Ле В. Зыонг
Конечноэлементный анализ применимости прикладных теорий расчета пьезоэлектрического устройства накопления энергии стековой конфигурации
Введение
Пьезоэлектрические устройства накопления энергии являются альтернативным источником энергии, которые позволяют собирать энергию от маломощных источников в окружающей среде, например, вибрация от качающихся мостов, движущихся механизмов и т.д. Устройства накопления энергии, в частности, пьезоэлектрические широко изучаются в различных областях техники от аэрокосмической области до бытовых устройств и этим обусловлен интерес их исследования [1 - 11].
В последнее время были изучены различные подходы к моделированию пьезоэлектрических устройств накопления энергии. Большинство моделей были созданы на основе системы с одной степенью свободы - «пружина с инерционной массой». Работы [1 - 5] посвящены построению моделей ПЭГ на основе колебаний механической системы с сосредоточенными параметрами. Использование таких систем является удобным модельным подходом, так как позволяет получить аналитические зависимости между выходными параметрами ПЭГ (потенциалом, мощностью и т.п.) и электрическими, механическими характеристиками и сопротивлением внешней электрической цепи. Задача формулируется в виде системы обыкновенных дифференциальных уравнений состоящих из уравнения движения с учетом пьезоэлектрического эффекта [2 - 4]. В работе [5] на основе этих моделей проведен учет случайных колебаний ПЭГ. В работе [6] использован метод Релея-Ритца на основе разложения по собственным формам колебаний. В работе [7] построено решение в аналитической форме для одномерной модели устройства. В работе [8] разработана
модифицированная модель [6] для определения оптимальных параметров ПЭГ. В работе [9] исследование тонкой биморфной пьезопластины проводится в рамках приближенной теории на основе уравнений Тимошенко. В работе [10] исследуется вопрос оптимизации конструкции изгибного ПЭГ в зависимости от условий крепления. Одним из средств улучшения характеристик ПЭГ является использование пьезокомпозиционных материалов, так в работе [11] представлены результаты вычислительных экспериментов по определению характеристик пористой пьезокерамики по методологии, включающей метод эффективных модулей.
В настоящей работе изучаются области применимости этих упрощенных моделей на основе строгих трехмерных математических постановок для упругих и электроупругих сред и анализа их конечноэлементных аналогов в пакете ANS YS.
1. Приближенная и точная постановка задачи
В работе рассматривается ПЭГ являющийся главным элементом устройства накопления энергии, имеющий стековую конструкцию, где активный элемент состоит из одного (рис. 1а, 1б) или нескольких слоев пьезокерамики (рис. 1в), поляризованных по толщине в форме короткого цилиндра и переходных упругих слоев такого же радиуса. Верхняя и нижняя торцевые поверхности пьезодиска полностью электродированы. Весь пакет заключен в цилиндрический корпус, жестко закрепленный по нижнему основанию. Рассматриваемое устройство включается в электрическую цепь с активным сопротивлением RH (рис. 1а).
Рис. 1. Модель ПЭГ стековой конфигурации. а) свободная боковая поверхность (первая модель); б) условия гладкого контакта (вторая модель); в) модель с несколькими слоями пьезокерамики; г) эквивалентная модель с сосредоточенными параметрами.
Рассматривается ПЭГ для двух моделей с различными механическими условиями на боковой поверхности. В первой модели (рис. 1а) только нижняя поверхность пьезоэлемента закреплена в подвижной системе и совершает вертикальные колебания вместе с ней, во второй цилиндрическая поверхность пьезоэлемента закреплена по радиальному направлению -условия гладкого контакта (рис. 1 б).
При этом задается у^) - вертикальное перемещение нижней поверхности ПЭГ:
у(/) = у0£ )( (1)
где у0 - амплитудное колебание (у0 = 0,1 мм), / - частота вынужденных колебаний в Гц.
В конструкции использовались следующие материалы: пьезоэлемент -пьезокерамика Р7Т-5Н; инерционный элемент - сталь. Значения электроупругих модулей керамики Р7Т-5Н приведены в таблице 1.
Таблица № 1
Материальные константы пьезокерамики Р7Т-5Н:
СЕ (ГПа) СЕ 12 (ГПа) СЕ 13 (ГПа) СЕ (ГПа) СЕ 44 (ГПа) е31 (Кл/м2) е33 (Кл/м2) е15 (Кл/м2) 811 / 80 833/ 80
126 55 53 117 35.3 -6.5 23.3 17 1710 1470
3
80 = 8,85 х10-12 Ф/м; плотность р = 7,5 х 103 кг/м ; £ = 0,05 - коэффициент демпфирования.
Упругие свойства изотропных материалов задаются с помощью модуля Юнга Е и коэффициента Пуассона V. Характеристики конструкционных
3 3 11
материалов - сталь: плотностьр = 7,8 х 103 кг/м ; модуль Юнга Е = 2,1 Х1011 Па; коэффициент Пуассона V = 0,3.
Эквивалентная механическая модель. Для ПЭГ стековой конфигурации, работающего на частоте близкой к собственной, эквивалентная модель с одной степенью свободы (рис. 1г) может быть построена на основе сочетания уравнений актуатора и датчика, полученного для электромеханически-связанных систем [1]:
м .и а)+сиа)+к ма) - в уа)=-м. уа)
1 (2) я
вм($) + ср Ур () + — ¥р () = 0
1Н
Из уравнений (2) можно определить значение выходного потенциала Ур по формуле [1]:
^=А, ак-а (3)
м у в V[1 - (1 + 2^а)П2 ]2 + [(24 + (1 + к] )а)П - аО3]2
ПЭГ характеризуется двумя собственными частотами: резонансная частота /п соответствует коэффициенту демпфирования 4 = 0, сопротивлению активной нагрузки Ян ^ 0 (короткое замыкание) и антирезонансная частота /ап - 4 = 0, Ян ^^ (разомкнутой цепи). Значения/„ и /а„ можно выразить в виде [1]:
1 [К и ,2
/п=пм' и ч 1+к*.у„ , (4)
/ с €??S
0 = ^, а = 2т$пСЯн , 4 =---; К = , в = -^3-р (5)
/„ „ Р Н 2М(2П У И' Ир
где V - напряжение; С - коэффициент эффективного демпфирования; Ср -
эффективная емкость. О - отношение частота; а - безразмерные постоянные времени; ке - жесткость пьезоэлектрического слоя, когда система находится в состоянии короткого замыкания; в - силовой коэффициент; К -эффективная жесткость; 8р - площадь поверхности пьезоэлемента; Ир -
высоты пьезоэлемента; и м - эффективная масса, можно записать в виде [1]
мр
м = мт , (6)
п
Mm - масса инерционная; Mp - масса пьезоэлемента; n - коэффициент
приближенной эффективной массы (в [1] принято, что коэффициент n = 3).
Основной целью работы является исследования области применимости одномерной модели (2) - (6) с помощью ее сравнения с конечноэлементным расчетом в программных пакетах ACELAN и ANSYS.
Континуальные постановки задач электроупругости. Стековое пьезоэлектрическое устройство накопления энергии (рис. 1а, 1б) представляет собой составное упругое и электроупругое тело, которое совершает малые колебания в подвижной системе координат. Прямолинейное вертикальное движение этой системы (рис. 1) задается законом y(t), в соответствии с которыми движется основание устройства. В этих условия достаточно адекватной математической моделью функционирования устройства является начально-краевая задача линейной теории электроупругости [12].
Рассмотрим некоторый пьезопреобразователь Q, представленный набором областей Qj = Qpk; k = 1,2,..., Np; j = k со свойствами
пьезоэлектрических материалов и набором областей Qj = Qem; m = 1,2,..., Ne;
j = Np + m со свойствами упругих материалов. Будем считать, что физико-
механические процессы, происходящие в средах Qpk и Qem, можно адекватно
описать в рамках теорий пьезоэлектричества (электроупругости) и упругости. Для пьезоэлектрических сред Qj = Qpk предположим, что выполняются
следующие полевые уравнения и определяющие соотношения:
PpkU + ad]pu-V-о = f;; V-D = 0, (7)
о = с* ••(£ + j-e' -E; D + qD = e; •• (e + + з* -E, (8)
£ = (Vu + VuT)/2 ; E = -Vp, (9)
где p(x) - плотность материала; u(x, t) - вектор-функция перемещений; о -тензор механических напряжений; f - вектор плотности массовых сил; D -трехмерный вектор индукции электрического поля; с* - тензор четвертого
ранга упругих модулей, измеренных при постоянном электрическом поле; е
- тензор пьезомодулей третьего ранга; £ - тензор деформаций; Е -трехмерный вектор напряженности электрического поля; ср(х, г) - функция электрического потенциала; э5 - тензор второго ранга диэлектрических проницаемостей, измеренных при постоянной деформации; ай],вй],дй -
неотрицательные коэффициенты демпфирования [12], а остальные обозначения стандартны для теории электроупругости, за исключением дополнительного индекса "]", указывающего на принадлежность к среде О
с номером /
Для сред О= 0ет с чисто упругими свойствами будем учитывать
только механические поля, для которых примем аналогичные (7) - (9) полевые уравнения и определяющие соотношения в пренебрежении электрическими полями и эффектами пьезоэлектрической связности.
К уравнениям (7) - (9) добавляются механические и электрические граничные условия, а также начальные условия в случае нестационарной задачи, среди которых отметим условие на электроде ее связанным с электрической цепью устройства накопления энергии.
1= I , (10)
„
5,,
где I - ток в цепи, который в случае свободного электрода равен нулю. В работе рассматриваются случаи подключения к электрической цепи с активным сопротивлением.
2. Численные расчеты
Как оказалось значение коэффициента приближенной эффективной массы п зависит от геометрических параметров конструкции и граничных условий. В настоящей работе изучено влияние значения высоты пьезоэлемента Ир, массы инерционной мт и площади поверхности
пьезоэлемента 5р на этот коэффициент для двух моделей в случае
свободного электрода.
В начале рассматривается влияние высоты пьезоэлемента Ир, инерционной массы Мт, и площади поверхности электрода 8р на первую резонансную частоту /п для двух модель (расчеты проводились в АКБУБ). Полученные зависимости резонансных частот от высоты пьезоэлемента Ир, изменяющейся в интервале 1 ^ 20 мм приведены на рис. 2.
„х 1СГ
1 - м = ю г, s = 1 см 2 2 -М = 5 Г, S = 1 СМ2 1 -М = ЮГ, S = 1.5СМ2
i
1.8
1 6
1.4
12
08
0 6
0.4
0 2
х 10J
-1 М = ЮГ, S = 1 СМ2 ->-2 -М = 5 Г. S = 1СМ2 -М = ЮГ, S = 1 5СМ2
А
10 12 14 16 18 20 hp (мм)
10 12 14 16 18 20
hp (мм)
а) б)
Рис. 2. а) - первая модель; б) - вторая модель.
Далее рассматривается зависимость значения коэффициента n, входящего в формулу (6), от значения высоты пьезоэлемента hp,
инерционной массы Mm и площади поверхности электрода Sp.
Значение коэффициента n находится из условия совпадения частот резонанса, вычисленных по соотношениям (4) и, рассчитанных с помощью конечноэлементной модели в пакете ANS YS (рис. 2). Полученные зависимости значения коэффициента приближенной эффективной массы n от высоты пьезоэлемента hp, инерционной массы Mm, и площади поверхности
электрода S для двух моделей представлены на рис. 3.
а) б)
Рис. 3. а) - первая модель; б) - вторая модель.
Из рис. 3 видно, что для обеих моделей значение коэффициента п возрастает с ростом высоты пьезоэлемента Ир, и площади поверхности
электрода 8р, но убывает с ростом инерционной массы Мт. Значение
коэффициента п для первой модели меньше, чем для второй модели.
В итоге можно заключить, что значение коэффициента п не равно фиксированному значению 3 (как заявили авторы в [1]). Значение коэффициента п изменяется и зависит от геометрических параметров конструкции. Для второй модели, при значении 8р = 1 см (это значение был
использовано в статье [1]), значение коэффициента п возрастает с ростом высоты пьезоэлемента Ир, и принимает значение 2,7218 (~ 3) при высоте
Ир = 20 мм. Таким образом, при использовании метода моделирования на
основе систем с сосредоточенными параметрами нужно иметь в виду, что значение коэффициента п зависит от параметров устройства. Результаты, представленные на рис. 3 позволяют в зависимости от высоты пьезоэлемента И , инерционной массы Мт, и площади 8 выбрать значение коэффициента
п.
3. Сравнение выходного потенциала
В работе рассматривается выходное напряжение ПЭГ для второй модели в зависимости от частот вынужденных колебаний, изменяющихся в интервале 10 ^ 80 кГц.
В начале сравнится выходное напряжение V, вычисленное по соотношениям (3) и У2, рассчитанное с помощью конечноэлементной модели, т.е. изучается влияние геометрических параметров устройства на значения коэффициентов п и Х = V2/ Ух. Полученные результаты показывают, что значения коэффициента п и X изменяются в зависимости от геометрических параметров устройства и величины активного сопротивления ЯН .
Так, при значении инерционной массы Мт = 10 г, площади поверхности электроде 8р = 1см , полученные значения коэффициента п и X в зависимости от значений высоты пьезоэлемент Ир, и активной сопротивления ЯН представлены в таб. 2.
Таблица № 2
Значения коэффициента п и к
Кн 0,1 кОм 1 кОм 10 кОм 0,1 МОм 1 МОм
п 1,81 1,81 1,81 1,61 1,61
Ьр = 10 мм
X 1 1 1 1,02 1,02
п 2,73 2,73 2,73 2,68 2,68
Ьр = 20 мм
1,12 1,12 1,12 1,18 1,18
Результаты, представленные в таб. 2, показывают, что значение коэффициента п равно значению, рассчитанному выше (рис. 3) при не большом активном сопротивлении ЯН. При этом полученные зависимости выходного потенциала от частот вынужденных колебаний представлены на рис. 4а и 4б для значения высоты пьезоэлемента Ир = 10 мм и Ир = 20 мм
соответственно. Значения коэффициентов п и X соответствуют таб. 2. При этом кривые 1, 2 соответствуют ЯН = 100 Ом; кривые 3, 4 - ЯН = 1 кОм; кривые 5, 6 - ЯН = 10 кОм; кривые 7, 8 - ЯН = 0,1 МОм; кривые 9, 10 - ЯН = 1 МОм;
а) - Mm = 10 г, Sp = 1 см2, hp = 10 мм б) - Mm = 10 г, Sp = 1 см2, hp = 20 мм Рис. 4. Кривые 1,3,5,7,9 соответствуют расчетам по формулам (3); кривые
2,4,6,8,10 - расчетам в ANS YS.
Сравнение результатов расчетов при установленных параметрах модели (коэффициенты пи Л) показывает достаточно хорошее их совпадение, особенно в области частот, близких к резонансной частоте.
Далее рассматривается выходное напряжение V в случаях, когда пьезоэлемент состоит из одного или двух, и четырех слоев пьезокерамики (рис. 1в). В том случае, когда устройство включено в электрическую цепь с активным сопротивлением RH = 1 кОм. Значения hp = 20 мм, Mm = 10 г и Sp = 1
см2. Полученные зависимости выходного потенциала от частот вынужденных колебаний представлены на рис. 5.
Рис. 5. - Зависимость электрического потенциала от вибрационной частоты.
Из рис. 5 видно, что значение электрического потенциала возрастает с ростом числа пьезоэлектрических слоев.
Выводы
Из приведенных выше результатов можно сделать следующий вывод, что при использовании метода моделирования систем с сосредоточенными параметрами, настройка каждой модели зависит от геометрических характеристик и конструкций модели. Метод исследования, который построен на модели с сосредоточенными параметрами дает первоначальное понимание проблемы, это приближение ограничивается одиночным режимом вибраций и в нем отсутствуют некоторые важные аспекты, связанные с формами колебаний и точным распределение деформаций, которые оказывают влияние на электрический отклик. В работе изучены области применимости модели на основе сосредоточенных параметров с одной механической степенью свободы с помощью ее сравнения с конечно-элементным расчетом в пакетах ACELAN и ANSYS. Исследование показало влияние структурных параметров на электрический отклик и необходимость учета этого обстоятельства при использовании упрощенных моделей. Проведенные расчеты результаты, которых представлены в виде графиков и таблиц позволяют выбрать рациональные коэффициенты приближенной эффективной массы n, для их использования в одномерных моделях.
Литература:
1. DuToit N.E., Wardle B.L. Expérimental vérification of models for microfabricated piezoelectric vibration energy harvesters [Text] // AIAA J, 2007. -Vol.45. - pp.1126-1137.
2. Roundy S., Wright P.K. A piezoelectric vibration based generator for wireless electronics [Text] // Smart Materials and Structures, 2004. - Vol.13. -pp.1131-1144.
3. DuToit N.E., Wardle B.L., Kim S. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [Text] // Journal of Integrated Ferroelectrics, 2005. Vol.71. - pp.121-160.
4. Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society "IEEE Standard on Piezoelectricity", IEEE, New York, 1987. -pp.1-66.
5. Adhikari S., Friswell M.I., Inman D.J. Piezoelectric energy harvesting from broadband random vibrations [Text] // Smart Materials and Structures, 2009. -Vol.18. - 115005 (pp.1-7).
6. Sodano H.A., Park G., Inman D.J. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting [Text] // Journal of Strain, 2004. - Vol.40. -pp.49-58.
7. Erturk A., Inman D.J. Analytical Modeling of Cantilevered Piezoelectric Energy Harvesters for Transverse and Longitudinal Base Motions // In: Proceeding of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, 7 -10 April 2008, Schaumburg, IL.
8. Liao Y., Sodano A.H. Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation [Text] // Smart Materials and Structures, 2008. - Vol.17. - 065026 (14pp), ISSN 0964-1726
9. Шляхин Д. А. Вынужденные осесимметричные колебания тонкой круглой биморфной пластины ступенчато переменной толщины и жесткости [Электронный ресурс] // «Инженерный вестник Дона», 2013, №1. -Режим доступа: http://ivdon.ru/magazine/archive/n1y2013/1516 (доступ свободный) - Загл. с экрана. - Яз. рус.
10. Мартыненко А.В. Исследование параметров осесимметричного изгибного пьезоэлектрического преобразователя при различных граничных условиях [Электронный ресурс] // «Инженерный вестник Дона», 2010, №3. -Режим доступа: http://ivdon.ru/magazine/archive/n3y2010/206 (доступ свободный) - Загл. с экрана. - Яз. рус.
11.Наседкин А.В., Шевцова М.С. Сравнительный анализ результатов моделирования пористой пьезокерамики методами эффективных модулей и конечных элементов с экспериментальными данными [Электронный ресурс] // «Инженерный вестник Дона», 2013, №2. - Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2013/1615 (доступ свободный) -Загл. с экрана. - Яз. рус.
12.Белоконь А.В., Наседкин А.В., Соловьев А.Н. Новые схемы конечно-элементного динамического анализа пьезоэлектрических устройств [Текст] // Прикладная математика и механика, 2002. - №.3. - С.491-501.