Научная статья на тему 'Коллоидно-химическая регрессионная модель в анализе связи динамического поверхностного натяжения с содержанием общего белка и альбуминов в крови'

Коллоидно-химическая регрессионная модель в анализе связи динамического поверхностного натяжения с содержанием общего белка и альбуминов в крови Текст научной статьи по специальности «Ветеринарные науки»

CC BY
99
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РЕГРЕССИОННАЯ МОДЕЛЬ / БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ / КРОВЬ ЖИВОТНЫХ / СОДЕРЖАНИЕ БЕЛКА / АЛЬБУМИНЫ / ДИНАМИЧЕСКОЕ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ / REGRESSION MODEL / BIOCHEMICAL PARAMETERS / ANIMAL BLOOD / PROTEIN CONTENT / ALBUMINS / DYNAMIC SURFACE TENSION

Аннотация научной статьи по ветеринарным наукам, автор научной работы — Царькова Марина Сергеевна, Милаева Ирина Валерьевна, Зайцев Сергей Юрьевич

Использование достижений методов математической статистики в области химии и биологии дает возможность применять некоторые методы анализа, например межфазной тензиометрии, для диагностики физиологического состояния человека и животных. Впервые показано использование метода регрессии в моделировании взаимосвязи биохимических параметров сыворотки крови с динамическим поверхностным натяжением (ДПН), а также использование регрессионной модели для определения количества общего белка и альбуминов в сыворотке крови по известным ДПН-параметрам на границе раздела жидкость/воздух. В результате построения регрессионной модели предложены регрессионные уравнения, характеризующие взаимосвязь между показателями ДПН и содержанием белковых компонентов в сыворотке крови животных.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по ветеринарным наукам , автор научной работы — Царькова Марина Сергеевна, Милаева Ирина Валерьевна, Зайцев Сергей Юрьевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Colloid-Chemical Regression Model in Analysis of Dynamic Surface Tension Connection with Content of General Protein and Blood Albumines

The application of mathematical statistics methods in chemical and biological sciences leads to the expansion of analytical methods (for example, interfacial tensiometry) for diagnostics of the physiological conditions of humans and animals. The use of the regression method in modeling the interrelation between biochemical parameters of blood serum and dynamic surface tension (DST) was reported for the first time, as well as the application of a regression model for determining the total protein and albumins level in the blood serum from known DST parameters at the liquid/air interface was shown. Regression equations that characterize the relationship between the DST parameters and the content of protein components in the animal blood serum were found as a result of the proposed regression model.

Текст научной работы на тему «Коллоидно-химическая регрессионная модель в анализе связи динамического поверхностного натяжения с содержанием общего белка и альбуминов в крови»

УДК 612.644.1

КОЛЛОИДНО-ХИМИЧЕСКАЯ РЕГРЕССИОННАЯ МОДЕЛЬ В АНАЛИЗЕ СВЯЗИ ДИНАМИЧЕСКОГО ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ С СОДЕРЖАНИЕМ ОБЩЕГО БЕЛКА И АЛЬБУМИНОВ В КРОВИ

М.С. Царькова, И.В. Милаева, С.Ю. Зайцев*

(кафедра химии федерального государственного бюджетного образовательного учреждения высшего образования «Московская государственная академия ветеринарной медицины и биотехнологии -МВА имени К.И. Скрябина »;*е-тай: [email protected])

Использование достижений методов математической статистики в области химии и биологии дает возможность применять некоторые методы анализа, например межфазной тензиометрии, для диагностики физиологического состояния человека и животных. Впервые показано использование метода регрессии в моделировании взаимосвязи биохимических параметров сыворотки крови с динамическим поверхностным натяжением (ДПН), а также использование регрессионной модели для определения количества общего белка и альбуминов в сыворотке крови по известным ДПН-параметрам на границе раздела жидкость/воздух. В результате построения регрессионной модели предложены регрессионные уравнения, характеризующие взаимосвязь между показателями ДПН и содержанием белковых компонентов в сыворотке крови животных.

Ключевые слова: регрессионная модель, биохимические показатели, кровь животных, содержание белка, альбумины, динамическое поверхностное натяжение.

В последние годы особенно бурно развиваются те области знаний, которые находятся на стыке наук. Использование достижений физики и математики в других сферах, особенно в медицине, известно давно. Благодаря такому взаимодействию появилась возможность создания искусственной почки, сердечных стимуляторов и др. Одним из недавних примеров такого симбиоза стало использование физического метода межфазной тен-зиометрии для диагностики заболеваний человека и животных. В основе этого метода лежит измерение динамического поверхностного натяжения (ДПН) [1, 2] биологических жидкостей (например, сыворотки крови, молока и др.), биохимический состав которых в результате физиологических или патологических процессов претерпевает изменения [3], что отражается на значениях ДПН [4]. Используя математические приемы (корреляционный анализ, регрессионное моделирование), можно проследить влияние отдельных компонентов на ДПН при разном времени существования межфазной поверхности, а также расчетным путем определять содержание ПАВ в исследуемой биологической жидкости. Одним из адекватных методов анализа подобных связей является метод регрессии [5], который в отечественной ветеринарной медицине применяется крайне редко. Между тем в зарубежной медицинской практике

он довольно популярен. Так, с помощью регрессионных моделей изучали прогноз развития ряда заболеваний, вызванных внешними неблагоприятными воздействиями на организм человека [6-9]. Из отечественных публикаций можно сослаться на статью [10], в которой сообщается об использовании метода регрессии при изучении риска развития желчнокаменной болезни.

Цель работы - изучение возможности применения метода регрессии в моделировании взаимосвязи биохимических параметров сыворотки крови коров и ДПН, а также возможности использования регрессионной модели для определения содержания в сыворотке крови общего белка и альбуминов по известным параметрам тензио-грамм поверхностного натяжения на границе раздела жидкость/воздух.

Материалы и методы

В работе использовали как расчеты корреляционных коэффициентов, так и формулы, основанные на регрессионном анализе. Корреляционная зависимость - взаимозависимость двух или нескольких случайных величин. Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшение или увеличение) другой. Регрессионный анализ - статистический метод исследования вли-

яния одной или нескольких независимых переменных на зависимую переменную. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения.

Основные особенности регрессионного метода анализа применительно к ветеринарной практике следующие. На физиолого-биохимические процессы в организме животных оказывает влияние целый ряд внешних и внутренних факторов. Не все факторы, влияющие на биологические процессы, являются случайными величинами, поэтому при использовании регрессионного анализа рассматриваются связи между случайными и неслучайными величинами. Метод регрессии позволяет оценивать параметры уравнения регрессии, которое в общем случае имеет вид:

= ехР[Ро + (Рх • ^1) + (Р2 • Х2) +... + (Р, • X,) Р 1 + ехр[Ро + (Рх • Хх) + (Р2 • Х2) +... + (Р, • X,),

где Рг. - коэффициенты регрессии для независимых переменных X.

С помощью расчетов делают прогноз вероятности изменения одного из параметров по значению другого параметра. В роли независимых переменных выступают чаще всего количественные параметры. Метод может быть использован для прогноза вероятности как для случая дихотомических зависимых параметров, так и для тех случаев, когда число параметров более двух. Основная сложность в использовании этого метода - его трудоемкость, поскольку даже в случае одного-двух десятков независимых переменных возникает множество вариантов уравнений регрессии. Однако использование современного программного обеспечения (программа статистической обработки данных Я, версия 3.1.2.) позволяет значительно ускорить и упростить процессы расчетов [11].

Вероятностная природа причинно-следственных связей в изменении ДИН сыворотки крови определяется многофакторностью. Так, сыворотка крови содержит как поверхностно активные (ПАВ), так и поверхностно инактивные компоненты. Степень их воздействия на ДПН неравнозначна, наибольшее влияние оказывают основные компоненты крови - белковые фракции. Это связано с тем, что они, как наиболее поверхностно-активные вещества, адсорбируются на границе раздела фаз и снижают ДПН. Но процессы адсорбции сочетаются с конкурентным взаимодействием между поверхностно-активными и инактивными компонентами. Динамический характер измеряемой величины дает возможность оценить влияние на ДПН максимального числа компонентов биоло-

гической жидкости. Использование тензиометра «ВРА-1Р» (Германия, «Sinterface Technologies») позволяет проводить измерения ДПН методом максимального давления в пузырьке и получать значения ДПН при очень малом времени существования поверхности (от 0,01 до 100 с) на границе раздела фаз жидкость/воздух. На изотермах с помощью программы ADSA определяются точки, соответствующие t ^ 0 (о0) и t = 0,02 с (а1), t = 1 с (а2), рассчитывается равновесное ДПН t ^ да (а3), а также подсчитывается угол наклона начального и конечного участков кривой (X) в координатах a/t1/2 и о/Г1/2 [7].

Белковые фракции сыворотки крови определяли на биохимическом анализаторе «URIT-8030», (компания «Urit Medical Electronic Co., Ltd», Китай). Общий белок в сыворотке крови определяли биуретовым методом. Принцип метода следующий: белок сыворотки в щелочной среде при взаимодействии с ионами меди образует фиолетовый комплекс; абсорбция образовавшегося комплекса прямо пропорциональна концентрации белка в исследуемом образце..

Сывороточный альбумин определяли известным методом с применением азокрасителей. В качестве красителя использовали бромкрезоловый зеленый ввиду высокой специфичности к альбумину. Принцип метода следующий: избирательное взаимодействие альбумина с бромкрезоловым зеленым при рН 4,2; увеличение поглощения образующегося комплекса альбумин-краситель прямо пропорционально концентрации альбумина.

Результаты и их обсуждение

Предложено использование метода регрессии в моделировании взаимосвязи биохимических параметров сыворотки крови коров с ДПН, а также использование регрессионной модели для определения количества общего белка и альбуминов в сыворотке крови по известным параметрам тензи-ограмм поверхностного натяжения на границе раздела жидкость/воздух.

Впервые применен метод регрессионного анализа для определения статистической зависимости биохимических параметров крови (33 пробы сыворотки крови коров) от показателей поверхностного натяжения (табл. 1). Сначала были определены корреляционные связи между показателями ДПН и количеством белка в крови. Белки крови (альбумины и глобулины), составляющие основную массу белков, объединенных под названием «общий белок», представляют собой поверхностно-активные вещества и значительно снижают поверхностное натяжение. Но из-за больших размеров молекул их

Т а б л и ц а 1

Значения ДПН и содержание общего белка и альбуминов в сыворотке крови коров

Номер образца ст0, мН/м ст1, мН/м ст2, мН/м ст3, мН/м 1 тт -1 -1/2 л0, мН-м с -1 -1/2 Л1, мН-м с СОБ, Г/Л СА, г/л

1 75,44 75,29 72,81 62,94 9,4 13,54 63,4 41,4

2 74,18 74,07 50,26 34,83 25,51 14,86 77,2 40,3

3 73,32 73,15 54,74 37,21 19,69 17,71 65,7 42,8

4 59,66 57,88 46,83 45,46 4,57 7,65 69,2 37,9

5 73,63 74,89 63,23 47,47 11,27 17,33 60,6 39,5

6 73,04 74,74 63,83 49,06 9,8 15,78 67,2 38,0

7 73,81 75,69 62,48 46,44 12,25 17,50 70,2 40,5

8 72,11 74,69 63,97 46,97 8,07 18,91 65,6 39,9

9 72,91 72,87 60,32 40,24 12,27 22,13 65,4 39,1

10 71,84 73,78 62,57 40,76 8,99 25,61 69,4 39,6

11 72,56 72,25 61,72 38,23 10,79 27,57 73,9 39,7

12 72,12 71,76 60,87 39,61 11,26 23,46 64,4 41,3

13 71,66 71,64 61,18 37,13 10,12 28,22 72,5 37,9

14 72,83 73,47 54,51 36,88 17,83 17,37 74,5 40,7

15 72,48 73,73 64,28 36,81 7,36 34,43 73,8 38,2

16 73,14 73,56 64,22 39,02 8,45 32,28 73,8 37,5

17 75,24 76,31 68,53 39,65 17,65 37,66 71,0 32,6

18 72,43 71,88 62,88 39,57 8,79 25,05 73,8 40,7

19 74,07 73,46 60,99 52,9 13,53 7,89 65,9 39,5

20 73,34 73,24 64,68 47,03 8,52 19,53 64,2 41,3

21 73,61 73,39 66,01 53,91 7,31 12,15 66,5 40,5

22 74,02 70,79 64,29 46,78 9,65 20,86 73,2 38,8

23 73,30 73,84 63,28 49,13 10,66 15,21 66,4 39,4

24 72,93 72,22 64,38 51,29 8,56 13,84 67,6 42,9

25 76,88 74,88 67,61 58,59 10,8 9,51 63,21 40,4

26 59,10 54,62 50,78 45,37 6,17 4,36 72,9 42,3

27 60,55 55,72 52,76 44,55 6,57 3,12 72,3 40,5

28 54,93 54,93 50,62 47,51 6,19 3,38 65,3 36,5

29 56,82 55,24 58,37 42,32 6,84 4,31 72,5 36,5

30 56,76 53,83 50,09 48,03 3,81 4,07 78,2 35,0

31 59,54 56,25 52,39 48,76 4,38 4,33 70,9 35,7

32 55,24 52,37 47,28 47,75 3,51 5,48 61,6 31,4

33 61,27 57,59 52,86 52,67 4,61 5,54 71,1 36,2

О б о з н а ч е н и я: СОБ и СА - содержание общего белка и альбумина соответственно.

действие в большей мере может проявляться при средних (о2) и особенно при больших значениях времени существования поверхности (о3). Чем выше содержание белка в растворе, тем сильнее происходит снижение поверхностного натяжения, интенсивность падения которого отражает величина угла наклона кривой. Чем интенсивнее адсорбция ПАВ к поверхности, тем меньше (острее) угол наклона начального участка кривой. При большом значении времени существования поверхности, когда практически вся адсорбционная поверхность занята и скорость адсорбции ПАВ из раствора минимальна, угол наклона конечного участка кривой отражает стремление системы к достижению равновесного состояния. Чем угол больше (более тупой), тем ниже скорость адсорбции и тем ближе система к равновесию.

Альбумины проявляют наибольшую поверхностную активность, поэтому их адсорбция к поверхности начинается раньше, уже при о2 они значительно снижают поверхностное натяжение. Заполнение поверхности этими белками происходит быстро, поэтому и равновесие наступает быстрее.

Но не всегда можно четко проследить такие закономерности в сыворотке крови. Это связано в первую очередь с ее многокомпонентным составом (табл. 2). Конкурентные взаимодействия между белками, действие солей, изменение конфигурации белковых молекул под действием мочевины и т.п. - факторы, влияющие на адсорбцию белков. Поэтому при проведении корреляционного анализа можно порой получить противоречивые данные.

Т а б л и ц а 2

Корреляционные коэффициенты между параметрами ДПН и количеством белков крови

Параметры ДПН С ОБ Са

СТ0 -0,02111 0,093604

-0,07204 0,014351

СТ2 -0,29226 -0,23121

-0,62866 0,127415

0,209132 -0,37614

0,366658 -0,54695

О б о з н а ч е н и я: СОБ и СА - содержание общего белка и альбумина соответственно.

Таким образом, при данной выборке (33 животных) наибольшие корреляционные коэффициенты наблюдаются между содержанием общего белка и параметром о3 (отрицательный коэффициент корреляции составляет -0,629), а также между содержанием общего белка и углом наклона конечной части кривой (положительный коэффициент корреляции составляет 0,367). Для альбуминовой фракции наибольшие значения имеют коэффициенты углов наклона начального (-0,376) и конечного (-0,547) участков кривой.

При разработке регрессионной модели результаты эксперимента были преобразованы в полные формулы, приведенные ниже.

СОБ = 0,97о0 - 0,57о1 - 0,96о2 +

+ 0,42о3 - 0,07\ + 0,65^ + 69,11 (Р-уа1ие = 8%);

СА = 1,02а0 - 0,27о1 - 0,47о2 + 0,14о3 - 0,22\ +

+ 0,05^ + 9,35 (Р-уа1ие = 0,02%),

где СОБ и С А - содержание общего белка и альбумина; Р-уа1ие - показатель качества статистической зависимости (традиционно хорошими считаются значения не более 5%).

Для улучшения качества регрессионных уравнений мы итеративно убирали переменные, которые статистически не оказывают влияния на значения биохимических параметров. Получили сокращенные формулы, приведенные ниже.

СОБ = 0,64 о0 - 0,46о1 - 0,43о2 +

+ 0,31^ + 7(0,4 (Р-уа1ие = 2,5%);

СА = 0,98о0 - 0,25о1 - 0,39о2 + 0,01о3 - 0,22\ +

+ 10,22 (Р-уа1ие <0^1%).

В оптимизированном варианте все корреляционные соотношения улучшили показатель Р-уа1ие, что позволяет более точно описывать интересующие параметры.

Таким образом, в результате построения регрессионной модели были сформированы регрессионные уравнения, характеризующие взаимосвязь между содержанием белковых ком -понентов в сыворотке крови и показателями ДПН. Таким образом, использование регрессионно-корреляционного анализа для биологических систем позволяет создавать регрессионные модели, способные выделять из многочисленных параметров максимально значимые. Эти результаты могут быть использованы для более глубокого понимания влияния отдельных компонентов на сложные процессы адсорбции в биологических жидкостях.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 14-16-00046).

СПИСОК ЛИТЕРАТУРЫ

1. Казаков В.Н. Межфазная тензиометрия и ре-ометрия биологических жидкостей в терапевтической практике / Под ред. А.Ф. Возианова. Донецк, 2000.

2. Зайцев С.Ю. Тензиометрический и биохимический анализ крови животных: фундаментальные и прикладные аспекты. М., 2016.

3. Зайцев С.Ю., Конопатов Ю.В. Биохимия животных. СПб., 2005.

4. Zaitsev S.Yu. // Advan. Colloid Interf. Sci. 2016. Vol. 235. P. 201.

5. Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. М., 2002. С. 305.

6. Abraham H.D., Degli-Esposti S, Marino L. // J. Addic. Disease. 1999. Vol. 18. N 4. P. 77.

7. Murphy E.L., Bryzman S.M. // Hepatology. 2000. Vol. 31. N 3. P. 756.

8. Rossau C.D., Mortensen P.B. // British Journal of Psychiatry. 1999. Vol. 171. Р. 355.

9. Schlesselman J.J. Case-control studies: design, conduct, analysis, 1st edn. Oxford, 1982.

10. Курилович С.А., Решетников О.В., Шахматов С.Г. / Терапевт. архив. 2000. № 2. С. 21.

11. Core Team R. A language and environment for statistical computing. Foundation for Statistical Computing. Vienna, 2013. ISBN 3-900051-07-0, URL /http:// www.R-project.org/.

Поступила в редакцию 20.05.17

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

COLLOID-CHEMICAL REGRESSION MODEL IN ANALYSIS OF DYNAMIC SURFACE TENSION CONNECTION WITH CONTENT OF GENERAL PROTEIN AND BLOOD ALBUMINES

M.S. Tsarkova, I.V. Milyaeva, S.Yu. Zaitsev*

(Department of Chemistry K.I. Scriabin Moscow State Academy of Veterinary Medicine and Biotechnology; *e-mail: [email protected])

The application of mathematical statistics methods in chemical and biological sciences leads to the expansion of analytical methods (for example, interfacial tensiometry) for diagnostics of the physiological conditions of humans and animals. The use of the regression method in modeling the interrelation between biochemical parameters of blood serum and dynamic surface tension (DST) was reported for the first time, as well as the application of a regression model for determining the total protein and albumins level in the blood serum from known DST parameters at the liquid/air interface was shown. Regression equations that characterize the relationship between the DST parameters and the content of protein components in the animal blood serum were found as a result of the proposed regression model.

Key words: regression model, biochemical parameters, animal blood, protein content, albumins, dynamic surface tension.

Сведения об авторах: Царькова Марина Сергеевна - профессор кафедры химии федерального государственного бюджетного образовательного учреждения высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА им. К.И. Скрябина", докт. хим. наук ([email protected]); Милаёва Ирина Валерьевна - доцент кафедры химии федерального государственного бюджетного образовательного учреждения высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА им. К.И. Скрябина", канд. биол. наук ([email protected]); Зайцев Сергей Юрьевич - зав. кафедрой химии федерального государственного бюджетного образовательного учреждения высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии -МВА им. К.И. Скрябина", докт. биол. наук, докт. хим. наук, профессор ([email protected]).

i Надоели баннеры? Вы всегда можете отключить рекламу.