, анализ поверхности Хиршфельда.

ЛИТЕРАТУРА

1. Флора Азербайджана : в 8-ми т. / Акад. наук АзССР. - Т. 6: Geraniaceae-Cornaceae. -Баку: Изд-во Акад. наук АзССР, 1955. - 540 с.

2. Mir-Babayev, N. F. Plants of the Republic of Azerbaijan with Potential Medicinal Applications. Part III / N. F. Mir-Babayev, P. J. Hough-ton // Pharmaceutical biology. - 2002. -Vol. 40, N 1. - P. 16-22.

3. Ferulol and epi-Samarcandin, Two New Sesquiterpene Coumarins from Ferula sinaica / A. A. Ahmed [et al.] // Natural Product Communications. - 2007. - Vol. 2, N 5. - P. 521524.

4. Sesquiterpene coumarins from Ferula samarkandica Korovin and their bioactivity / Kh. Kamoldinov [et al.] // Phytochemistry. -2021. - Vol. 187. - P. 112705.

5. Iranshahi, M. A new Coumarin from Ferula persica / M. Iranshahi, Gh. Amin, A. A. Shafiee // Pharmaceutical Biology. - 2004. -Vol. 42, N 6. - P. 440-442.

6. Persian Asafoetida vs. Sagapenum: Challenges and Opportunities / A. Barzegar [et al.] // Research j. of pharmacognosy. - 2020. -Vol. 7, N 2. - P. 71-80.

7. Saidzhodzhaev, A. I. Conformation of the confugration of badrakemin and gummosin /

A. I. Saidzhodzhaev, G. K. Nikonov // Chemistry of natural compounds. - 1974. - Vol. 10, N 1. -P. 12-14.

8. Polar secondary metabolites of Ferula persica roots / M. Iranshahi [et al.] // Phytochemistry. - 2008. - Vol. 69, N 2. -P. 473-478.

9. Phenol derivatives from the roots of Ferula persica / Yu. B. Kerimov [et al.] // Chemistry of natural compounds. - 1992. -Vol. 28, N 5. - P. 506.

10. Флавоноиды Ferula Persica /

B. В. Стецков [и др.] // Химия природных соединений. - 1980. - № 3. - P. 415.

11. Phytochemical Study of Methanolic

Extract of Ferula persica Willd. Inflorescence and its Antinociceptive Effect in Male Mice / S. Nasri [et al.] // J. of medicinal plants. - 2018. - Vol. 17, N 68. - P. 136-144.

12. Identification of Antifungal Compounds from Ferula persica. var. persica / R. Miijani [et al.] // Pharmaceutical Biology. - 2005. - Vol. 43, N 4. - P. 293-295.

13. Sattar, Z. Phytochemistry and pharmacology of Ferula persica Boiss.: A review / Z. Sattar, M. Iranshahi // Iran J. Basic.Med. Sci. -2017. - Vol. 20, N 1. - P. 1-8.

14. Salehi, M. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists / M. Salehi, M. R. Naghavi, M. Bahmankar // Industr. crops and products. -2019. - Vol. 139. - P. 111511.

15. Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular docking studies of new imidazolyl hydrazone derivatives / M. Tapera [et al.] // J. of molecular structure. -2022. - Vol. 1269. - P. 133816.

16. Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline / Y. Lakhrissi [et al.] // J. of molecular structure. - 2022. - Vol. 1259. -P. 132683.

17. Antioxidant and Antimicrobial Activity of Ferula Species Essential Oils and Plant Extracts and their Application as the Natural Food Preservatives / M. Daneshniya [et al.] // J. of natural products. - 2021. - Vol. 4, N 3. -P. 83-105.

18. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor / M. Chalkha [et al.] // J. of molecular structure. - 2023. - Vol. 1273. -P. 134255.

19. Synthesis, molecular and crystal structure of bis-(2,4-bis(trichloromethyl)) triazapentadieneato-1,3,5 Cu(II) and Ni(II) / A. M. Maharramov [et al.] // UNEC j. of eng. and applied sciences. - 2021. - Vol. 1, N 1. - P. 5-11.

20. Synthesis of dichlorodiazadiene derivatives based on o- and m-nitrobenzoic aldehyde / A. M. Maharramov [et al.] // UNEC j. of eng. and applied sciences. - 2022. - Vol. 2, N 1. - P. 64-74.

21. Crystal structure and Hirshfeld surface analysis of 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetrahydroisoquinoline-4-carbonitrile / F. N. Naghiyev [et al.] // Acta Crystallographica. Section E, Crystallographic Communications. -2021. - Vol. 77, N 2. - P. 195-199.

22. Crystal structure and Hirshfeld surface analysis of 7-[(6-hydroxy-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)methoxy]-2H-chromen-2-one / E. G. Karimli [et al.] // Acta

Crystallographica. Section E, Crystallographic Communications. - 2023. - Vol. 79, N 9. -P. 777-781.

23. Crystal structure and Hirshfeld surface analysis of (5aS,8aR)-3,5a-dimethyl-8-me-thylidene-2- oxododecahydrooxireno[20,30:6,7] naphtho[1,2- b]furan-6-yl (Z)-2-methyl-but-2-enoate extracted from Ferula persica / E. G. Karimli [et al.] // Acta Crystallographica. Section E, Crystallographic Communications. -2023. - Vol. 79, N 5. - P. 474-479.

24. Cremer, D. General definition of ring puckering coordinates / D. Cremer, J. A. Pople // J. of the Amer. chem. society. - 1975. - Vol. 97. -P. 1354-1358.

25. Crystal structure of obscurine: a natural product isolated from the stem bark of B. obscura / B. N. Lenta [et al.] // Acta Crystallographica. Section E, Crystallographic Communications. -2015. - Vol. 71, N 7. - P. o457-o458.

26. Ginderow, D. 3-(4-Bromophenyl)-

1-[4-(4-bromophenyl)-3-butene-2-one-1-yl]-

2-[3-(2,6,6-trimethyl-1-cyclohexene-1-yl)-2-propene-1-one-1-yl]-1,2,3,4,5,6,7,8-octahydro-8,8-dimethylnaphtalene / D. Ginderow // Acta crystallographica. Section C, Structural chem. -1996. - Vol. 52, N 1. - P. 256-259.

27. Structure of the bromohydrin of an octahydronaphthalene derivative / G. D. Fallon [et al.] // Acta crystallographica. Section B, Structural science, crystal eng. and materials. - 1992. - Vol. 48, N 2. - P. 227-230.

28. Ellis, D. D. (2R,3R,5R)-2-[(2R,3aS,6aR)-2,3,3a,4,5,6a-Hexahydrofuro[2,3-b]furan-2-yl]-5-isopropenyl-2,3-dimethylcyclohexanone and (4aR,5S,7R)-5-isopropenyl-7,8,8-tri-methyl-2,3,4,4a,5,6,7,8-octahydronaphthalene-4a-carbonitrile / D. D. Ellis, A. L. Spek // Acta crystallographica. Section C, Structural chem. -2000. - Vol. 56, N 9. - P. 1173-1175.

29. New antileishmanial sesquiterpene coumarins from Ferula narthex Boiss / S. Bashir [et al.] // Phytochemistry Letters. - 2014. -Vol. 9. - P. 46-50.

30. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals / J. Bernstein [et al.] // Angewandte Chemie (Intern. ed. in Engl.). - 1995. - Vol. 34, N 15. -P. 1555-1573.

31. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals / P. R. Spackman [et al.] // J. of applied crystallography. - 2021. -Vol. 54. - P. 1006-1011.

32. CrysAlis PRO [Electronic resource] // Rigaku. - Mode of access: https://www.rigaku. com/products/crystallography/crysalis. - Date of access: 04.05.2023.

33. Parsons, S. Precise absolute-structure determination in light-atom crystals / S. Parsons, H. Flack // Acta crystallographica. Section A,

Foundations and advances. - 2004. - Vol. 60. -P. 61.

34. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination / G. M. Sheldrick // Acta crystallographica. Section A, Foundations and advances. - 2015. - Vol. 71, N 1. - P. 3-8.

35. Sheldrick, G. M. Crystal structure refinement with SHELXL / G. M. Sheldrick // Acta crystallographica. Section C, Structural chemistry. - 2015. - Vol. 71, N 1. - P. 3-8.

36. Farrugia, L. J. WinGXandORTEP for Windows: an update / L. J. Farrugia // J. of applied crystallography. - 2012. - Vol. 45. - P. 849-854.

37. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond / A. L. Spek // Acta crystallographica. Section E, Crystallographic communications. - 2020. - Vol. 76, N 1. - P. 1-11.

REFERENCES

1. Akademiia nauk Azerbaidzhanskoi SSR. Flora of Azerbaijan : v 8-mi t. T 6. Geraniaceae-Cornaceae. Baku, Azerbaidzhan: Izd-vo Akad nauk AzSSR; 1955. 540 s. (In Russ.)

2. Mir-Babayev NF, Houghton PJ. Plants of the Republic of Azerbaijan with Potential Medicinal Applications. Part III. Pharmaceutical biology. 2002;40(1):16-22. doi: 10.1076/ phbi.40.1.16.5863

3. Ahmed AA, Mohamed AH, Ei-Ra-zek MA, Hegazy MEF. Ferulol and epi-Samarcandin, Two New Sesquiterpene Coumarins from Ferula sinaica. Nat Prod Commun. 2007;2(5):521-4. doi: 10.1177/1934578X0700200502

4. Kamoldinov Kh, Li J, Eshbakova K, Sagdullaev S, Xu G, Zhou Y et al. Sesquiterpene coumarins from Ferula samarkandica Korovin and their bioactivity. Phytochemistry. 2021;187:112705. doi: 10.1016/j.phytochem. 2021.112705

5. Iranshahi M, Amin Gh, Shafiee AA. A new Coumarin from Ferula persica. Pharmaceutical Biology. 2004;42(6):440-2. doi: 10.1080/13880200490886102

6. Barzegar A, Salim MA, Badr P, Khosravi A, Hemmati S, Seradj H et al. Persian Asafoetida vs. Sagapenum: Challenges and Opportunities. Research J of Pharmacognosy. 2020;7(2):71-80. doi: 10.22127/RJP.2019.196452.1516

7. Saidzhodzhaev AI, Nikonov GK. Conformation of the confugration of badrakemin and gummosin. Chem Nat Compd. 1974;10(1):12-4. doi: 10.1007/BF00568210

8. Iranshahi M, Mojarab M, Sadeghian H, Hanafi-Bojd MY, Schneider B. Polar secondary metabolites of Ferula persica roots. Phytochemistry. 2008;69(2):473-8. doi: 10.1016/j.phytochem.2007.08.001

9. Kerimov YuB, Abyshev AZ, Serkerov SV, Isaev DI, Bairamov PB. Phenol derivatives from the roots of Ferula persica. Chem Nat Compd. 1992;28(5):506. doi: 10.1007/BF00630666

10. Stetskov VV, Lugovskoi AI, Ban'kovs-kii AI, Pakaln DA. Flavonoids Ferula Persica. Khimiia prirodnykh soedinenii. 1980;(3):415. (In Russ.)

11. Nasri S, Nohooji MG, Amin G, Sharifi A, Borbor M, Shamohamadi F et al. Phytochemical Study of Methanolic Extract of Ferula persica Willd. Inflorescence and its Antinociceptive Effect in Male Mice. J Med Plants. 2018;17(68):136-44

12. Mirjani R, Shahverdi A, Iranshahi M, Amin G, Shafiee A. Identification of Antifungal Compounds from Ferula persica. var. Persica. Pharm Biol. 2005;43(4):293-5. doi: 10.1080/13880200590951658

13. Sattar Z, Iranshahi M. Phytochemistry and pharmacology of Ferula persica Boiss.: A review. Iran J Basic Med Sci. 2017;20(1):1-8. doi: 10.22038/ijbms.2017.8085

14. Salehi M, Naghavi MR, Bahmankar M. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511. doi: 10.1016/j. indcrop.2019.111511

15. Tapera M, Keke^muhammed H, Tüzün B, Saripinar E, Ko^yigit ÜM, Yildirim E et al. Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular docking studies of new imidazolyl hydrazone derivatives. J Mol Struct. 2022;1269:133816. doi: 10.1016/j. molstruc.2022.133816

16. Lakhrissi Y, Rboo M, Tuzun B, Hichor A, Anouor EH, Ounine K et al. Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline. J Mol Struct. 2022;1259:132683. doi: 10.1016/j. molstruc.2022.132683

17. Daneshniya M, Maleki MH, Mohammadi MA, Ahangarian K, Kondeskalaei VJ, Alavi H. Antioxidant and Antimicrobial Activity of Ferula Species Essential Oils and Plant Extracts and their Application as the Natural Food Preservatives. J Nat Prod. 2021;4(3):83-105

18. Chalkha M, Hassani AA, Nakkabi A, Tüzün B, Bakhouch M, Benjelloun AT et al. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor. J Mol Struct. 2023;1273:134255. doi: 10.1016/j.molstruc.2022.134255

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

19. Maharramov AM, Shikhaliyev NG, Zeynalli NR, Niyazova AA, Garazade KhA, Shikhaliyeva IM. Synthesis, molecular and crystal structure of bis-(2,4-bis(trichloromethyl)) triazapentadieneato-1,3,5 Cu(II) and Ni(II). UNEC j. of eng. and applied sciences. 2021;1(1):5-11

20. MaharramovAM, Suleymanova GT, Qajar AM, Niyazova AA, Ahmadova NE, Shikhaliyeva IM et al. Synthesis of dichlorodiazadiene derivatives based on o- and m-nitrobenzoic aldehyde. UNEC j. of eng. and applied sciences. 2022;2(1):64-74

21. Naghiyev FN, Grishina MM, Khrusta-lev VN, Khalilov AN, Akkurt M, Akobirshoeva A et al. Crystal structure and Hirshfeld surface analysis of 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetrahydroisoquinoline-4-carbonitrile. Acta Crystallogr E Crystallogr Commun. 2021;77(2):195-9. doi: 10.1107/ S2056989021000785

22. Karimli EG, Khrustalev VN, Akkurt M, Khalilov AN, Bhattarai A, Aleskerova AN et al. Crystal structure and Hirshfeld surface analysis of 7-[(6-hydroxy-5,5,8a-trimethyl-2-methylene-decahydronaphthalen-1-yl)methoxy]-2H-chromen-2-one. Acta Crystallogr E Crystallogr Commun. 2023;79(9):777-81. doi: 10.1107/ S2056989023006552

23. Karimli EG, Khrustalev VN, Kurasova MN, Akkurt M, Khalilov AN, Bhattarai A et al. Crystal structure and Hirshfeld surface analysis of (5aS,8aR)-3,5a-dimethyl-8-methylidene-2-oxododecahydrooxireno[20,30:6,7]naphtho[1,2-b]furan-6-yl (Z)-2-methylbut-2-enoate extracted from Ferula persica. Acta Crystallogr E Crystallogr Commun. 2023;79(5):474-9. doi: 10.1107/S205698902300333X

24. Cremer D, Pople JA. General definition of ring puckering coordinates. J Am Chem Soc. 1975;97:1354-8. doi: 10.1021/ja00839a011

25. Lenta BN, Chouna RJ, Neumann B, Stammier HG, Sewald N. Crystal structure of obscurine: a natural product isolated from the stem bark of B. Obscura. Acta Crystallogr E Crystallogr Commun. 2015;71(7):o457-8. doi: 10.1107/S2056989015010567

26. Ginderow D. 3-(4-Bromophényl)-1-[4-(4-bromophényl)-3-butène-2-one-1-yl]-2-[3-(2,6,6-triméthyl-1-cyclohexène-1-yl)-2-propène-1-one-1-yl]-1,2,3,4,5,6,7,8-octahydro-8,8-diméthylnaphtalène. Acta Crystallogr C Struct Chem. 1996;52(1):256-9. doi: 10.1107/ S0108270195008985

27. Fallon GD, Gatehouse BM, Middleton S, Vanni SP. Structure of the bromohydrin of an octahydronaphthalene derivative. Acta Crystallogr B Struct Sci Cryst Eng Mater. 1992;48(2):227-30. doi: 10.1107/S0108768191013812

28. Ellis DD, Spek AL. (2R,3R,5R)-2-[(2R,3aS,6aR)-2,3,3a,4,5,6a-Hexahydrofuro-[2,3-b]furan-2-yl]-5-isopropenyl-2,3-dimethyl-

cyclohexanone and (4aR,5S,7R)-5-isopropenyl-7,8,8-trimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalene-4a-carbonitrile. Acta Crystallogr C Struct Chem. 2000;56(9):1173-5. doi: 10.1107/ S0108270100008805

29. Bashir S, Alam M, Adhikari A, Shrestha RL, Yousuf S, Ahmad B et al. New antileishmanial sesquiterpene coumarins from Ferula narthex Boiss. Phytochem Lett. 2014;9:46-50. doi: 10.1016/j.phytol.2014.04.009

30. Bernstein J, Davis RE, Shimoni L, Chang NL. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew Chem Int Ed Engl. 1995;34(15):1555-73. doi: 10.1002/ anie.199515551

31. Spackman PR, Turner MJ, Mckinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021;54:1006-11. doi: 10.1107/ S1600576721002910

32. CrysAlis PRO [Electronic resource]. Rigaku. Mode of access: https://www.rigaku. com/products/crystallography/crysalis. Date of access: 04.05.2023 (In Russ)

33. Parsons S, Flack H. Precise absolute-structure determination in light-atom crystals. Acta Crystallogr A Found Adv. 2004;60:61. doi: 10.1107/S0108767304098800

34. Sheldrick GM. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 2015;71(1):3-8. doi: 10.1107/S2053273314026370

35. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71(1):3-8. doi: 10.1107/ S2053229614024218

36. Farrugia LJ. Win GXandORTEP for Windows: an update. J Appl Crystallogr. 2012;45:849-54. doi: 10.1107/ S0021889812029111

37. Spek AL. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr E Crystallogr Commun. 2020;76(1):1-11. doi: 10.1107/S2056989019016244

Address for correspondence:

AZ1022, Azerbaijan,

Baku, st. Bakikhanova, 23,

Azerbaijan Medical University,

tel.: +994 51 313 81 77, +994 55 373 10 01,

e-mail: kelvin83@list.ru,

Karimli E. H.

Поступила 07.09.2023 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.