Коэффициент шума.
Теория и практика измерений
Сергей БЕЛЬЧИКОВ, к. т. н.
Развитие современных цифровых систем связи, которое шло усиленными темпами все последнее десятилетие, стало возможным во многом благодаря тому, что современные ВЧ- и СВЧ-устройства оказались в состоянии принимать и обрабатывать более слабые сигналы, чем раньше.
Введение
Чем более слабые сигналы приходится обрабатывать в цифровых системах связи, тем большее значение приобретают такие параметры, как уровень бит-ошибок, который непосредственно зависит от чувствительности тракта обработки сигнала и, конечно, коэффициента шума. Из перечисленных параметров коэффициент шума интересен в том плане, что его можно использовать не только как критерий оценки работы всей приемной системы в целом, но и как ключевую характеристику отдельных СВЧ-компонентов, таких как усилители и смесители, которые образуют эту систему. Если разработчик контролирует коэффициент шума и усиление отдельных каскадов приемной системы, то это означает, что он контролирует всю систему в целом. Если величина коэффициента шума известна, то рассчитать чувствительность всей системы, зная полосу обработки сигнала, не составит труда. Именно коэффициент шума — это зачастую тот параметр, который выгодно отличает одно приемное устройство от другого, один усилитель от другого, один транзистор от другого. Тот факт, что без использования понятия коэффициента шума сегодня сложно представить спецификацию на приемное устройство, подразумевает, что точность и повторяемость измерения данного параметра особенно важны при разработках и производстве СВЧ-уст-ройств.
Измерение шумов некого электронного устройства — важная процедура для минимизации шума, генерируемого этим устройством в приемных системах. Основным способом снижения вероятности бит-ошибок при приеме и обработке цифровых потоков является усиление полезного сигнала электронными устройствами, которые имеют низкий уровень собственных шумов. Традиционные методы увеличения соотношения полезного сигнала к шуму заключаются, с одной стороны, в увеличении мощности сигнала, передаваемого в направлении приемника, а с другой — в увеличении усиления приемной антенны. Подобные способы свя-
заны с известными трудностями, поскольку увеличение мощности сигнала передатчика ограничивается законодательно соответствующими контрольными органами, а увеличение усиления в антенне обычно связано с необходимостью разработки более дорогой и более громоздкой антенной системы. Альтернативным способом увеличения соотношения полезного сигнала к шуму является минимизация коэффициента шума приемной системы и ее компонентов. Таким образом, измерения коэффициента шума абсолютно необходимы, чтобы иметь уверенность в том, что шум, вносимый элементами приемной системы, допустимый.
Основная задача данной статьи — рассмотрение способов оценки коэффициента шума электронных устройств при помощи современных измерительных приборов. При этом мы покажем возможность измерения коэффициента шума при помощи анализатора спектра «СК4-БЕЛАН 32», который укомплектован соответствующей опцией.
Для четкого понимания смысла подобных измерений и правильной интерпретации их результатов необходимо напомнить, что скрывается под термином «коэффициент шума», а также что подразумевают связанные с ним понятия (эффективная шумовая температура, У-фактор, избыточный коэффициент шума и т. д.).
Теория
Шум, с которым мы имеем дело на практике, состоит из многих составляющих. Основные из них — это тепловой и дробовой шумы. Тепловой шум возникает при флуктуациях электронов в проводниках, имеющих некую конечную температуру. Некоторые из таких флуктуаций могут иметь спектральные составляющие в той же полосе частот, что и полезные сигналы, то есть их маскировать и затруднять их обработку. Шумовой спектр, генерируемый тепловым шумом, по своей природе однороден на всех частотах. Дробовой шум возникает из-за квантовой стохастической природы электрического тока. Ток не представляет собой непрерыв-
ного и предсказуемого движения электронов, а скорее является хаотическим потоком со случайным их распределением. Статистический анализ стохастического потока электронов показывает, что вариации тока имеют широкополосный характер (распределены в широкой полосе частот). Есть и другие природные феномены, которые имеют квантовую структуру и генерируют случайный шум. Примером может служить шум генерации и рекомбинации основных носителей, возникающий в транзисторах при распределении тока эмиттера между базой и коллектором. Несмотря на многообразие источников шума, у всех механизмов генерации шума есть одно свойство, общее с тепловым шумом: они имеют однородный спектр, равномерно распределенный в полосе частот до 5000 ГГц. Поэтому при оценке шума все его источники принято рассматривать как тепловой шум. Мощность теплового шума определяется как:
РА = кхТхВ, (1)
где РА — доступная мощность (Дж/с или Вт); к — постоянная Больцмана (1,38х10-23 Дж/К); Т — абсолютная температура (К); В — полоса частот (Гц).
Важно помнить, что кхТхВ — это «доступная» мощность. То есть она «доступна» только при оптимальной (согласованной) нагрузке (если нет отражения энергии).
Определение кхТхВ позволяет интуитивно лучше понять природу шума. Постоянная Больцмана к характеризует среднюю величину выделяемой кинетической энергии на единицу температуры. Присутствие в формуле температуры Тпредполагает, что с ее ростом выделяется больше мощности. Ну, и поскольку шум имеет широкополосную природу, в формуле мощности шума фигурирует В — используемая полоса частот.
Абсолютную температуру в 290 К (обычно обозначается как Т0) принято считать опорной величиной источников шума при измерениях коэффициента шума. Эта величина соответствует 16,8 °С и 62,3° по Фаренгейту. Спектральная плотность тепловых
и
в, — полезный сигнал на входе усилителя;
М{ — шум на входе усилителя;
в,, — полезный сигнал на выходе усилителя;
М„ — шум на выходе усилителя;
Б — коэффициент усиления усилителя;
Ма — дополнительный шум, генерируемый усилителем;
ч
0 оГ
13 о
1 £ ф в)
ш л &* >
-40
-60
-80
-100
-120
2,6 2,65 2,7
Частота, ГГц (а)
н
2,65 2,7
Частота, ГГц (Ь)
Е
Рис. 1. Условная схема усилителя. Сигналы на его входе и выходе
шумов kx T, генерируемая резистором на согласованную нагрузку в каждом герце электромагнитного спектра при данной температуре, равна 4x10-21 Вт или -174 дБ-м.
Неотъемлемой частью определения коэффициента шума является понятие «соотношение сигнал/шум». Этот термин интуитивно понятен, особенно если перейти к логарифмическим соотношениям. Поясним данный термин на простом примере. Допустим, мы имеем сигнал (S) с уровнем 10 мВт (+10 дБ-м). Чему равно теоретическое соотношение «сигнал/шум», измеряемое в децибелах, для данного сигнала в полосе 1 МГц при температуре 290 К? Сначала рассчитаем мощность шума (N) в полосе 1 МГц:
N = (-174 + 10log10 (1х106/1)) =
= (-174 +60) = -114 дБ-м.
Теперь вычислим соотношение «сигнал/ шум»: S/N = (+10-(-114)) = 124 дБ.
Заметим, что соотношение «сигнал/шум» выражается просто в дБ. Хотя и мощность шума, и сигнал первоначально были в логарифмическом масштабе относительно 1 мВт.
Уяснив термин «соотношение сигнал/шум». мы можем перейти к определению понятия «коэффициент шума». Этот коэффициент описывает уменьшение соотношения «сигнал/шум» по мере прохождения сигнала через приемное устройство или его отдельный каскад (усилитель, смеситель). Фундаментальное определение коэффициента шума следующее:
F = (S n /N т )/(S0Ut/Nout), (2)
где S in/N in — соотношение «сигнал/шум» на входе устройства; S0Ut/N0Ut — соотношение «сигнал/шум» на выходе устройства.
Поскольку все электронные устройства «шумят» и, соответственно, добавляют некое количество шума к сигналу, величина F всегда больше единицы. Хотя величина F исторически называлась коэффициентом шума, современный термин «коэффициент шума» (децибельная величина NF) обычно подразумевает логарифмический масштаб величины F, равный 10 log10F (дБ). В зарубежной специальной литературе, публикуемой ведущими производителями измерителей коэффициента шума (Agilent Technologies, Anritsu, Rohde & Schwarz) последовательно разграничиваются два термина: «фактор шума», или F, и, собственно, коэффициент шума NF. Итак, NF = 10log10xF (3).
Рассмотрим коэффициент шума некоего известного усилителя. На рис. 1 показана его условная схема, а также сигналы на его входе и выходе.
Если мы подключим к входу усилителя согласованную нагрузку при температуре 290 К, то она будет генерировать на входе усилителя шум kx T0xB. На выходе этот шум усилится и превратится в kxT0xBxG (G — коэффи-
циент усиления усилителя) плюс к нему добавится некое количество шума, генерируемого в самом усилителе NA. Тогда выражение (2) можно переписать следующим образом:
F = (S n /N п )/(Sout/Nout) =
= S n xNout/Sout xNn =
= 1/Gx(k xT0xBxG +Na )/k xT0xB отсюда:
F = (k xT0xBxG+NA)/k xT0xB xG (4)
или
NF = 10log10[(kxT0xBxG +NA)/
/kxT0xBxG]. (5)
Выражение (4) является определением коэффициента шума, которое официально принято международным Институтом Радиоинженеров (сейчас Institute of Electrical and Electronics Engineers (IEEE)).
Если опираться на уравнения (4) и (5), то видно, что измерения коэффициента шума сводятся к измерениям уровня шума, коэффициента усиления и полосы. Однако, несмотря на понятность данных величин, в практических измерениях формулами (4) и (5) пользуются не так уж часто (хотя использовать их можно, о чем мы расскажем ниже). Это связано с тем, что измерить с большой точностью усиление в заданной полосе — зачастую не тривиальная задача. Большинство систем измерения коэффициента шума элегантно обходят задачу прямого измерения уровня шума и усиления, основывая алгоритмы своей работы на использовании, в первую очередь, линейных свойств тепловых шумов.
Дело в том, что тепловой шум (РА = кхТхВ) в постоянной полосе частот имеет линейные характеристики. На рис. 2 представлен график функции мощности теплового шума от абсолютной температуры. Очевидно, что мощность шума — это линейная функция вида f(x) = тхх+Ь, где f(x) — это РА, х —
Ра'
Крутизна характеристики = кВ
03
2
3
>х О
О
с
Н
(0.0) Абсолютная температура, К т
Рис. 2. График функции мощности теплового шума от абсолютной температуры
Рис. 3. Условная схема идеального приемника с согласованной нагрузкой 50 Ом на входе
абсолютная температура T, m — переменная k xB, а b — это точка пересечения с осью Y, где при абсолютной температуре в 0 К мощность шума будет равна 0.
Таким образом, PA (T) = kxB(T )+0 = kxB(T).
При постоянной величине полосы, которая нам известна, это уравнение позволяет рассчитать мощность теплового шума для любой абсолютной температуры, то есть полностью описывает характеристики теплового шума. Поскольку прямая определяется двумя точками, то для описания характеристик теплового шума нам фактически лишь нужно взять две температурные точки и провести в них два измерения мощности шума. Если мы произведем измерение мощности на выходе некоего устройства (например усилителя), подключив к его входу согласованную нагрузку (генератор шума) при температуре T0 = 290 K, то уравнение для мощности P1 можно записать в таком виде:
P1 = kxT0xBxG+NA. (6)
Затем предположим, что мы нагрели согласованную нагрузку (включили генератор шума) до значения THOt = T0+ TEX и снова измерили мощность Р2 на выходе усилителя. Уравнение для мощности Р2 будет иметь вид:
Р2 = k (T0 + TEX)BxG +NA- (7)
Отношение мощностей Р2/Р1 исторически называется «Y-фактором» или Y (по-видимому, в связи с тем, что значения мощностей графически откладываются на оси Y — рис. 2).
Y = (k (T) + Tex )B xG+Na )/ /(k xT0xBxG+Na ).
Используя (4), получаем:
Y = (k xBxG (T0 +Tex)+(F -1)k xB xG xT0)/ /kxBx GxT0xF
или
Y = (Tex+F x^/F xT0, откуда находим, что фактор шума равен:
F = (Tex/T0)/(Y-1). (8)
50 Ом T = 290 К
Реальный объект
измерения
50 Ом Т = (290 К +Те)
Те — эффективная температура шума объекта измерения
«Идеальный» объект измерения,
Уровень мощности одинаковый
Рис. 4. Условная схема измерения шума с объектом измерения, включенным в разрыв между приемником и согласованной нагрузкой 50 Ом
Величину TEX/T0 или (TH0t-T0)/T0 обычно называют избыточным коэффициентом шума, илиENR (excess noise ratio), и производители источников шума нормируют ее в дБ. Формула (8) чаще записывается как:
F = ENR/(Y -1), (9)
в логарифмическом виде выражение для коэффициента шума имеет вид:
NF = 10log10[10ENR/10/(10Y/10-1)]. (10).
Часто при измерениях коэффициента шума может использоваться другое понятие, которое также является фундаментальным, — понятие «эффективной температуры шума». Любой инженер, занимающийся измерением коэффициента шума, должен четко понимать взаимосвязь понятий «коэффициент шума» и «температура шума».
Что же такое температура шума? Если 50-омный резистор с температурой 290 К подключен к входу идеального (не имеющего шумов) приемника с сопротивлением входа 50 Ом (рис. 3), то мощность шума на входе такого виртуального приемника составит:
PA = 1,38x10-23x290xB(l4), [Вт]
А теперь представьте себе тестируемое устройство, например усилитель, подключенный в разрыв между 50-омным резистором и идеальным приемником (рис. 4).
Шум на выходе тестируемого устройства теперь включает две составляющие. Одна из них — это усиленный шум резистора с температурой 290 К. Другая составляющая — это шум, генерируемый самим тестируемым устройством. Обратите внимание, что приемник не может различить эти две составляющие шума. Для приемника результат измерения был бы тем же, если бы тестируемое
устройство было идеально и не генерировало шума, а резистор, подключенный к входу устройства, был нагрет до некоторой более высокой температуры (290+Те) К. В сущности, реальное тестируемое устройство может быть промоделировано как идеальное устройство, не вносящее шума, но имеющее на входе дополнительный источник шума с эквивалентной температурой Те. Это — эффективная температура шума тестируемого устройства (или эквивалентная температура шума тестируемого устройства).
Преимущество понятия эффективной температуры шума заключается в том, что это понятие подводит общее основание под измерения случайного электрического шума, генерируемого любым источником: от транзистора на основе технологии GaAs до галактики. Есть много разновидностей электрического шума, и большинство из них не имеют тепловой природы. Однако все виды случайного шума можно выразить как эквивалентное количество теплового шума, который генерировался бы при температуре Те. Обычно слово «эффективная» или «эквивалентная» в сочетании с «температурой шума» опускается и традиционно употребляется выражение «температура шума».
Поскольку мощность теплового шума РА прямо пропорциональна температуре Т (что следует из уравнения (1)), то значения температуры шума можно складывать, точно так же, как значения мощности шума при условии, что полоса В не меняется.
Дополнительно прояснить понятие температуры шума можно при помощи графического представления функции мощности шума от температуры (рис. 5).
График 1 (рис. 5) представляет собой функцию мощности шума некоего реального усилителя. Обратите внимание, что Те — это экстраполированная в минус точка пересечения графика с температурной осью, а также что
Рис. 5. Графическое представление понятия эффективной шумовой температуры
усилитель вносит собственный шум ЫА. На выходе данного усилителя при температуре Т0 можно будет детектировать мощность, равную N1. Теперь сместим график 1 вправо на величину Те и получим график 2 (рис. 5). График 2 — это график мощности на выходе идеального усилителя, не вносящего собственных шумов (мощность шума при нулевой температуре равна нулю) с неизменным значением переменной кхВхС (усиление и полоса константны, так же, как и постоянная Больцмана). Однако видно, что данный усилитель имеет на выходе ту же самую мощность шума N1. Таким образом, на выходе идеального усилителя можно получить ту же самую мощность, что и у реального усилителя, если источник шума на входе идеального усилителя «нагреть» на величину Те. Обратите внимание, что увеличение мощности на выходе идеального усилителя, вызванное «нагревом» источника шума, точно соответствует вносимому шуму ЫА исходного реального усилителя. Следовательно:
ЫА = к хТе хВ хС. (11)
Связь между фактором шума (коэффициентом шума) и температурой шума описывается следующим выражением:
Р = (к хТ0хВ хС+ЫА)/к хТ0хВ хС =
= (к хТ0хВх С+к хТе хВ хС)/к хТ0хВ хС
или
Р = 1+ Те/290. (12)
В таблице даны некоторые значения для Р, ЫР и Те. Можно запомнить, что 0,1 дБ приблизительно соответствует 7-7,5 К.
Перед тем как перейти к практике измерений коэффициента шума, совершенно необходимо коснуться еще одного теоретического аспекта — определения коэффициента шума и температуры шума в многокаскадных системах. На рис. 6 показано, как генерируется шум в многокаскадной системе.
Шум на входе показан как резистор с температурой Т0. Каждый каскад характеризует-
Таблица. Некоторые значения для F, NF и Te
Коэффициент Фактор Температура
шума NF, дБ шума F шума Te, К
G 1 G (абсолютный ноль)
G,5 1,122 35,4
G,6 1,148 43,G
G,7 1,175 5G,7
G,8 1,2G2 58,7
G,9 1,23G 66,8
1,GG 1,259 75,1
1,1 1,288 83,6
1,2 1,318 92,3
3 2,GG 29G
1G 1G 261G
2G 1GG 28 71G
ся своей полосой В, усилением О и вносимым шумом ЫА. Фактор шума системы задается следующим уравнением:
-^123 = -Р1+(р2—1)/О1+(-Рз—1)/О1хО>+... (13) и для двухкаскадной системы:
^12 = р1+(р2-!)/О1 (14)
Выражения (13) и (14) обычно называются каскадной формулой Харальда Фриса. Обратите внимание на то, что полоса В не фигурирует в уравнениях (13) и (14). Это
демонстрирует преимущество методов, основывающихся на понятиях коэффициента шума и температуры шума: они не зависят от полосы.
Величина [(F2-1)/G1] в уравнении (13) часто называется эффектом второго каскада. Если усиление в первом каскаде большое, то эффект второго каскада будет минимальным, так что общий фактор шума F12 будет определяться фактором шума первого каскада F1. Вот почему приемник с высокой чувствительностью практически всегда начинается с ма-лошумящего усилителя с малым коэффициентом шума (с предварительного усилителя).
Уравнение (14) можно переписать таким образом, чтобы найти F1, если другие значения известны:
F1 = F12-KF2-D/GJ. (15)
Это же уравнение, выраженное через температуру шума, имеет вид:
T1 = T12-T2/G1. (16)
Уравнения (15) и (16) являются основой для большинства автоматических анализаторов коэффициента шума и прочих подобных приборов. Тестируемое устройство всегда является первым каскадом, а прибор, к входу которого подключается тестируемое устройство, является вторым каскадом. ■
Окончание следует
Литература
1. Friis H. T. Noise Figures of Radio Receivers. Proc. of the IRE, July, 1944.
2. Agilent. Fundamentals of RF and Microwave Noise Figure Measurements. Application note 57-1.
3. Agilent. Noise Figure Measurement Accuracy — The Y-Factor Method. Application note 57-2.
4. Vondran D. Vector Corrected Noise Figure Measurements // Microwave Journal, March 1999.
5. Anritsu. Noise Figure Accuracy. Application Note No. 11410-00227
Рис. б. Схема генерации шума в многокаскадной системе