Научная статья на тему 'Комплекс программных средств "ПроЛит" для моделирования процессов течения и охлаждения расплавов'

Комплекс программных средств "ПроЛит" для моделирования процессов течения и охлаждения расплавов Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
79
46
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Чичко А. Н., Соболев В. Ф., Лихоузов С. Г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Комплекс программных средств "ПроЛит" для моделирования процессов течения и охлаждения расплавов»

|р|(М)ЩМ)-

- ГЫМММ) + ^ММ^^ЫМ/Х,^, (4)

Г=1 г=1-»

Г*| Г*|

I = 1,8.

Таким образом, статистическое описание ССС (марковских) дается системой из 8 интегродиффе-ренциальных уравнений, связанных друг с другом функциями поглощения и восстановления. В указанных выше работах аналогичные уравнения получены и для систем с сосредоточенными переходами.

Для систем рассматриваемого класса в литературе приведены результаты исследования задач: поиска и слежения, оптимального управления, оптимальной фильтрации.

Из данных задач к задаче прогноза (экстраполяции) близка только третья.

В [4] отмечается, что в условиях негауссовой статистики получить уравнения оптимального фильтра в замкнутой форме невозможно, и для решения задачи приходится прибегать к приближенным способам, дающим квазиоптимальное решение. Одним из наиболее распространенных при этом является способ, основанный на гауссовом приближении функций апостериорной плотности вероятности рР| (х, 1) . Как известно, в этом случае получается приближенная замкнутая система уравнений, включающая уравнения для апостериорных вероятностей

структур, уравнения оценок состояний и уравнения апостериорных корреляционных моментов, характеризующих текущую точность фильтрации. При этом к структуре оптимального фильтра дополнительно добавляется блок выработки корреляционных моментов, или блок точности. Гауссовская аппроксимация апостериорной плотности вероятности удобна тем, что получающиеся при этом алгоритмы сравнительно несложно реализовать вычислительными средствами. К сожалению, до настоящего времени отсутствуют методы оценки точности и пригодности указанной аппроксимации в задачах фильтрации, что приводит к определенным трудностям при ее применении.

Список литературы

1. Ивахненко А.Г., Зайченко Ю.П., Димитров В.Д. Принятие решений на основе самоорганизации. - М.: Сов.радио, 1976.

2. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. - М.: Горячая линия - ТЕЛЕКОМ, 2001.

3. Растригин Л.А., Эренштейн Р.Х. Метод коллективного распознавания. - М.: Энергоиздат, 1981.

4. Справочник по теории автоматического управления/ Под ред. А.А. Красовского. - М.: Наука, 1987.

5. Артемьев В.М. Теория динамических систем со случайными изменениями структуры. - М.: Высш. шк., 1979.

6. Казаков И.Е., Артемьев В.М. Оптимизация динамических систем случайной структуры. - М.: Наука, 1980.

7. Тихонов В.И., Кульман Н.К. Нелинейная фильтрация и квазикогерентный прием сигналов. - М.: Сов. радио, 1975.

8. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. - М.: Сов. радио, 1965.

КОМПЛЕКС ПРОГРАММНЫХ СРЕДСТВ "ПРОЛИТ" ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ТЕЧЕНИЯ И ОХЛАЖДЕНИЯ РАСПЛАВОВ

А.Н. Чичко, В.Ф. Соболев, С.Г. Лихоузов

Важнейшим вопросом при разработке технологии литья является выбор типа и размеров литнико-во-питающей системы, которая влияет на процесс кристаллизации и свойства отливки. Конструктор и технолог разрабатывают литниковую систему в условиях неопределенности физической картины течения расплава и его кристаллизации в форме. Это приводит к тому, что заводские литниковые системы имеют конфигурацию и размеры, далекие от оптимальных, что вызывает повышенный расход металла и энергетических ресурсов при изготовлении отливки. В то же время литниковая система оказывает влияние и на качество отливки, так как она может быть причиной образования различного рода дефектов (газовые дефекты, засоры, шлаковые включения, усадочная пористость, недоливы, спаи и т.д.).

"ПроЛит" - уникальная в своем роде компьютерная система (КС), направленная на оптимизацию процесса литья, разрабатывается в Белорусском национальном техническом университете. Математическое ядро системы "ПроЛит" основано на кле-точно-автоматных принципах моделирования, включающих дифференциальные уравнения Навье-Сток-

са, Фурье-Киргофа, уравнение неразрывности, уравнение состояния, которые решаются численными методами. Как и все зарубежные системы подобного типа (Procast, MagmaSoft, AF Solid, WinCast, 3d-Flow и т.д.), "ПроЛит" имеет импорт геометрии позволяющий вводить изображение отливки и литниковой системы в формате STL. Трехмерное изображение объекта (форма, стержень, отливка, холодильники и т.д.) с помощью встроенного генератора сетки разбивается на элементы. Каждому элементу присваиваются теплофизические характеристики (теплоемкость, теплопроводность, плотность, вязкость и др.), которые обрабатываются с помощью математического ядра.

КС "ПроЛит" позволяет визуализировать динамику процесса течения металла в литниковой системе и форме, а также осуществлять последовательный просмотр полей температуры, пористости, скоростей, давлений в любой плоскости отливки и в любой момент времени. Возможен анализ температуры во времени в любой точке отливка-форма-литниковая система, то есть имитация работы термопары. Визуализация дефектов усадочного проис-

Работа с файлами проекта

Создание проекта

Сохранение проекта

Загрузка проекта

Работа с файлами записи

Создание файла

Запись результатов

Настройка параметров записи

Управление процессом моделирования

Запуск и прекращение расчета

Вызов главной процедуры расчета

Графический редактор

Рисование по точкам прямой, параллелепипеда, цилиндра, шара

Задание начальных параметров состояния

Настройка интерфейса

Дополнительная информация

Рис. 2. Структура интерфейсной части

хождения проводится на основе дискретного поля плотностей. Анализируя величину скоростных потоков расплава в форме, можно оценить вероятность размыва форм для различных участков, а также образование дефектов типа недолив и спай.

Структура КС "ПроЛит" состоит из трех укрупненных блоков (рис. 1): интерфейсной части, предназначенной для взаимодействия пользователя со средой моделирования; модуля структуры данных, содержащего информацию о расположении переменных в памяти ЭВМ и методы доступа к этим переменным; модулей расчета, содержащих процедуры и функции, необходимые для расчета значений скорости, плотности, давления и температуры.

Модуль структуры данных составляет основу КС. Он подключается как к интерфейсной части, так и к модулям расчета. Этот модуль обеспечивает полную поддержку структуры данных: доступ к параметрам состояния, сохранение структуры и переменных в файл и чтение их из файла, сервисное обслуживание структуры (выделение и оптимизацию памяти, оптимизацию скорости доступа, проверку границ пространства и исключительных ситуаций). Интерфейсная часть и модули расчета взаимодействуют только на уровне периодического вызова главной процедуры расчета. Это означает, что интерфейс КС "ПроЛит" может быть легко использован для расчетов других процессов на основе конечно-разностных методов. Необходимо только разработать новые модули расчета и заменить тело главной процедуры расчета.

В интерфейсной части, в свою очередь, можно выделить пять блоков (рис. 2): для работы с файлами проекта; для графического представления и редактирования значения параметров клеток; для управления процессом моделирования; для работы с файлами записи расчета; для настроек интерфейса и дополнительной информации.

Визуализация процесса. Числовое значение компоненты состояния клетки ассоциируется с некоторым цветом. КС предусматривает также вывод черно-белых изображений, когда цвет плавно меняется от черного к белому. Таким образом, можно изобразить какое-либо сечение модели по определенному параметру среды и визуально оценить зна-

Модуль структуры данных

Структура клетки

Структура пространства Теплофизические параметры

Модули расчета

Главный модуль расчета

Специализированные

модули расчета (скорости, переноса, охлаждения)

Рис. 1. Структура КС "ПроЛит "

чения этого параметра одновременно по всем элементам данного сечения. Пользователь имеет возможность вывести на экран сразу несколько окон, отображающих различные параметры среды для одного сечения.

Если пользователь подведет курсор к некоторой точке изображения, то в окне значений будут отображены координаты точки и значения параметров состояния в данной клетке. Пользователь имеет возможность произвольно задавать значение любого параметра в любой клетке (редактировать). При этом обеспечивается несколько режимов редактирования. Можно выбирать курсором определенную клетку и присваивать ей новые значения (этот режим напоминает обычное рисование пером). Можно присваивать новые значения сразу целой группе клеток, имеющих форму какого-нибудь примитива (параллелепипеда, цилиндра, шара). И, наконец, можно копировать параметры уже существующей области и вставлять скопированный блок в любое место пространства.

При редактировании и работе расчетного модуля все изменения параметров клеток динамически отображаются на изображениях сечений, что позволяет пользователю непосредственно наблюдать протекание процессов в модели. При моделировании КС последовательно просматривает состояние каждого элемента пространства и изменяет его параметры состояния согласно уравнениям. В любой момент состояние модели можно сохранить в отдельном файле. Это позволяет продолжить моделирование с определенного места. Так как сам процесс моделирования может занять много времени, то результаты расчетов сохраняются в файле процесса. Затем моделируемые процессы можно многократно наблюдать в режиме ускоренного просмотра. Для экономии места на жестком диске КС позволяет задавать количество тактов, через которое производится запись результатов.

Часто в качестве результатов моделирования требуется получить зависимость некоторого параметра состояния клетки от времени. Разработанная КС позволяет вывести графики изменения любого

Интерфейсная часть

параметра произвольного элемента модели. Для этого используются данные сохраненных ранее результатов моделирования.

Режимы работы КС "ПроЛит":

• работа с файлами собственного формата;

• импорт файлов отливок в формате твердотельного моделирования

• рисование и редактирование чертежа отливки с помощью графических примитивов (точка, параллелепипед, цилиндр, шар);

• расчет течения охлаждающегося расплава;

• запись в файл промежуточных моментов расчета;

• просмотр любого сечения отливки как до начала моделирования, так и в процессе расчета;

• визуализация динамики течения жидкости;

• просмотр полей скоростей и температур;

• вывод графиков зависимостей скорости, температуры, плотности, давления от времени в любой точке отливки.

В настоящее время математические модели разрабатываемой системы "ПроЛит" проходят проверку в условиях реального технологического процесса изготовления радиаторов на предприятии Минский завод отопительного оборудования (МЗОО). На основе моделирования течения расплава разработано несколько новых вариантов литниковых систем, которые проходят проверку в условиях производства. Результаты промышленных испытаний показывают,

что система "ПроЛит" обеспечивает хорошее (точное) совпадение расчетных результатов с реальной картиной, наблюдаемой на практике.

Таким образом, с помощью виртуальных моделей технологического процесса "Пролит" вы можете отслеживать проблемы используемого технологического процесса (визуализация "болевых" точек технологического процесса и рекомендации по снижению брака), проблемы разрабатываемого технологического процесса на этапе проектирования (это позволит значительно сэкономить время и деньги на доводку технологической оснастки и увидеть дефекты на стадии проектирования), а также проблемы и варианты принципиально новых технологических решений, которые находятся на стадии обсуждения.

Список литературы

1. Рысев М.А. Системы компьютерного моделирования литейных процессов. //Литейное производство. - 2000. - № 1. -С. 29-32.

2. Чичко А.Н., Яцкевич Ю.В. Трехмерное компьютерное моделирование охлаждения отливки и выбор питателя литниковой системы на основе уравнения теплопроводности. // Инженерно-физический журнал. - 1999. - Т. 72. - № 4. - С. 792801.

3. Chichko A., Yatskevich Y., Sobolev V. Three-dimensional computer modeling of alloys flow and foundry technology. Proceeding International conference in Bratislava. 1999, vol 2, p. 672675 Technologia 99.

i Надоели баннеры? Вы всегда можете отключить рекламу.